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Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets.

Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of

monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular com-

ponents of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic

polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet

samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures.

Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell

types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues

from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral met-

abolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated be-

tween T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus

identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for com-

prehensive understanding of islet biology and diabetes pathogenesis.

[Supplemental material is available for this article.]

Pancreatic islets of Langerhans are clusters of at least four different
hormone-secreting endocrine cell types that elicit coordinated—
but distinct—responses to maintain glucose homeostasis. As
such, they are central to diabetes pathophysiology. On average,
human islets consist mostly of beta (54%), alpha (35%), and delta
(11%) cells; up to a few percent gamma/pancreatic polypeptide
(PP) cells; and very few epsilon cells (Brissova et al. 2005; Cabrera
et al. 2006; Blodgett et al. 2015). Human islet composition is nei-
ther uniform nor static but varies between individuals and across
regions of the pancreas (Brissova et al. 2005; Cabrera et al. 2006;
Blodgett et al. 2015). Cellular heterogeneity complicatesmolecular
studies of whole human islets and may mask important role(s)
for less common cells in the population (Dorrell et al. 2011b;
Bramswig et al. 2013; Nica et al. 2013; Blodgett et al. 2015; Liu
and Trapnell 2016). Moreover, it complicates attempts to identify
epigenetic and transcriptional signatures distinguishing diabetic
from nondiabetic (ND) islets, leading to inconsistent reports of
genes and pathways affected (Gunton et al. 2005; Marselli et al.
2010; Taneera et al. 2012; Dayeh et al. 2014). Conventional sorting
and enrichment techniques are unable to specifically purify each
human islet cell type (Dorrell et al. 2008; Nica et al. 2013;
Bramswig et al. 2013; Hrvatin et al. 2014; Blodgett et al. 2015),
thus a precise understanding of the transcriptional repertoire gov-

erning each cell type’s identity and function is lacking. Identifying
the cell-type–specific expression programs that contribute to islet
dysfunction and type 2 diabetes (T2D) should reveal novel targets
and approaches to prevent, monitor, and treat T2D.

In this study, we sought to decipher the transcriptional reper-
toire of each islet cell type in an agnostic and precise manner by
capturing and profiling pancreatic single cells from ND and T2D
individuals. From these profiles, we identified transcripts uniquely
important for each islet cell type’s identity and function. Finally,
we compared T2D and ND individuals to identify islet cell-type–
specific expression changes that were otherwise masked by islet
cellular heterogeneity. The insights and data from this study pro-
vide an important foundation to guide future genomics-based in-
terrogation of islet dysfunction and diabetes.

Results

Islet single-cell transcriptomes accurately recapitulate those

of intact islets

Pancreatic islets (>85% purity and >90% viability) were obtained
from eight human cadaveric organ donors (five ND, three T2D)
(Fig. 1A; Supplemental Table S1). Each islet sample was processed
to generate single-cell RNA-seq libraries (Fig. 1A; single cell) and
paired bulk RNA-seq libraries at three different stages of islet pro-
cessing (Fig. 1A; baseline, intact, and dissociated). All RNA-seq
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methods employed SMARTer chemistry (Methods), and bulk islet
cDNA libraries were sequenced to an average approximate depth
of 34 million reads (Supplemental Table S2). Baseline, intact, and
dissociated transcriptomes from each person were highly correlat-
ed (Supplemental Fig. S1). Transcriptomes clustered by donor and
not by processing condition or incubation time (Fig. 1B), strongly
suggesting that islet processing did not significantly alter islet
transcriptomes.

A total of 1050 islet cells (622ND and 428 T2D)were captured
on 11 Fluidigm C1 chips. cDNA libraries were constructed from

captured cells and barcoded, fragmented, pooled, and sequenced
to an average depth of 3 million reads (Supplemental Table S2).
Two separate library preparations from the same amplified cDNA
for each of 83 single cells demonstrated remarkable correlation,
suggestingminimal batch effects resulting from the cDNAprocess-
ing and sequencing steps. Resequenced samples are highlighted in
Supplemental Table S2 but were not included in subsequent anal-
yses. Transcript coverage is indicated in Supplemental Figure S2.
Approximately 81% (21,484/26,616) of protein-coding genes
and long intergenic noncoding RNAs (lincRNAs) were detected

Figure 1. Single-cell transcriptomes reflect those of paired intact islets. (A) Schematic of experimental workflow. Islets from each donor sample (n = 8
individuals) were dissociated using Accutase, and single-cell transcriptomes were synthesized from 1050 cells captured using 11 Fluidigm C1 chips. In par-
allel, “bulk” RNA-seq libraries were prepared from remaining dissociated single cells (dissociated) and from intact islets either flash frozen (baseline) or in-
cubated/processed (intact). (B) Unsupervised hierarchical clustering of baseline, intact, and dissociated islet transcriptomes demonstrates clustering by
person and not by processing/experimental condition. (C ) Histogram demonstrating the number of genes detected in each single cell. Cells expressing
less than 3500 genes (n = 72) were removed from downstream analyses. (D) Scatter plot comparing intact islet bulk RNA-seq (n = 8) and ensemble sin-
gle-cell RNA-seq (n = 978) data demonstrates high correlation. (R2) Pearson’s R-squared; (TPM) transcripts per million; (P) person.
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in at least one cell from the collection. On average, each single cell
expressed 5944 genes (Fig. 1C). Cells expressing less than 3500
genes (n = 72) also exhibited high mitochondrial alignment rates
and other reported transcriptional metrics of cell death and/or
poor quality (Ilicic et al. 2016; Xin et al. 2016) and were removed
from subsequent analyses (Fig. 1C).

