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Abstract
Although the pro�le of immune cells changes during the natural course of SARS-CoV-2 in�ection in
human patients, few studies have used a longitudinal approach to reveal their dynamic features. Here, we
performed single-cell RNA sequencing of bronchoalveolar lavage �uid cells longitudinally obtained from
SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment showed
dynamic changes in cell proportions and characteristics in uninfected control, at 2 days post-infection
(dpi) (early stage of SARS-CoV-2 infection with peak viral titer), and 5 dpi (resolution phase). NK cells and
CD8+ T cells exhibited activated subclusters with interferon-stimulated features, which were peaked at 2
dpi. Intriguingly, macrophages were classi�ed into 10 distinct subpopulations, and their relative
proportions changed over the time. We observed prominent transcriptome changes among monocyte-
derived in�ltrating macrophages and differentiated M1/M2 macrophages, especially at 2 dpi. Moreover,
trajectory analysis revealed gene expression changes from monocyte-derived in�ltrating macrophages
toward M1 or M2 macrophages and identi�ed the distinct macrophage subpopulation that had rapidly
undergone SARS-CoV-2-mediated activation of in�ammatory responses. Finally, we found that different
spectrums of M1 or M2 macrophages showed distinct patterns of gene modules downregulated by
immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response
dynamics provoked by SARS-CoV-2 infection.

Introduction
During the current coronavirus disease-19 (COVID-19) pandemic 1, cross-sectional research has rapidly
broadened our understanding of the immune response to severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Immune landscape studies have revealed the pathogenesis of severe COVID-19 with a
hyper-in�ammatory response2–4, and the innate, humoral, and T-cell response of COVID-19 patients have
been extensively characterized5–7. Currently ongoing studies are examining the mechanisms of
therapeutic modalities, including anti-viral and anti-in�ammatory agents, with accompanying clinical
trials 8–11. However, due to the intrinsic limitations of observational studies of human subjects, it is rare
to obtain a longitudinal description of the immune response from the initial stage to the resolution of
SARS-CoV-2 infection.

In recent studies, single-cell RNA sequencing (scRNA-seq) of bronchoalveolar lavage (BAL) �uid from
patients with COVID-19 has provided valuable information of the microenvironment of immune
responses to SARS-CoV-2 12–14. Intriguingly, increased levels of a macrophage subtype originated from
circulating monocytes were observed during the in�ammatory phase of COVID-19 12. Additionally, we
recently demonstrated that peripheral monocytes from severe COVID-19 patients were highly activated,
showing strong interferon-mediated in�ammatory responses 4. These �ndings suggest that both
monocytes and macrophages are major cell population of interest in COVID-19 pathogenesis and
patients’ anti-viral response. However, most currently available transcriptomic analyses of immune cells
are from cross-sectional studies and, importantly, cannot compare infected status with uninfected status
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due to the lack of data obtained prior to the SARS-CoV-2 infection. Moreover, BAL invasiveness hinders
the acquisition of sequential specimens from critical patients during SARS-CoV-2 infection. These
limitations can be overcome by analyzing animal models for the infection with SARS-CoV-2.

The ferret (Mustela putorius furo) is widely used as an animal model for investigations of respiratory
virus pathogenesis 15,16. Since ferrets’ natural susceptibility to in�uenza virus was discovered in 1933,
these animals have been used to recapitulate the course of several human respiratory viral diseases,
including parain�uenza virus, respiratory syncytial virus, and SARS-CoV-117. Moreover, their
histoanatomical features—including the ratio between the upper and lower respiratory tract lengths,
airway glandular density and terminal bronchiole structure—provide optimal conditions for mimicking
human respiratory infection 17. We recently reported that a ferret model can reproduce a common natural
course of COVID-19 in humans, showing effective infection and rapid transmission18. SARS-CoV-2-
infected ferrets initially exhibit body temperature elevation and weight loss with viral shedding. In
addition, peak viral titer is observed during 2–4 days post-infection (dpi), and after then, resolution phase
which is characterized by body temperature normalization and decrease of viral titer is continued up to 10
days.

Here, we performed scRNA-seq of sequential BAL �uid samples from SARS-CoV-2-infected ferrets, in
negative control, at 2 days post-infection (dpi) (early stage of SARS-CoV-2 infection with peak viral titer),
and 5 dpi (resolution phase with histopathology). Landscape analysis of the ferret lung immune
microenvironment revealed dynamic changes of the proportions and characteristics of immune cells over
this time. Speci�cally, we delineated the macrophage population into 10 distinct subpopulations based
on unique gene expression patterns, and described their chronological transcriptome changes.
Intriguingly, rather than tissue-resident alveolar macrophage populations, we found that in�ltrating
macrophages could differentiate into M1 or M2 macrophages after SARS-CoV-2 infection. Moreover, the
different spectrums of M1 or M2 macrophages exhibited distinct patterns of gene modules down-
regulated by immune-modulatory drugs.

Results
Single-Cell Transcriptomes of BAL Fluid Cells Sequentially Obtained From SARS-CoV-2-Infected Ferrets

Ferrets were intranasally inoculated with SARS-CoV-2, using a previously described strain isolated from a
COVID-19 patient in South Korea18. BAL �uid cells and contralateral lung tissue samples were collected
by sacri�cing infected ferrets at three different time-points: before SARS-CoV-2 infection (uninfected
control, n = 3), 2 dpi (n = 3), and 5 dpi (n = 4) (Fig. 1a).

Histopathological analysis and viral shedding clearly indicated SARS-CoV-2 infection (Fig. 1a and 1b).
The infectious viruses detected in lung tissue at 2 dpi (mean 2.3 log10 TCID50/g) and 5 dpi (mean 1.6
log10 TCID50/g). Histopathological examinations revealed a pattern of acute pneumonia, characterized
by more prominent immune cell in�ltration in the alveolar wall and bronchial epithelium at 5 dpi than
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control or 2 dpi, which is consistent with our recent study18. Therefore, we categorized the 2 dpi
specimens as early stage of SARS-CoV-2 infection with peak viral titer, while 5 dpi specimens may
represent as resolution phase with decreasing viral titer and evident histopathological changes.

            Using the 10x Genomics platform, we performed scRNA-seq of BAL �uid cells from 10 ferrets,
analyzing a total of 59,138 cells after �ltering dead cells. We detected a mean of 8,760 UMIs, and an
average of 2,158 genes per cell. By analyzing 59,138 cells with a uniform manifold approximation and
projection (UMAP) algorithm based on variable genes with the Seurat package19, we identi�ed 28
different clusters (Supplementary Fig. 1a), which were assigned to 14 different cell types expressing
representative marker genes (Fig. 1c, Supplementary Fig. 1b and 1c; Supplementary Table 1). We
excluded two clusters with doublet and red blood cells, and thus focused on the following 12 clusters for
downstream analysis: dendritic cells, macrophages, granulocytes, mast cells, natural killer (NK) cells, γδ-T
cells, CD8+ T cells, CD4+ T cells, proliferating T cells, B cells, plasma cells, and epithelial cells (Fig. 1d).
These clusters and annotated cell types were unbiased according to experimental batches of scRNA-seq
(Supplementary Fig. 1d). Although the SARS-CoV-2 RNA sequence was rarely detected, they were
contained by the macrophage and epithelial cell clusters (Supplementary Fig. 1e).

            To analyze the time-course and dynamic changes of immune responses to SARS-CoV-2, we
compared the relative proportions of each cell type in control, 2 dpi, and 5 dpi. Analyzing the pattern of
proportion changes revealed that the macrophage population comprised the majority of BAL �uid cells
over 60% (Fig. 1e). Pattern of each cell type proportion was not evidently changed regardless of time
point (Fig. 1e).

 

Quantitative and Qualitative Changes in the Clusters of NK Cells and CD8+ T Cells

As we aimed to investigate immunological changes during the early stage of SARS-CoV-2 infection, we
�rst analyzed NK cells, the representative innate cytotoxic lymphocytes in anti-viral response. Among NK
cells, �ve subclusters were identi�ed from UMAP (Fig. 2a; Supplementary table 2). With regards to the
proportions of each NK cluster, NK cluster 0 was decreased after SARS-CoV-2 infection, NK cluster 1 was
increased at 2 dpi but decreased at 5 dpi, and NK clusters 2 and 3 were reciprocally changed (Fig. 2b and
Supplementary Fig. 2a). To characterize activated status of each NK cluster, we performed gene set
enrichment analysis using interferon (IFN)-α or IFN-γ responsive signatures. NK clusters 0 and 1 featured
prominent responses to interferon IFN-α or IFN-γ (Supplementary Fig. 2b). Indeed, NK cluster 1 showed
predominant expression of IFN-stimulated genes including STAT1, OAS1, and ISG15 (Fig. 2c). In addition,
genes of cytotoxic molecules including GZMB, GZMK, and PRF1 were also highly expressed (Fig. 2c)—
indicating that NK cluster 1 was IFN-stimulated and activated NK cells. Collectively, NK cell cluster
exhibited activated subclusters with IFN-stimulated and cytotoxic features, which underwent longitudinal
changes peaked at 2 dpi.
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            Additionally, we analyzed CD8+ T cells, another cytotoxic lymphocyte population, and identi�ed
four subclusters from UMAP (Fig. 2d; Supplementary table 3). The proportion of CD8+ cluster 2 tended to
decrease at 2 dpi and to increase at 5 dpi, while the proportion of CD8+ cluster 0 reciprocally changed
(Supplementary Fig. 2c). When we characterize each CD8+ cluster, CD8+ clusters 2 and 3 exhibited higher
expression levels of CD69 and ITGAE, and lower expression of S1PR1, re�ecting tissue-resident features
(Fig. 2e). CD8+ cluster 2 showed higher expressions of CD69 and ITGAE, as well as high expression of
IFNG. These �ndings were consistent with human CD8+ resident memory T (TRM) cells, which rapidly

induce quick IFN-γ production using preformed mRNA20. Similar to NK cluster 1, CD8+ cluster 0 exhibited
prominent expression of IFN-stimulated genes (including OAS1 and ISG15) and the genes of cytotoxic
molecules (including GZMB and PRF1) (Fig. 2f). These �ndings indicated that CD8+ cluster 0 comprised
activated CD8+ cells; however, these cells expressed scarce amounts of IFNG. CD8+ cluster 0 showed
different distributions at 2 dpi (red circle) and 5 dpi (blue circle) (Fig. 2g), which was re�ected by higher
IFN-stimulated signatures, including OAS1 and ISG15 at 2 dpi (Fig. 2h).