We next assessed the extent to which the remaining 978 sin-
gle-cell transcriptomes represent the expression patterns observed
in intact islets. Single-cell transcriptome ensembles from each per-
son were highly correlated (Pearson’s R2 ranged from 0.91–0.98)
(Supplemental Fig. S3), regardless of disease state. Pearson’s R2 val-
ues between individuals’ single-cell ensembles and corresponding
“bulk” transcriptomes ranged from 0.75–0.86 (Supplemental Fig.
S4) and did not differ substantially between ND (R2 = 0.87) and
T2D (R2 = 0.85) samples (Supplemental Fig. S5). Overall, ensem-
ble/aggregate single-cell transcriptome profiles correlated well
with those of pooled bulk islet transcriptomes from all individuals
(Fig. 1D, R2 = 0.87). These results suggest that the islet single-cell
transcriptomes are high quality and effectively reflect bulk islet
transcriptomes.

Single-cell profiling captures transcriptomes of major and minor

pancreatic endocrine and exocrine cell types

Five islet endocrine cell types have been assigned based on exclu-
sive and robust expression of the peptide hormone genes INS

(beta),GCG (alpha), SST (delta), PPY (PP/gamma), andGHRL (epsi-
lon) (Baetens et al. 1979; Nussey andWhitehead 2001; Zhao et al.
2008; Li et al. 2016; Xin et al. 2016;Wang et al. 2016). The pancre-
as also contains three exocrine cell types—acinar, stellate, and duc-
tal—that critically support digestion through synthesis and
transport of digestive enzymes (Pandol 2011; Reichert and Rustgi
2011). Each also has been identified by specific marker gene ex-
pression, including the serine peptidase gene PRSS1 (acinar)
(Dabbs 2013), the extracellular matrix protein gene COL1A1 (stel-
late) (Mathison et al. 2010), and the structural keratin gene KRT19
(ductal) (Dorrell et al. 2008, 2011a,b; Reichert and Rustgi 2011).
We used these marker genes to determine the representation of
each islet cell type among our 978 profiled single cells.

Density plots (Fig. 2A) revealed bimodal expression of each
marker gene across the population of single cells. Therefore, we
employed Gaussian mixture modeling (GMM) to classify the cells
unambiguously (Fig. 2B). Approximate log2 counts per million
(CPM) thresholds for each marker gene used to classify cell types
are provided in Supplemental Table S3. This approach identified
617 single cells (∼63%) from T2D andND islets expressing a single
marker gene representative of each major endocrine and exocrine
cell type, examples of which are shown in Figure 2C. This included
239 alpha, 264 beta, 25 delta, and 18 PP/gamma cells (Table 1); the
proportions of each cell type are in the ranges previously reported
(Brissova et al. 2005; Cabrera et al. 2006; Blodgett et al. 2015). Only
one cell expressing high levels (log2CPM> 15) ofGHRLwas identi-
fied, which we presume to be an exceedingly rare epsilon cell.
Additionally, we obtained 19 stellate, 24 acinar, and 27 ductal cells
(Table 1), presumably fromexocrine contamination of the islet cell
preparations. Only 21 cells (∼2%) expressed none of the specified
marker genes (Table 1). Approximately one-third (340/978) of cells
expressed more than one marker gene; these were removed from
subsequent analysis due to concerns that these represent two ver-
tically stacked cells in a given capture site (for details, see
Methods). Similar ratios of potential stacked cells have been report-
ed in other studies using the Fluidigm C1 platform to capture

mouse (Xin et al. 2016) and human islet cells (Wang et al. 2016).
Collectively, these single-cell data capture transcriptome profiles
representing each of the major and minor pancreatic endocrine
and exocrine cell types. Genome Browser tracks representing ag-
gregate single-cell expression for each islet cell type have been gen-
erated using HOMER (Heinz et al. 2010) and are made available
(see Data Access) to facilitate their use and investigation by mem-
bers of the islet biology and diabetes research communities.

Unsupervised analyses of islet single-cell transcriptomes identify

discrete clusters corresponding to cell type

To determine if and how islet cell transcriptomes cluster, we
completed unsupervised dimensionality reduction via t-distribu-
ted stochastic neighbor embedding (t-SNE) on 380 ND single-cell
samples (excluding “multiple” labeled samples). t-SNE assembled
single-cell transcriptomes into discrete clusters based upon 1824
highly expressed genes (see Methods; Supplemental Table S4);
GMM-based marker gene analysis revealed that each cluster corre-
sponded to a distinct endocrine and exocrine cell type (Fig. 3A;
Supplemental Fig. S6). Unsupervised hierarchical clustering also
grouped single-cell transcriptomes into discrete cell types (Fig.
3B). Despite being obtained from different individuals, 161/168
beta, 128/138 alpha, 15/16 delta, and 12/12 PP/gamma cell tran-
scriptomes clustered into the same dendrogram branches, strongly
suggesting that cell type encodes the greatest variation in the data.
Exocrine cells and those expressing none of the specified marker
genes (“none”) clustered separately from the endocrine cell types.
Importantly, this clustering was driven by neither sequencing
depth (Supplemental Fig. S7B) nor expression of classic marker
genes (INS, GCG, SST, PPY, GHRL, COL1A1, PRSS1, and KRT19), as
cells continued to cluster into discrete cell types even when all
marker genes were removed from the expression data sets
(Supplemental Figs. S7C, S8). Recent studies have reported hetero-
geneity among beta cells. Specifically, Dorrell et al. characterized
four subpopulations of human beta cells based on differing
ST8SIA1 and CD9 expression (Dorrell et al. 2016). Similarly, Bader
et al. 2016 distinguished two populations of proliferating (Fltp+)
and mature (Fltp−) mouse beta cells. We did not find evidence of
betacell subpopulations (Supplemental Fig. S9), nordidwe identify
numerous proliferating cells (Supplemental Table S5). T2D single-
cell transcriptomes (n = 258) also demonstrated clear clustering
by cell type in unsupervised analyses (Supplemental Figs. S10–
S14) based on 1908 highly expressed genes (Supplemental Table
S4). Thus, each endocrine and exocrine pancreatic cell type
exhibits a complex characteristic expression signature that unique-
ly identifies it.