 

Macrophage Populations Underwent Dynamic Changes According to the Natural Course of SARS-CoV-2
Infection

We next studied macrophage-speci�c features that dynamically changed during SARS-CoV-2 infection,
since macrophage was consistently comprised the majority of cell proportion regardless of time point
(Fig. 1e). To this end, we performed sub-clustering analysis of the macrophage cluster depicted in Fig. 1d.
To annotate cell types, we analyzed 40,241 cells using the UMAP algorithm based on variable genes with
the Seurat package19, and identi�ed 17 different sub-clusters (Supplementary Fig. 3a). Based on
signature genes, we selected the following 10 macrophage clusters for downstream analysis: resting
tissue macrophages, APOE+ tissue macrophages, activated tissue macrophages, SPP1hiCHIT1int

pro�brogenic M2, monocyte-derived in�ltrating macrophages, weakly activated M1 macrophages, highly
activated M1 macrophages, proliferating macrophages, engul�ng macrophages, and unclassi�ed cells
(Fig. 3a, 3b, and Supplementary Fig. 3b). Table S4 lists the speci�c markers used to de�ne each
macrophage sub-cluster. Supplementary Fig. 3c displays the normalized expression levels of
representative marker genes of each cluster.

            The proportion of each lung macrophage subtype underwent distinctive changes. Resting tissue
macrophage was the dominant sub-population in control, but was drastically decreased at 2 dpi, and
partially recovered at 5 dpi (Fig. 3c and Supplementary Fig. 3b). At 2 dpi, we observed increased
proportion of activated tissue macrophages, weakly activated M1 macrophages, highly activated M1
macrophages, and monocyte-derived in�ltrating macrophages. At 5 dpi, resting tissue macrophage,
APOE+ tissue macrophages, activated tissue macrophages, and SPP1hiCHIT1int pro�brogenic M2 became
major populations in proportion, and the proportion of M1 macrophages were lower than 2 dpi. Dynamic
changes of the proportions of macrophage subclusters were summarized on UMAP (Supplementary Fig.
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3d), and viral-read-containing cells were mainly concentrated in the engul�ng macrophage cluster
(Supplementary Fig. 3e).

            To characterize the subtypes of macrophages in detail, we identi�ed cluster-speci�c differentially
expressed genes (DEGs) (Fig. 3d), and the top 50 DEGs for each cluster were analyzed in terms of gene
ontology (GO) biological pathways (Fig. 3e and Supplementary Fig. 3e). DEGs of resting tissue
macrophages (the dominant population before SARS-CoV-2 infection) were enriched in GO terms,
including “myeloid cell apoptotic process” and metabolism-associated pathways (Fig. 3e). APOE+ tissue
macrophages had DEGs that were enriched in GO terms mainly associated with lipoprotein metabolism.
As expected, DEGs of SPP1hiCHIT1int pro�brogenic M2 macrophages were prominently enriched in GO
terms, including “regulation of tissue remodeling” and biological adhesion, indicating that this subtype is
associated with the recovery phase of in�ammation. In contrast, activated tissue macrophages and
monocyte-derived in�ltrating macrophages exhibited DEGs enriched for GO terms associated with
activated innate immune response. Supplementary Fig. 3f summarizes the enriched GO terms originated
from DEGs of other macrophage sub-clusters. Overall, we de�ned 10 different subtypes of macrophages
in SARS-CoV-2 infection, which displayed extensive heterogeneity.

 

Each Macrophage Subpopulation Underwent Transcriptomic Changes Between 2 and 5 Days Post-
Infection

Since we observed distinctive proportional changes in the lung macrophage subtypes during SARS-CoV-2
infection (Fig. 3), we next focused on changes in the transcriptome between 2 and 5 dpi in each
macrophage subpopulation. Resting and activated tissue macrophages exhibited fewer DEGs than the
other macrophage subclusters at 2 and 5 dpi (Fig. 4a and 4b). On the other hand, monocyte-derived
in�ltrating macrophages showed remarkably increased numbers of DEGs at both 2 and 5 dpi, and
exhibited increased expressions of IFN-responsive genes, such as OAS1, ISG15, and RSAD2, at 2 dpi
compared to 5 dpi (Fig. 4a). Monocyte-derived in�ltrating macrophages exhibited higher expressions of
in�ammatory markers or mediators, including HLA-DRB1, MRC1, and SERPINE2, at 5 dpi than at 2 dpi. In
differentiated macrophage clusters, including M1 and M2 macrophages, the dynamicity of gene
expression change was consistently higher at 2 dpi than 5 dpi (Fig. 4b). Weakly and highly activated M1
macrophages showed increased expression of pro-in�ammatory genes (including IL1B, CCL8, and
DUSP1), while IFN-responsive genes (OAS1, ISG15, ISG20, and RSAD2) were upregulated at 2 dpi
compared to 5 dpi (Fig. 4b). SPP1hiCHIT1int pro�brogenic M2 macrophages had different DEGs at 2 dpi,
including SCD, CHIT1, and IL4I1 (Fig. 4b, right panel). Therefore, monocyte-derived in�ltrating
macrophages and differentiated M1 and M2 macrophages exhibited increased and distinctive DEG
patterns especially at 2 dpi, the peak of viral titer in SARS-CoV-2 infection.
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RNA Dynamics Revealed Different Spectrums of M1 or M2 Macrophages Originated from Monocyte-
derived In�ltrating Macrophages

To further evaluate the RNA dynamics of the macrophage cell subpopulations, we analyzed RNA velocity
21. Few kinetics were observed in resting tissue macrophages or activated tissue macrophages, while
complex kinetics were formed among monocyte-derived in�ltrative macrophages and in both M1
populations (Fig. 5a). To quantify the kinetic dynamics of RNA velocities, we calculated the length of the
arrow in Fig. 5a (right panel), which represents the RNA velocities. High velocity levels were formed in
both M1 populations. On the other hand, low levels of dynamics were observed in activated tissue
macrophages, similar to the resting levels of tissue macrophages, which was consistent with the �ndings
from UMAP embedding (shown in Fig. 5a). Next, we analyzed the direction of the arrow, to investigate the
interactions between various clusters. We observed an arrow pointing toward the SPP1hi CHIT1int

pro�brogenic M2 cluster from the monocyte-derived in�ltrating macrophage (Fig. 5a), suggesting that the
monocyte-derived in�ltrating macrophages signi�cantly contributed to the formation of the
SPP1hiCHIT1int pro�brogenic M2 cluster.

We next investigated the dynamic transcriptome changes from monocyte-derived in�ltrating
macrophages to M1 or M2 populations. We found that monocyte-derived in�ltrating macrophages were
increased during the acute in�ammation period, consistent with a previous study12. Using pseudotime
analysis for single-cell transcriptomics, we traced the dynamic changes of gene expression from
in�ltrating macrophages to M1 or M2 macrophages22. For the trajectory toward M1 macrophages (M1
route) (Fig. 5b; Supplementary Table 5), we de�ned four distinctive clusters showing modular gene
expression changes. We summarized their top 5 associated transcription factors using the TRRUST
database23, and the top 5 gene ontology biological pathways (GO-BP) (Fig. 5c). Notably, cluster 4 of the
M1 route (which was exclusively expressed in highly activated M1 macrophages) showed concurrently
increased expressions of IL1B and IFN-stimulated genes (ISG15 and ISG20), which were associated with
GO terms of enhanced anti-viral activity in the early phase of immune response. These �ndings indicated
that this gene expression change was part of a natural defense mechanism involving M1 macrophage
differentiation (Fig. 5b). The highly activated M1 macrophage cluster showed predominant enrichment of
pro-in�ammatory mediators, including IL1B and CXCL8 (Supplementary Fig. 4a), which was further
supported by our results showing that the highly activated M1 was highly enriched with gene sets from
severe COVID-19 patients (Supplementary Fig. 4b). These results suggested that the distinct macrophage
subpopulation that was potentially derived from monocyte-derived in�ltrating macrophages had rapidly
undergone SARS-CoV-2-mediated activation of in�ammatory macrophage responses

            For the trajectory toward SPP1hiCHIT1int �brogenic M2 macrophages (M2 route) (Fig. 5d;
Supplementary table 6), we de�ned four distinctive clusters and analyzed their features with gene set
enrichment analysis, as described in Fig. 5b (Fig. 5e). Cluster 3 of the M2 route showed an increased
association with transcription factors of the peroxisome proliferator-activated receptor (PPAR) family
(PPAR-δ, PPAR-α, and PPAR-γ) and with pathways associated with cholesterol metabolism. PPAR-γ
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activation reportedly may drive monocytes toward anti-in�ammatory M2 macrophages24. Indeed, the next
cluster in the pseudotime trajectory, cluster 4 of the M2 route, showed increased expressions of C1QB,
C1QC, MMP12, and TGFB2, which are known to be key genes of well-differentiated M2 macrophages.

Collectively, the macrophage subpopulations underwent time-dependent and cell-type-speci�c changes
during SARS-CoV-2 infection. These subpopulations exhibited a continuous spectrum of changes, mainly
from the monocyte-derived in�ltrating macrophages, at the transcriptome level.

 

Speci�c Macrophage Gene Modules from Trajectory Analysis Were Associated with Immune Response to
SARS-CoV-2 Infection and Immune-Modulatory Drugs

Next, we compared the dynamically changed macrophage gene modules from M1 and M2 routes with the
previously reported transcriptome changes of COVID-19 patients and SARS-CoV-2-infected experimental
models25,26. Upregulated gene sets determined from postmortem lung tissue of a COVID-19 patient and a
SARS-CoV-2-infected mouse were commonly associated with cluster 4 of the M1 route (Fig. 6a). Gene
sets from postmortem lung tissue of a COVID-19 patient were also associated with cluster 3 of the M1
route. In contrast, clusters 1 and 2 of the M2 route were highly associated with those three gene sets (Fig.
6b). Therefore, each examined time-point of longitudinal change of macrophage differentiation during
SARS-CoV-2 infection encompassed the previous cross-sectional gene sets reported from the COVID-19
patient and experimental model.

Immune-modulatory treatments, including corticosteroids and cytokine-targeted agents, have been
considered as a means of regulating hyper-in�ammatory responses in COVID-19 patients; however, the
exact immunological features of the target cells affected by these treatments is unclear. To evaluate the
effect of immune-modulatory drugs on M1 or M2 differentiation, we performed enrichment tests on these
trajectory-speci�c modular gene expressions relative to drug-downregulated gene sets26. We found that
clusters of the M1 and M2 route were distinctive with regards to transcriptome responses to immune
modulatory drugs (Fig. 6c and 6d). For methylprednisolone-induced transcriptome changes, cluster 3 of
the M1 route (Fig. 6c, left) and cluster 2 of the M2 route had stronger associations than the other clusters
(Fig. 6d, left). For the downregulated gene sets by TNF inhibitor etanercept, it had most predominant
association with cluster 4 of the M1 route (Fig. 6c, middle). Etanercept also affected cluster 2 of the M2
route (Fig. 6d, middle). The PPAR-γ agonist rosiglitazone exhibited a pattern of association with clusters
of the M1 route (Fig. 6c, right), similar to that of as methylprednisolone, but showed a limited impact on
the M2 route, except for cluster 2 (Fig. 6d, right). Our trajectory analysis revealed that most of the
transcriptome alterations reported by various sources resembled late clusters of the M1 route and early
clusters of the M2 route, and that macrophage-targeting drugs may affect speci�c stage of M1 or M2
differentiation.