Differential expression analyses reveal islet cell-type–specific

transcriptional signatures

To identify gene signatures distinguishing each islet cell type, we
completed a series of pairwise differential expression analyses
(Supplemental Table S6) between each cell type (see Methods).
After intersecting the results from each pairwise comparison, we
identified a conservative collection of 154 islet endocrine cell-
type “signature” genes (61 beta, 51 alpha, 17 delta, 25 gamma),
as well as 202 exocrine genes (109 stellate, 31 acinar, 62 ductal)
at 5% false-discovery rate (FDR) (Fig. 3C; Supplemental Table S7).
Two genes exhibited overlap between the endocrine and exocrine
signature lists: FAP (alpha and stellate cell overlap) and TNS1 (beta
and stellate cell overlap). Gene set enrichment analysis (GSEA)
identified enrichment (FDR-adjusted P-value <0.05) of insulin
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signaling, oxidative phosphorylation, maturity-onset diabetes
of the young (MODY), and glycolysis/gluconeogenesis KEGG
pathways in beta cells relative to the other endocrine cells
(Supplemental Table S8).

Signature genes included previously reported beta-specific
genes like NKX6-1,DLK1, and ADCYAP1 (Fig. 3C, right) and alpha
cell–specific genes like IRX2, LOXL4, and DPP4, a cell surface re-
ceptor and diabetes drug target (Dorrell et al. 2011a; Bramswig
et al. 2013; Nica et al. 2013; Blodgett et al. 2015). Among delta

cell signature genes, we detected exclusive expression of HHEX,

a transcription factor reported to govern delta cell identity and
function and linked to T2D GWAS (Zhang et al. 2014). Delta cells
also specifically expressed BCHE, which encodes butyrylcholines-
terase. BCHE catalyzes the breakdown of acetylcholine and ghre-
lin (Chen et al. 2015), thus providing a mechanism for delta
cells to exert local inhibition of islet-influencing endocrine sig-
nals. PP/gamma cell–specific transcriptomes included CTD-

2008P7.8, a lincRNA of unknown function; CNTNAP5, a member

Figure 2. Cell-type classification based on marker gene expression. (A) Density plots demonstrating endocrine and exocrine marker gene expression
across all single cells. (B) Schematic of the Gaussian mixture model method applied to assign cell-type identity based on marker gene expression. (C)
UCSC Genome Browser views of representative single-cell expression profiles of INS, GCG, SST, PPY, and GHRL genes encoding beta, alpha, delta, PP/gam-
ma, and epsilon cell hormones of the endocrine pancreas, respectively, and marker genes for stellate (COL1A1), acinar (PRSS1), and ductal (KRT19) cells of
the exocrine pancreas. Line colors indicate putative beta (red), alpha (blue), delta (green), PP/gamma (purple), epsilon (orange), stellate (black), acinar
(dark gray), and ductal cells (light gray). (PP) pancreatic polypeptide; (CPM) counts per million.
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of the neurexin family of cell adhesionmolecules; and ID4, which
encodes an inhibitor of DNA-binding protein. In addition to
DPP4, we detected 30 islet signature genes whose proteins
SWISSPROT predicts to localize to the cell surface (Supplemental
Table S9). DPP4 antibodies have recently been used to isolate
purer alpha cell populations from islets (Arda et al. 2016). Thus,
antibodies against the other candidate cell-type–specific surface
markers we have identified may be useful to purify other islet
cell types.

Single-cell profiling identifies unexpected overlap in expression

between minor and major islet cell types

Cell sorting and enrichmentmethods such as fluorescence-activat-
ed cell sorting (FACS) have been used to identify characteristic al-
pha and beta cell genes (Dorrell et al. 2011a,b; Bramswig et al.
2013; Nica et al. 2013; Blodgett et al. 2015). However, expression
of SST or PPY in the reported alpha and beta cell gene sets suggests
the presence of the less abundant delta and PP/gamma islet cell
types in the enriched cell preparations. To distinguish genes exhib-
iting alpha- and beta-specific gene expression from those ex-
pressed also in delta and PP/gamma cells, we investigated the
expression of previously reported alpha- and beta-specific genes
(Supplemental Table S10; Supplemental Fig. S15) in our ND endo-
crine single-cell transcriptomes. Only 115/1683 previously report-
ed beta-specific genes were expressed greater than fourfold higher
in beta cells relative to the other endocrine cells (FDR < 0.05; one-
way ANOVA followed by Tukey’s honest significant difference
[THSD]) (Fig. 3D). Similarly, 75/1853 reported alpha-specific genes
were alpha cell enriched (Fig. 3E). Several genes previously report-
ed to be enriched in the major islet cell types, such as MAFA,
SLC2A2, SIX3, and DLK1 in beta cells and IRX2, DPP4, and
ADORA2A in alpha cells, were confirmed to be signature genes.
Surprisingly, we found that 37 and 33 reported beta- and alpha-
specific genes were also expressed in delta and PP/gamma cells, re-
spectively (Fig. 3F; Supplemental Table S10). Notable examples in-
cluded beta and delta cell expression of the congenital
hyperinsulinemia (CHI) gene HADH and alpha and PP/gamma
cell expression of the ARX transcription factor (Liu et al. 2011).
HADH is typically associated with beta cell expression and, when
mutated, leads to insulin hypersecretion and CHI (Kapoor et al.
2010; Pepin et al. 2010); these data implicate the delta cell in the
molecular genetics of CHI. Misexpression of ARX has been shown
to convey both alpha and PP/gamma cell features to cells

(Collombat et al. 2007), suggesting that its expression in each
cell type is important for identity and function.

Genes underpinning metabolic function, regulation of energy

homeostasis, and satiety are specific to distinct islet cell types

Perturbations in genes involved in glucose sensing and proper
maintenance of blood glucose levels contribute to T2Dpathophys-
iology (Schuit et al. 2001; MacDonald et al. 2005). Beta cells regu-
late blood glucose through the secretion of insulin and are thus
exquisitely sensitive to blood glucose levels. Glucose-stimulated
insulin secretion (GSIS) is linked to universal basic pathways of cel-
lular metabolism in beta cells. To gain insight into beta cell-type–
specific transcriptomic features associated with GSIS, namely, glu-
cose uptake and glycolysis, we examined the expression of relevant
genes in our islet single-cell transcriptomes (Fig. 4A).