Discussion



Page 10/30

Although recent studies have reported the single-cell transcriptome of BAL �uid cells cross-sectionally
obtained from COVID-19 patients, none have used a longitudinal approach along with the natural disease
course. In the present study, we investigated single-cell transcriptome changes throughout SARS-CoV2
infection using BAL �uid from a ferret model. We found that speci�c sub-clusters of NK cells and CD8+ T
cells exhibited increased responses to IFN, especially at 2 dpi, while their intrinsic cytotoxic properties
against viral infection were preserved. More importantly, among macrophages—the major population of
BAL �uid cells—we identi�ed 10 different subpopulations that exhibited relative proportion changes from
0 to 5 dpi. The predominant dynamic changes of the transcriptome involved monocyte-derived in�ltrating
macrophages and differentiated M1/M2 macrophages, especially at 2 dpi. We also observed distinctive
and stepwise differentiation from monocyte-derived in�ltrating macrophages toward M1 or M2
macrophages.

Our present results included observation of IFN-responsive signatures, regardless of immune cell type,
mostly at 2 dpi. The presence of an IFN-responsive signature has also been reported in previous
transcriptome studies of SARS-CoV-2 infection3,4,12. Data are controversial regarding the relationship
between IFN response strength and COVID-19 severity—delayed but robust expression of IFN-associated
genes might provoke harmful immunopathology, but their early increase is bene�cial 27. Our ferret model
mimicked SARS-CoV-2 infection with a clinical course of mild severity and spontaneous recovery.
Therefore, our �ndings suggest that prominently increased expression of IFN-responsive genes at 2 dpi
might be bene�cial in clearing SARS-CoV-2. This observation is further supported by the observed
increase of the IFN-stimulated M1 subpopulation.

The BAL �uid cells from our ferret model comprised a diverse subpopulation of macrophages. We
annotated 10 different subpopulations among 17 different clusters based on previous single-cell studies
of alveolar macrophages12,24,28−30. Presence of 0 dpi group provided an interesting contrast with speci�c
features of activated and differentiated macrophages in later phases. The proportion of resting tissue
macrophage were near 60% of the macrophage population in control, and drastically decreased at 2 and
5 dpi, suggesting either that this population underwent a change of transcriptomic features towards
another population or the in�ltration of a new population from circulation. Resting tissue macrophages
could have evolved into activated tissue macrophages; however, the increase of activated tissue
macrophages was not su�cient to fully explain the decreased proportion of resting tissue macrophage.
Notably, the increased RNA velocity of in�ltrating and M1/M2 macrophages indicated that these were the
major populations that underwent dynamic changes after SARS-CoV-2 infection. Here, we found that with
regards to the changing macrophage populations, resting tissue macrophages decreased after
inoculation but were not restored later, and M2 macrophages were increased and remained a major
population from 2 to 5 dpi. These �ndings indicate that during the viral resolution phase, an active repair
process is underway rather than complete recovery to pre-infection status.

Immuno-modulatory treatments—including corticosteroids and targeted agents, such as Janus kinase
inhibitors—have been considered to regulate hyper-in�ammatory responses in COVID-19 patients9,10,27.
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However, to apply such treatments in heterogeneous COVID-19 patients, we must understand the exact
features and proportions of the target immune cell populations that will be affected. Along the
transcriptome continuum of monocyte-derived in�ltrating macrophages to M1 macrophages (the M1
route), we found that the later clusters, similar to highly activated M1 macrophages, were enriched in
gene sets related to treatment with corticosteroid, TNF inhibitor, and PPAR-γ agonist. Additionally, along
the M2 route, the earlier phase rather than the later phase of the transcriptome features was enriched in
gene sets from a COVID-19 patient’s lung tissue, other model systems, and in medication-downregulated
gene expression changes. These �ndings suggest that those medications may contribute to proper
suppression of the M1-associated hyper-in�ammation response without signi�cantly affecting the M2-
associated resolution process. Corticosteroid therapy reduces mortality in cases of severe pneumonia31,
and the bene�cial role of dexamethasone in hospitalized COVID-19 patients has also been reported
recently32. Our current �ndings support the potential bene�ts of proper immune suppression, and
elucidate the exact subpopulations affected by these macrophage-affecting medications.

Overall, our present study provides fundamental information regarding the immune response dynamics
provoked by SARS-CoV-2 infection, as well as a detailed description of the natural course and changes of
macrophages in the ferret model.

Methods
Experimental Animals

Experiments were performed using 14- to 20-month-old female ferrets (n = 10, ID Bio Corporation,
Cheongju, Korea) that were serologically negative for in�uenza A viruses (H1N1 and H2N2), MERS-CoV,
and SARS-CoV. Ferrets were maintained in the isolator (Woori IB Corporation, Daejeon, Korea) in BSL3 of
Chungbuk National University. All ferrets were group housed with a 12-h light/dark cycle, and allowed
access to food and water. After two days of adaption to BSL3 conditions, the ferrets were intranasally
inoculated with phosphate-buffered saline (PBS) (n = 3) or 105.8 TCID50/mL of NMC-nCoV02 (n = 7),
while under anesthesia with ketamine (20 mg/kg) and xylazine (1.0 mg/kg). All animal studies were
conducted following protocols approved by the Institutional Animal Care and Use Committee (IACUC) of
Chungbuk National University (Approval number CBNUA-1352-20-02).