GSIS pathway genes associated with glucose sensing and up-
take displayed highly beta cell–specific expression, including
SLC2A2, which encodes the glucose transporter GLUT2; G6PC2,
which encodes a subunit of glucose-6-phosphatase; and PFKFB2,
which encodes an enzyme involved in regulation of glycolysis
(Fig. 4A; Chen et al. 2008; Muller et al. 2015). While expressed in
all cell types, the enzyme, ALDOA1, immediately downstream
from PFK1 and associated with the glycerol phosphate (GP) shut-
tle, is enriched in beta cells, perhaps reflecting an additional point
of GSIS control. Protein-coding genes for five subsequent glycolyt-
ic enzymatic steps from glyceraldehyde-3-phosphate to pyruvate
were not significantly differentially expressed between cell types.
Beta cells are known to be limited in their ability to produce lactate
from pyruvate (Fridlyand and Philipson 2010); this is reflected by
high LDHB/LDHA ratios that favor the lactate to pyruvate flux in
beta cells.

The glycerol-3-phosphate shuttle allows NAD+ regeneration
in the cytosol to sustain glycolytic flux essential for GSIS.
Cytoplasmic NAD+ generation has been shown to be essential
for GSIS (Eto et al. 1999). Both components of the glycerol-3-phos-
phate shuttle, cytoplasmic GPD1 and mitochondrial GPD2, were
expressed in beta cells, with the former representing a beta cell sig-
nature gene (Fig. 4A). Additionally, we identified themitochondri-
al solute transporter SLC25A34 as beta cell specific. While its
transport specificities have yet to be determined, the closest yeast
ortholog of SLC25A34, Oac1p/YKL120w (Palmieri et al. 1999;
Marobbio et al. 2008), is thought to import oxaloacetate into the
mitochondria. This is particularly intriguing considering our
data and others (MacDonald et al. 2011) show the complete ab-
sence of pyruvate carboxylase (PC) expression in human beta cells,
despite the essential role PC is known to play in rodent GSIS
(Sugden and Holness 2011) through mitochondrial production
of oxaloacetate. We hypothesize that SLC25A34 may provide an
alternate, cytoplasmic source for mitochondrial oxaloacetate in
the human beta cell.

Single-cell profiling also allowed us to interrogate the tran-
scriptional repertoire of less abundant delta and PP/gamma cell
types, which have been elusive in both whole islet and sorted islet
studies. While it is difficult to determine epsilon cell expression
signatures with one ghrelin-positive cell, our ND data set includes
16 delta cells and 12 PP/gamma cells. Among the top 100 differen-
tially expressed (FDR < 5%) genes in delta versus other islet endo-
crine cells are receptors for the appetite-regulating hormones
leptin (LEPR) and ghrelin (GHSR), the growth factor neuregulin 4
(ERBB4), and the neurotransmitter dopamine (DRD2) (Fig. 4B).
GHSR has recently been shown to be specifically expressed and

Table 1. Number of profiled cells for each pancreatic cell type based
on marker gene expression

Putative cell
type (marker
gene)

Cell ontology
accession no.

Nondiabetic
(ND)

Type 2
diabetic
(T2D)

Alpha (GCG) CL:0000171 138 (23.47%) 101 (25.9%)
Beta (INS) CL:0000169 168 (28.57%) 96 (24.62%)
Delta (SST) CL:0000173 16 (2.72%) 9 (2.31%)
PP/gamma (PPY) CL:0002275 12 (2.04%) 6 (1.54%)
Epsilon (GHRL) CL:0005019 1 (0.17%) 0
Stellate (COL1A1) CL:0002410 9 (1.53%) 10 (2.56%)
Acinar (PRSS1) CL:0002064 15 (2.55%) 9 (2.31%)
Ductal (KRT19) CL:0002079 11 (1.87%) 16 (4.1%)
Multiple — 208 (35.37%) 132

(33.85%)
None (other) — 10 (1.7%) 11 (2.82%)
Total 588 390
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functional in both human andmouse delta cells, reducing GSIS in
human and mouse beta cells when induced (DiGruccio et al.
2016). LEPR, DRD2, and ERBB4 expression is specific to human
delta cells. In situ analyses (ViewRNA, Affymetrix) detected coex-
pression of LEPR in 79/102 (77%) of SST-expressing cells (Fig.
4D, arrowheads) in ND islets, confirming the delta cell–specific ex-
pression detected in Fluidigm C1 profiling. Thus, our data suggest

intriguing roles for islet delta cells in the integration of metabolic
signals via leptin, ghrelin, and dopamine signaling pathways.

PP/gamma, alongwith epsilon cells, are among the least stud-
ied islet cell types due to their scarcity in islets. Recent studies show
that PP/gamma cells are crucial regulators of energy homeostasis
(Yulyaningsih et al. 2014; Khandekar et al. 2015). In response to
food intake, these cells secrete the anorexigenic hormone PPY to

Figure 3. Statistical analysis of nondiabetic single-cell transcriptomes identifies cell-type–specific clusters and defines the signature genes of each islet cell
type. (A) Unsupervised analysis of single-cell transcriptomes using t-distributed stochastic neighbor embedding (t-SNE) demonstrates grouping of single
islet cell transcriptomes into the major constituent cell types. Respective cell labels and coloring were added after unsupervised analyses. (B) Unsupervised
hierarchical clustering illustrates relationships of transcriptome profiles between respective endocrine and exocrine cells. (C) Supervised differential expres-
sion analysis of cell types determines cell-specific (signature) genes across all cells (see Methods). Values represent log2(CPM) expression after mean-cen-
tering and scaling between −1 and 1. Violin plots of selected signature gene expression are displayed to the right of the heatmap. (D,E) Bar plots depicting
the numbers of previously reported beta-specific (D) and alpha-specific (E) genes (Dorrell et al. 2011b; Bramswig et al. 2013; Nica et al. 2013; Blodgett et al.
2015) confirmed to be expressed in each islet cell type after ANOVA and Tukey’s honest significant difference (THSD) post-hoc analysis (Methods). (F)
Several beta-specific genes demonstrate similar expression levels in delta cells, and alpha-specific genes demonstrate similar expression in PP/gamma cells.
Values represent average log2(CPM) expression after mean-centering and scaling between −1 and 1. (β) Beta; (α) alpha; (δ) delta; (γ) PP/gamma cells.
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facilitate vagal stimulation of neuropeptide Y receptors in the hy-
pothalamus and induce satiety (Khandekar et al. 2015). Our data
suggest interesting parallels in expression between PP/gamma cells
and serotonergic neurons, a group of neurons that influence vari-
ous cognitive and physiological processes including anxiety,

mood, sleep, and satiety.We report expression of FEV, a serotoner-
gic transcription factor and necessary driver of neuronal matura-
tion previously reported in mouse beta cells (Ohta et al. 2011),
in PP/gamma cells (average log2CPM of 2.172). Interestingly,
FEV has also been implicated in beta cell differentiation, and