 

Virus and Cells

SARS-CoV-2 strain NMC-nCoV02 (reference, Cell host & Microbe) was propagated in Vero cells in
Dulbecco’s Modi�ed Eagle Medium (DMEM; Gibco, Grand Island, NY) supplemented with 1%
penicillin/streptomycin (GIBCO) and TPCK-treated trypsin (0.5 mg/mL; Worthington Biochemical,
Lakewood, NJ) in a 37°C incubator with 5% CO2 for 72 h. The propagated virus was then stored at −80°C,
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and used as the working stock for animal studies. The 50% tissue culture infective dose (TCID50) was
determined via �xation and crystal violet staining.

 

Harvesting Bronchoalveolar Lavage Cells

At 2 and 5 dpi, respectively, three and four ferrets were euthanized, and bronchoalveolar lavage �uid
(BALF) was collected. As a control group, the three PBS-treated ferrets were euthanized at 2 dpi and BALF
was collected. Brie�y, with the ferret positioned in dorsal recumbency, 30 mL of cold sterile PBS solution
containing 5% fetal bovine serum (FBS) was injected through the tracheal route and then collected. This
collected lavage �uid was centrifuged at 400 × g for 10 min at 4°C. Then the supernatant was removed,
and the cell pellet was suspended in 5 mL 10X RBC lysis buffer (Thermo�sher, cat. no. 00-4300-54)
diluted 1:10 with distilled water, followed by a 10-min incubation at room temperature. After the RBC lysis
reaction, 20 mL of 1X PBS was added to stop the lysis reaction, followed immediately by centrifugation
at 500 × g for 5 minutes at 4°C. Then the supernatant was removed, followed by cell number and viability
analyses.

 

Virus Isolation From the Lungs of Infected Ferrets

The virus titers in collected lung tissues were determined by TCID50 in Vero cells. Brie�y, lung tissue
samples were homogenized in an equal volume (1 g/mL) of cold 1X PBS containing 1%
penicillin/streptomycin (GIBCO). Tissue homogenates were centrifuged at 3000 rpm for 15 min at 4°C,
and then the supernatants were serially diluted (10−1 to 10−8) in DMEM. Dilutions of each sample were
added to Vero cells, followed by a 2-hour incubation. Next, the media (DMEM) was changed, and the
cytopathic effects (CPEs) were monitored for 4 days. We determined the TCID50 through �xation and
crystal violet staining.

 

Histology

Lung tissue samples were collected at 2 and 5 dpi, incubated in 10% neutral-buffered formalin for
�xation, and then embedded in para�n following standard procedures. The embedded tissues were
sectioned and dried for 3 days at room temperature. Then the tissue sections were placed on glass slides,
stained with hematoxylin and eosin (H&E), and compared with PBS control group. Slides were viewed
using an Olympus IX 71 (Olympus, Tokyo, Japan) microscope, and images were captured using DP
controller software.
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scRNA-Seq Analysis: Basic Quality Control

Reference sequence and gene information were downloaded from the Ensembl database (MusPutFur1.0,
under accession number GCF_000215625.1), and then annotated with human ortholog genes using the
same database (Biomart database, GRCh38). The SARS-CoV-2 sequence was downloaded from NCBI
GenBank (Wuhan-Hu-1, a widely used reference sequence, under accession number NC_045512).
Reference genome information was pre-processed for single-cell data processing using mkref (Cell
Ranger 10x genomics, v3.0.2), and the fastq �les were generated through the process of demultiplexing
the sequenced data (Cell Ranger). Next, the reads were aligned to the ferret–virus combined reference
genome, and the aligned read data were analyzed using Seurat R package v3.1.5 33. Based on the
characteristics of in�ammatory tissue and the assumption that viral transcripts can present in dying cells,
we did not exclude low-quality cells from the analysis. Ambient RNAs were examined and adjusted using
SoupX (https://doi.org/10.1101/303727), and were present in 1–3% of each sample, indicating that the
samples were relatively clean/washed. We also excluded doublets perceived based on dual expression of
cell-type speci�c gene expression markers, which were dominant in the cluster “Doublet.” Despite high
variability in the number of UMIs detected per cell, most cells were enriched with UMIs within a
reasonable range (interquartile range: 2,455 to 12,764).

In each cell, gene expression was normalized and scaled using the SCTransform algorithm 34.
Dimensional reduction and visualization were performed via principal components analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP)—using the top 20 principal components (PCs)
for whole cell types, 5 PCs for NK and CD8 T cells, and 13 PCs for monocyte/macrophage cell types—with
parameters of min.dist = 0.2, and n.neighbor = 20. Lastly, the cells were clustered by unsupervised
clustering, using the default pipeline of the Seurat package (resolution = 0.4 for whole cell types, 0.3 for
NK cells, 0.2 for CD8 T lymphocytes, and 0.6 for monocytes/macrophages). We observed two
polymorphic genes that signi�cantly affected the clustering of a subset of macrophages by samples:
HLA-DQA1 and ENSMPUG00000007244, the latter of which is putative HLA-DQB1 or HLA-DQB2, and has
a DNA sequence that overlaps 78.03–78.81% with human HLA-DQB1 or HLA-DQB2. We removed these
two genes from the count matrix and re-processed, and found that the batch effect was resolved.