Figure 4. Cell-type–specific expression of metabolic, signaling, and diabetes trait genes. (A) Beta cell–specific expression of different isoforms of glyco-
lytic and metabolic intermediate shuttles. Genes marked with an asterisk represent beta cell signature genes. (B) Delta cell–specific expression of neuroac-
tive-ligand receptors and transcription factors. (I) Bulk intact islets; (β) beta; (α) alpha; (δ) delta; (γ) PP/gamma; (A) acinar; (D) ductal; (S) stellate cells. (C)
Monogenic diabetes–associated genes and their cell-type–specific expression in islets. Violin plots show the log2(CPM) expression of each gene across cell
types. (CHI) congenital hyperinsulinism; (MODY) maturity onset diabetes of the young; (TNDM) transient neonatal diabetes mellitus; (PNDM) permanent
neonatal diabetes mellitus. (D) RNA in situ hybridization (ViewRNA, Affymetrix) of OCT-embedded islet sections from donor P3 labeling SST (red), LEPR
(green), and nuclei (DAPI; blue). White arrowheads indicate SST+/LEPR+ cells. ViewRNA of OCT-embedded islet sections from donor P4 to detect the fol-
lowing: (E) INS (red),HADH (green), and nuclei (DAPI; blue) and (F ) SST (red),HADH (green), and nuclei (DAPI; blue). White arrowheads highlight examples
of HADH+/INS− (E) and HADH+/SST+ (F ) cells. Hollow arrowheads highlight HADH+/INS+ (E) and HADH+/SST− (F) cells. In D–F, solid horizontal white lines
indicate scale bars of 20 μm. In E and F, white dashed lines highlight a cell either co-expressing (E) INS/HADH or (F ) SST/HADH. White squares in the bottom
left of E and bottom right of F indicate magnified images of the cells highlighted in respective dashed white boxes.
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Fev−/− mice exhibit insulin production, insulin secretion, and glu-
cose clearance defects (Ohta et al. 2011). Other related signature
genes in PP/gamma cells includeTPH1, encoding a tryptophan hy-
droxylase essential for the initial catalysis of serotonin, and
SLC6A4, a serotonin reuptake transporter. Serotonin colocalizes
with insulin in beta cells and promotes GSIS (Paulmann et al.
2009).Mice lackingTPH1 are diabetic and exhibit impaired insulin
secretion due to a lack of pancreatic serotonin (Paulmann et al.
2009). Elevated FEV, TPH1, and SLC6A4 expression suggests PP/
gamma cells share a suite of characteristic genes with serotonergic
neurons that, in the pancreas, integrate central and peripheral
hunger and satiety cues. We also observed high PP/gamma expres-
sion of muscarinic acetylcholine receptor M3, CHRM3, which
stimulates exocrine pancreatic amylase (Gautam et al. 2005), insu-
lin secretion (Kong and Tobin 2011; Molina et al. 2014), and
smooth muscle contraction and gastric emptying (Eglen et al.
1994). These data implicate the less abundant delta and PP/gamma
cell types as critical for islet function via the integrationof systemic
cues and warrant further studies to elucidate the function and
health of these cells in normal and diabetogenic conditions.

Single-cell transcriptomes link rare and common diabetes genetic

risk genes to islet cell types

We next sought to understand the cell type(s) involved in rare
forms of diabetes, including transient/permanent neonatal diabe-
tes (T/PNDM), CHI and MODY, as well as more common forms of
islet dysfunction and diabetes (T1D/T2D).Monogenic diabetic dis-
orders, including CHI, MODY, and neonatal diabetes, are charac-
terized by mutations in a single gene, often resulting in beta cell
dysfunction and death (Schwitzgebel 2014). Five monogenic dia-
betes risk genes (Supplemental Table S11; Hoffmann and
Spengler 2012; Senniappan et al. 2013; Schwitzgebel 2014), were
enriched in beta cells (i.e., greater than fourfold change in expres-
sion in specific islet cell type relative to other endocrine cells), in-
cluding glucose transporter SLC2A2 (data not shown), beta cell
maturation transcription factor PDX1, and the sulfonylurea drug
target ABCC8 (Fig. 4C). PDX1 expression has been reported in hu-
man (Li et al. 2016) and mouse (DiGruccio et al. 2016) beta and
delta cells. Despite the modest number of delta cells sampled,
our data also suggest moderate PDX1 expression in delta cells
(four of 16 delta cells with expression ≥16 CPM). Robust expres-
sion of HADH in both beta and delta cells (Fig. 4C) was confirmed
by in situ (View RNA) analyses (Fig. 4E,F). Approximately 386/457
cells (84%) in HADH and INS labeled sections coexpressed both
markers (shown in Fig. 4E). Adjacent SST/HADH colabeling yielded
an approximately equal proportion (n = 255/306; 83%) of SST-neg-
ative/HADH-positive cells. Finally, 43/457 (9%) cells were INS neg-
ative/HADH positive, and 41/306 (13%) cells coexpressed SST and
HADH (shown in Fig. 4F) in the respective serial sections. Another
CHI-associated gene, UCP2 (González-Barroso et al. 2008;
Senniappan et al. 2013), which was reported to be highly ex-
pressed inhumanbeta cells (Liu et al. 2013) and to suppress insulin
secretion (Krauss et al. 2003), was enriched in delta cells (Fig. 4C).
Delta cell expression of monogenic diabetes genes thus implicate
this cell type in the molecular genetics of rare islet dysfunction
and diabetes disorders, particularly CHI.