 

Marker Detection and Differential Expression Analysis

To identify marker genes, we selected genes in each cluster that were upregulated relative to the other
clusters, based on the Wilcoxon rank-sum test in Seurat’s implementation (FindAllMarkers function), with
a >0.25 log fold change compared with the other clusters and a Bonferroni-adjusted p value of <0.05. To
investigate the dynamic changes in gene expression in certain cell clusters, we tested differentially
expressed genes, using the Wilcoxon rank-sum test (Fig. 4a and 4b). Gene names that had a human
ortholog were marked when the p value was <0.05, and the absolute value of the log2 fold change was
>0.4.

https://doi.org/10.1101/303727
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GO and Pathway Enrichment Analyses

As shown in Fig. 3e and 3f, cluster-speci�c expression markers were subjected to Gene Ontology (GO)
enrichment analysis 35, which is based on the performance of Fisher’s exact test on curated gene sets
annotated according to the gene ontology consortium in the biological process category. Ontology terms
associated with T cells and eosinophils, and near-duplicated terms, were removed using a custom script,
with the following exclusion criteria: GO terms, including ‘T_HELPER|T_CELL’, ‘EOSINOPHIL’ , ‘POSITIVE’ or
‘NEGATIVE’. For each cluster, the top 50 genes (prioritized by fold change when comparing each cluster
with the rest) were subjected to the enrichment test. Genes that were expressed in >80% of cells in the rest
of the clusters were excluded.

To predict transcription factors that might drive macrophage differentiation in pathology, the same
enrichment test was performed using the TRRUST transcription factor-target gene database 23. To
identify potential drugs for controlling macrophage differentiation, the same test was performed using a
manually curated dataset based on ‘Drug Perturbations from GEO down’ in enrichR 26. This dataset
originated from the transcriptome of samples treated with methylprednisolone (GSE490), etanercept
(GSE11903, GSE36177, GSE41663, GSE47751, and GSE7524), and rosiglitazone (GSE11343, GSE1458,
GSE36875, GSE7193, GSE5509, GSE5679, GSE7035, GSE10192, GSE2431, GSE21329, and GSE35011).

 

RNA Velocity

To investigate the characteristics of RNA dynamics among macrophages in the ferret model, we analyzed
RNA velocity based on modeling gene expression induction and repression using spliced and unspliced
reads. This technique was previously demonstrated to be feasible in a 3 captured single-cell RNA
sequencing library using the velocyto tool 21. Spliced and unspliced reads were counted using the run10x
command in the velocyto tool with default options. The count matrixes were �ltered using velocyto’s
standard pipeline, with min.max.cluster.average parameters of 0.08 for the spliced read count matrix, and
0.06 for the unspliced read count matrix. Among a macrophage/monocyte population of 40,241, 5,000
cells were randomly selected, with pooling of the 20 nearest neighbors in the spliced/unspliced count
matrix. Through this process, the cell distance matrix was derived from Seurat’s shared neighborhood
network matrix with default parameters (FindNeighbors function). Velocity estimation was conducted
using the options of deltaT = 1, �t.quantile = 0.05, and kCells = 1 (as k-nearest neighbor pooling was
already performed before the random sampling of 5000 cells).

 

Analysis of Dynamic Transcriptome Changes Accompanying M1 and M2 Differentiation
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To investigate the dynamic changes along the M1 and M2 differentiation pathway, we exported related
cell clusters for monocle’s standard analysis process. The related clusters included weakly activated M1,
highly activated M1, and monocyte-derived in�ltrating macrophages for the M1 pathway; and monocyte-
derived in�ltrating macrophages and SPP1h CHIT1int pro�brogenic M2 for the M2 pathway. Brie�y,
CellDataSet objects were built based on normalized count (SCTransform), and then processed using
estimateSizeFactor and estimateDispersions function (default option), detectGenes (with the min_expr =
0.1 option), setOrderingFilter and reduceDimension (with options of max_components = 3, and method =
”DDRTree”), orderCells (default option), and plot_cell_trajectory (default option). Trajectory-speci�c genes
were grouped into four clusters using hierarchical clustering. Finally, each cluster was subjected to further
enrichment analysis for transcription regulation or ontology-based analysis.

 

Statistical Analysis

The statistical signi�cance of the combined scores from GSEA results were assessed by paired T test.
Data plotting, interpolation and statistical analysis were performed using GraphPad Prism 8.2 (GraphPad
Software, La Jolla, CA). Statistical details of experiments are described in the Figure legends. A p value
less than 0.05 is considered statistically signi�cant.
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Figure 1

Single-Cell Transcriptomes of Bronchoalveolar Lavage (BAL) Fluid Cells From SARS-CoV-2-Infected
Ferrets a. Summary of experimental conditions with viral titers in negative control, at 2 days post-
infection (dpi) and 5 dpi. b. Lung tissues of ferrets in negative control, at 2 dpi and 5 dpi with SARS-CoV-
2. c. Fourteen different clusters and their speci�c marker gene expression levels, where brightness
indicates log-normalized average expression, and circle size indicates percent expressed. d. UMAP of
59,138 cells from the BAL �uid of 10 ferrets, colored to show annotated cell types. e. Proportion of each
cell type at 0 dpi (n = 3), 2 dpi (n = 3), and 5 dpi (n = 4).



Page 20/30

Figure 1

Single-Cell Transcriptomes of Bronchoalveolar Lavage (BAL) Fluid Cells From SARS-CoV-2-Infected
Ferrets a. Summary of experimental conditions with viral titers in negative control, at 2 days post-
infection (dpi) and 5 dpi. b. Lung tissues of ferrets in negative control, at 2 dpi and 5 dpi with SARS-CoV-
2. c. Fourteen different clusters and their speci�c marker gene expression levels, where brightness
indicates log-normalized average expression, and circle size indicates percent expressed. d. UMAP of
59,138 cells from the BAL �uid of 10 ferrets, colored to show annotated cell types. e. Proportion of each
cell type at 0 dpi (n = 3), 2 dpi (n = 3), and 5 dpi (n = 4).