We also investigated cell type expression patterns of 536 islet
expression quantitative trait loci (eQTL) target genes (Lyssenko
et al. 2009; Dupuis et al. 2010; Dayeh et al. 2013; Fadista et al.
2014; Kulzer et al. 2014; van de Bunt et al. 2015). The majority
of these genes (n = 309; Supplemental Table S11) were lowly ex-

pressed in both the endocrine islet single-cell transcriptomes and
in the paired bulk islet transcriptomes (Supplemental Fig. S16A).
One hundred fifty-nine additional genes did not exhibit a greater
than or equal to fourfold expression change in any endocrine islet
cell type. Of the remaining 68 eQTL genes, 54, 46, 51, and 43 were
expressed in beta, alpha, delta, and PP/gamma cells, respectively.
Surprisingly, beta and delta cells possessed the highest numbers
of cell-type–specific eQTL genes (Supplemental Table S11).

Genome-wide association studies (GWAS) have identified
more than 100 loci associated with T2D and related quantitative
traits (Mohlke and Boehnke 2015). Because GWAS identify genetic
variants associated with a disease, but not the specific gene(s) af-
fected (Pearson and Manolio 2008; Manolio 2010), we took two
approaches to assess cell-type expression of patterns of putative
GWAS genes. First, we compiled and examined a list of 197 report-
ed putative T1D and T2D GWAS genes (Bakay et al. 2013; Nica
et al. 2013; Fadista et al. 2014; Marroqui et al. 2015; Mohlke and
Boehnke 2015). Of these genes, 37 were expressed in beta, 24 in
alpha, 28 in delta, and 22 in PP/gamma cells (Supplemental
Table S11). Similarly, genes that were cell-type specific were ex-
pressed at higher levels in ND bulk intact islets compared with
those genes without cell-type specificity (Supplemental Fig.
S16B). Ten genes were uniquely expressed in beta cells, including
MEG3, a type 1 diabetes (T1D)–associated lincRNA with reported
expression in mouse beta cells and potential tumor suppressor ac-
tivity (Modali et al. 2015), and IAPP, whose protein product, when
aggregated, possesses cytotoxic properties that may contribute to
beta cell death and dysfunction in T2D (Westermark et al. 2011).
We also identified five putative T2D GWAS genes (including
HHEX) to be uniquely expressed in delta cells. To conduct a
more liberal analysis of putative GWAS genes, we identified all sin-
gle-nucleotide polymorphisms (SNPs) associated with polygenic
diabetes and related traits from the GWAS catalog (https://www.
ebi.ac.uk/gwas/). For each reported SNP associated with T2D,
T1D, fasting insulin, fasting glucose, and proinsulin, we examined
the expression of all genes overlapping within one megabase of
the chromosomal locus and identified 263 genes with cell-type–
specific expression (Supplemental Table S12). Together, our obser-
vations of cell-type–specific expression of eQTL and monogenic
and common (T2D GWAS) diabetes genes both confirm beta
cell–specific expression of multiple diabetes-associated genes
(MEG3, DLK1, SLC2A2, etc.) and implicate other cell types in the
molecular genetic pathogenesis of diabetes. In light of recent stud-
ies (Zhang et al. 2014; DiGruccio et al. 2016) and our data, which
suggest that delta cellsmay be critical regulators of glucose homeo-
stasis and islet function, this provides a new avenue for investiga-
tion of T2D pathogenesis, as well as potentially new therapeutic
targets and treatment options.

Comparison of T2D and ND single-cell transcriptomes uncovers

cell-type–specific differences not detected in whole islets

Finally, we compared single-cell transcriptome profiles from T2D
and ND donors to identify differentially regulated genes and ob-
tain greater insight into the molecular genetic pathogenesis of di-
abetes. After unsupervised hierarchical clustering (Fig. 5A) and t-
SNE analysis (Supplemental Figs. S17, S18) using 2754 of the
most highly expressed genes (Supplemental Table S4), we observed
that transcriptomes clustered by cell type regardless of disease
state. As previously observed, clustering was not driven by marker
gene expression (Supplemental Figs. S19, S20). For regions of the
dendrogram (Fig. 5A) where samples appeared to cluster by disease
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state, we found that islet donor identity was an underlying factor
that reflected sample subclustering (Supplemental Fig. S21). We
obtained fewer beta cells among the T2D islet cells sampled com-
pared with ND samples (Fig. 5B). However, observed differences
in T2D and ND single-cell proportions did not differ significantly
from expected cell-type proportions (Fig. 5B, χ2 P-value = 0.2733),
and none of the islets from these newly diagnosed T2D individuals
exhibited as significant a decrease as previously reported (Butler

et al. 2003; Cnop et al. 2005; Donath et al. 2005; Prentki and
Nolan 2006).

Recent studies have reported features of beta cell de-differenti-
ation under diabetogenic and stress conditions (Talchai et al. 2012;
Wang et al. 2014; Cinti et al. 2016). However, we did not identify
significant shifts in islet cell populations, increases in number of
hormone-negative “none” cells, or appearances of new or more
abundant populations of cells in T2D islets that clustered distinctly

Figure 5. Single-cell transcriptome analyses identify cell-type–specific expression changes in T2D islets. (A) T2D andND single-cell transcriptomes cluster
together by cell type after unsupervised hierarchical clustering. (B) Number of each ND and T2D cell type classified by marker gene expression as shown in
Figure 2. The numbers of cells expected in each condition based on a χ2 test are indicated in parentheses. (C–E, top) Scatter plots of log2 fold-change (FC)
expression detected between T2D and ND samples from bulk intact RNA-seq (y-axis) and from Fluidigm C1 single-cell RNA-seq (x-axis) from beta cells (left
plot; red), alpha cells (middle plot; blue), and delta cells (right plot; green). (Bottom) Violin plots highlight examples of differentially expressed genes in one
single-cell type. Dashed purple lines represent repressed genes in the respective T2D cell type, while dashed blue lines represent induced genes. (∗) FDR <
0.05, (∗∗) FDR < 0.01, (∗∗∗) FDR < 0.001. (F) Venn diagram showing the intersections of differentially expressed genes identified between T2D andND tran-
scriptomes at single-cell-type and islet single-cell ensemble resolution. The islet single-cell ensemble represents the pooled collection of beta, alpha, delta,
and PP/gamma single cells.
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from the known islet cell types in this study. Moreover, expression
of reported de-differentiation genes including FOXO1, NANOG,
and POU5F1 (Talchai et al. 2012) did not differ significantly be-
tween T2D and ND islet cell types nor the paired bulk intact islet
preparations (Supplemental Fig. S22). Finally, other de-differentia-
tionmarkers such asNEUROG3 andMYCLwere not detected in our
single-cell or bulk intact islet data. Thus, our analysis did not iden-
tify transcriptional evidence of de-differentiated cells in T2D islets.

Comparison of islet cell-type transcriptomes (e.g., T2D beta
vs. ND beta) did, however, identify 410 genes that were differen-
tially expressed (FDR < 5%) between T2D and ND donors
(Supplemental Table S6) beta, (Fig. 5C, n = 248), alpha (Fig. 5D,
n = 138), and delta cells (Fig. 5E, n = 24). We also identified dif-
ferentially expressed genes in acinar (n = 74), ductal (n = 35), and
stellate (n = 28) exocrine cell types (Supplemental Fig. S23;
Supplemental Table S6). T2D beta cells exhibited a 1.4-fold de-
creased INS expression compared with ND beta cells (Fig. 5C).
STX1A was significantly reduced (log2FC −1.5178) in T2D beta
cells, consistent with reported decreases in STX1A protein levels
in T2D beta cells (Andersson et al. 2012). STX1A combines with
SNAP-25 and VAMP2 to form a tertiary SNARE protein complex
important for insulin secretion in beta cells (Andersson et al.
2012), and STX1A inhibition drastically reducesGSIS and exocyto-
sis (Vikman et al. 2006). Additionally, we detected elevated DLK1

expression in T2D beta cells (log2FC 2.010), which has been impli-
cated in T1D/T2D GWAS (Wallace et al. 2010) and is part of a dys-
regulated locus in T2D islets (Kameswaran et al. 2014). Dlk1−/−

mice exhibit increased glucose sensitivity and insulin secretion
(Abdallah et al. 2015), and high levels of serum DLK1 have been
associated with insulin resistance in both rodents and humans
(Chacón et al. 2008). Immunofluorescence indicates that DLK1
is beta cell specific in human but not mouse islets (Li et al.
2016), and FACS-enriched mouse beta cells show low expression
of Dlk1 in comparison to other sorted islet alpha and delta cells
(DiGruccio et al. 2016), potentially implicating a unique role of
this gene in human T2D progression. These findings suggest that
perturbations in STX1A and DLK1 expression may contribute to
the beta cell dysfunction and impaired insulin secretion that is
commonly observed in T2D pathogenesis.

Decreased beta cell function and mass are hallmarks of T2D
pathophysiology (Cerf 2013;Halban et al. 2014). Our analyses sug-
gest that transcriptional changes innonbeta cellsmayalso contrib-
ute to T2D pathogenesis. Specifically, we highlight increased
expression of fatty acid translocase gene CD36 (log2FC 2.296), as
well as decreased expression of the guanine deaminase gene,
GDA (log2FC −1.062), in T2D alpha cells. Soluble CD36 is a bio-
marker of T2D (Alkhatatbeh et al. 2013) and diabetic nephropathy
(Shiju et al. 2015) and coordinates activation of the NLRP3 inflam-
masome, leading to proinflammatory cytokine release and re-
duced insulin secretion (Sheedy et al. 2013). Within T2D delta
cell transcriptomes, we note increased LAPTM4B expression
(log2FC 2.871) and drastically reduced RCOR1 expression (log2FC
−10.128). The underlying biological significance of these differen-
tially regulated genes remains unclear and thus requires further in-
vestigation of their roles in nonbeta cell types and T2D pathology.
We also compared the transcriptional differences between
T2D and ND endocrine cells without first segregating them into
islet cell types (334 ND and 212 T2D single-cell profiles).
Approximately 66% of beta cell–specific (n = 165/248), 50% of al-
pha cell–specific (n = 67/138), and >90% of delta–specific (n = 23/
24) changes in gene expression were missed when cell types
were not defined and specifically compared (Fig. 5F). The de-

creased heterogeneity in the transcriptional profiles of cell-type–
specific comparisons provides increased power to detect the tran-
scriptomic differences and argues the importance of single-cell
analysis in understanding the molecular basis of T2D.

Recent islet single-cell studies emerged while this study was
under review. We therefore sought to validate our observed cell-
type–specific differences in T2D islets using these independent
data sets (Wang et al. 2016; Segerstolpe et al. 2016). We found
that 54/77 genes and 32/171 were also significantly up- and
down-regulated, respectively, in T2D beta cells in these studies
(P < 0.05, two-sided Wilcoxon rank-sum test) (Supplemental Fig.
S24A,B; Supplemental Table S13). Notably, DLK1 consistently ex-
hibited approximately fourfold induction in T2D beta cells in each
study (Supplemental Fig. S24C,D) Similarly, 39/60 and 14/78
genes were significantly induced or repressed, respectively, in
T2D alpha cells (Supplemental Fig. S24E,F). This included approx-
imately twofold CD36 induction in each study (Supplemental Fig.
S24G,H). Validation rates for delta cells was notably lower, likely
due to the relatively few cells profiled for comparison. However,
we did note a significant increase (log2FC 1.203) in LAPTM4B in
T2D delta cells from Segerstolpe et al. (2016), consistent with
our data.