Page 21/30

Figure 2

Subpopulation Analysis of NK Cells and CD8+ T Cells a. UMAP plot of the NK cell subpopulations in all
groups, colored to indicate cluster information. b. Proportion of each cell type in NK cell clusters at 0 dpi
(n = 3), 2 dpi (n = 3), and 5 dpi (n = 4). c. Violin plots showing expression levels of STAT1, OAS1, ISG15,
GZMB, GZMK, and PRF1 in the �ve NK cell clusters. d. UMAP plot of the CD8+ T-cell subpopulations in all
groups, colored to show cluster information. e, f. Violin plots showing expression levels of CD69, S1PR1,
ITGAE, OAS1, ISG15, IFNG, GZMB, and PRF1 in the four CD8+ T cell clusters. g. UMAP plot in which color
density re�ects the distributions of CD8+ T cells ferrets in negative control, at 2 dpi and 5 dpi with SARS-
CoV-2. Red circle indicates concentrated area of cluster 0 with CD8+ T cells at 2 dpi, and blue circle
indicates that of CD8+ T cells at 5 dpi. h. UMAP plots show normalized expressions of OAS1 and ISG15
in CD8+ T cells.
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Figure 3

Subpopulation Analysis of Macrophages a. UMAP plot of the macrophage subpopulations in all groups,
colored to show cluster information. b. Ten different clusters and their speci�c marker gene expression
levels, with brightness indicating log-normalized average expression, and circle size indicating the percent
expressed. c. Proportion of each macrophage cell type at 0 days post-infection (dpi) (n = 3), 2 dpi (n = 3),
and 5 dpi (n = 4). d. Heatmap of cluster-speci�c differentially expressed genes (DEGs), for each
macrophage cell type (n = 9). The color indicates the relative gene expression, and representative genes
are shown together. e. Bar plots showing –log10(p value) from enrichment analysis of representative GO
biological pathways among resting tissue macrophages, APOE+ tissue macrophages, SPP1hiCHIT1int
pro�brogenic M2 macrophages, activated tissue macrophages, and monocyte-derived in�ltrating
macrophages.
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Figure 4

Transcriptomic Changes Between 2 and 5 Days Post-Infection in Macrophage Populations a, b. Volcano
plots showing DEGs between 2 days post-infection (dpi) and 5 dpi among resting tissue macrophages,
activated tissue macrophages, monocyte-derived in�ltrating macrophages, weakly activated M1
macrophages, highly activated M2 macrophages, and SPP1hiCHIT1int pro�brogenic M2 macrophages.
Each dot indicates an individual gene. Red indicates a gene that is a signi�cant DEG at 2 dpi, and blue
indicates a gene that is a signi�cant DEG at 5 dpi. In the graphs, vertical dashed lines indicate |Log fold
change| < 0.4, and horizontal dashed lines indicate p < 0.05.
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Figure 5

RNA Velocity and Pseudotime Trajectory Analysis from Monocyte-Derived In�ltrating Macrophages to M1
and M2 macrophages a. Left panel shows UMAP plot of RNA velocity of macrophage subpopulations.
Arrow direction and length indicate qualitative and quantitative changes, respectively. Right panel shows
box-plots of mean and standard deviation of the arrow lengths in the left panel. b. Pseudotime trajectory
initiated from monocyte-derived in�ltrating macrophages toward weakly and highly activated M1
macrophages (M1 route). c. Left panel shows relative expression patterns of representative genes in the
M1 route plotted along the pseudotime. Color indicates the relative gene expression calculated by
Monocle 2. Right panel shows bar plots of the combined scores in the top-�ve enrichment analysis of the
TRRUST database for transcription factor analysis, and representative GO biological pathways in clusters
1–4, as de�ned in the left panel. d. Pseudotime trajectory initiated from monocyte-derived in�ltrating
macrophages toward SPP1hiCHIT1int pro�brogenic M2 macrophages (M2 route). e. Left panel shows
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relative expression patterns of representative genes in the M2 route plotted along the pseudotime. Right
panel shows bar plots of combined scores in top-�ve enrichment analysis of the TRRUST database for
transcription factor analysis, and the representative GO biological pathways in clusters 1–4, as de�ned in
the left panel.
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Monocle 2. Right panel shows bar plots of the combined scores in the top-�ve enrichment analysis of the
TRRUST database for transcription factor analysis, and representative GO biological pathways in clusters
1–4, as de�ned in the left panel. d. Pseudotime trajectory initiated from monocyte-derived in�ltrating
macrophages toward SPP1hiCHIT1int pro�brogenic M2 macrophages (M2 route). e. Left panel shows
relative expression patterns of representative genes in the M2 route plotted along the pseudotime. Right
panel shows bar plots of combined scores in top-�ve enrichment analysis of the TRRUST database for
transcription factor analysis, and the representative GO biological pathways in clusters 1–4, as de�ned in
the left panel.

Figure 6

Gene Set Enrichment Analysis of Gene Modules Originated from M1 Route and M2 Route Using Public
Datasets Related to SARS-CoV-2 Infection and Immune- Modulatory Drugs a, b. Gene set enrichment
analysis of clusters 1–4 of the M1 route a. and M2 route b. using public transcriptome data, including
post-mortem lung tissue from a COVID-19 patient and lung tissue from a SARS-CoV-2-infected mouse. c,
d. Gene set enrichment analysis of clusters 1–4 of the M1 route c. and M2 route d. using public
transcriptome data, including “Drug Perturbations from GEO down” for methylprednisolone (n = 16),
etanercept (n = 14), and rosiglitazone (n = 16). *p < 0.05, **p < 0.01, ***p < 0.001.
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