Discussion

In this study,we completed transcriptomeprofiling and analysis of
638 single islet cells from ND and T2D individuals. Single-cell
RNA-seq protocols are often limited by their capture efficiency
due to the fact that a limited proportion of each cell’s total tran-
scripts is represented in the final sequencing library (Liu and
Trapnell 2016). Additionally, these approaches have difficulty de-
tecting expression and changes in expression of low abundance
transcripts. Despite these limitations, we observed a strong correla-
tion between the transcriptomes of paired bulk islets and single
cells, indicating these are high-quality and representative data
sets. Based on single-cell transcriptome profiles, we have identified
cells of each endocrine (alpha, beta, delta, PP/gamma, epsilon) and
exocrine (stellate, ductal, acinar) type in the pancreas in an agnos-
tic and data-driven manner.

This approach has defined expression signatures of each cell
type with single-cell precision. Cell-type–specific expression pat-
terns in our data such asMAFA in beta cells and IRX2 in alpha cells
are concordant with and extend those generated on a smaller set of
cells and an independent platform (Li et al. 2016). Notably, our ap-
proach also uncovered important instances of shared expression
between these cell types and the less common delta and PP/gam-
ma islet populations, including genes mutated in CHI (HADH)
and transcription factors regulating cell fate/identity (ARX).
HADH encodes hydroxyacyl-CoA dehydrogenase, an important
enzyme and negative regulator of glutamate dehydrogenase
(GDH) and insulin secretion. Expression of HADH in islets has
been shown to be beta cell specific (Kapoor et al. 2010; Pepin
et al. 2010), and indeed, knockdown of HADH in rat 832/13 beta
cells increases insulin secretion (Pepin et al. 2010). Surprisingly,
our combined transcriptomic analyses and in situ (ViewRNA) val-
idation ofHADH revealed shared expression in beta and delta cells.
These findings suggest delta cell dysfunction, in addition to beta
cell dysfunction, as potential contributing factors to the develop-
ment of monogenic diabetic disorders.

Most importantly, analysis of the delta and PP/gamma islet
cell transcriptomes revealed cell-type–specific expression of multi-
ple genes that suggest important roles for these cells in islet
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physiology and the molecular genetics of islet dysfunction in rare
(e.g., PNDM, TNDM, and MODY) and common (e.g., T2D) forms
of diabetes. The novel transcriptome signatures uncovered for hu-
mandelta and PP/gammacells includes genes that strongly suggest
important roles for each cell type in sensing and integrating specif-
ic systemic cues to govern islet (dys)function. This clearly warrants
additional work to better understand the regulation and function
of these cells in normal and diabetic states. New cell surface mark-
ers identified for each of these cell types could be used to specifi-
cally enrich and purify these populations for detailed functional
analysis.

Finally, by comparing single-cell transcriptomes from T2D
and ND islets, we were able to study quantitative changes in
cell populations and cell-type–specific expression in T2D patho-
genesis. Although not reaching statistical significance, we did ob-
serve a trend of decreased beta cells in T2D islets versus ND islets.
This difference was not as pronounced as in previous reports, pos-
sibly due to the relatively modest number of cells sampled per in-
dividual. Alternatively, as most of the T2D islet single-cell
transcriptomes came from newly diagnosed individuals, this dif-
ference may also reflect the shorter duration or decreased severity
of T2D in these samples compared with other studies. Previous
studies suggested that beta cell de-differentiation may underlie
beta cell loss in T2D (Talchai et al. 2012; Wang et al. 2014;
Cinti et al. 2016). However, a subsequent study comparing hu-
man islets from 14 T2D and 13 ND individuals did not identify
clear evidence of this phenomenon (Butler et al. 2016).
Similarly, our data do not provide transcriptome-based evidence
of trans-differentiation or de-differentiation phenomena in T2D
islets. We observed neither the appearance of new or distinct sub-
populations among the T2D islet single cells nor significant
changes of reported de-differentiation genes between T2D and
ND cell types (e.g., T2D beta cells vs. ND beta cells), although it
is possible that de-differentiated cells were simply not captured
in our study. Overall, we identify 248, 138, and 24 genes exhib-
iting differential expression in T2D versus ND beta, alpha, and
delta cells, respectively. Consistent with Simpson’s paradox, ap-
proximately half of these genes in each major islet cell type
(64% beta, 45% alpha) and ∼90% of these in the less abundant
delta cells were not detected in whole islet or single-cell islet tran-
scriptomes when they were not stratified by cell type (Simpson
1951; Trapnell 2015). Each of these differentially regulated genes
may represent important new candidate genes in T2D pathogen-
esis and therapeutic targeting.

Methods

Islet acquisition, processing, and dissociation

Islets were procured from ProdoLabs or the Integrated Islet
Distribution Program (IIDP) and shipped in PIM(T) media
(ProdoLabs) overnight on cold packs. Upon arrival, islets were
washed and transferred into PIM(S) media with PIM(G) and PIM
(ABS) supplements according to the manufacturer’s instructions
(ProdoLabs) and incubated at 37°C in a 5% CO2 tissue culture in-
cubator. Twenty-four hours after transfer, approximately 500 islet
equivalents (IEq) were aliquoted and centrifuged at 180g for 3 min
at room temperature (RT). One aliquot (100 IEq) was immediately
flash frozen (Fig. 1A, baseline), one (200 IEq) was resuspended in 1
mL Prodo-media (Fig. 1A, intact), and one (200 IEq) was resus-
pended in 1 mL Accutase (Innovative Cell Technologies) (Fig.
1A, dissociated and single cell) and incubated for 10 min in a
37°C water bath, with pipetting every 2 min. Accutase-dissociated

cells were filtered through a prewet cell strainer (BD) to collect sin-
gle cells, rinsed with 9 mL prewarmed CMRL + 10%FBS media to
stop the reaction, and centrifuged at 180g for 3 min at RT.
Dissociated cells were resuspended in 300 µL CMRL + 10%FBS me-
dia. Cell size, number, and viabilitywere assessed usingCountess II
FL (Thermo Fisher Scientific), and the cell suspension was diluted
to a final concentration of 300 cells/µL. Total processing and han-
dling time for each islet was ≤60 min.

Single-cell processing on the C1 single-cell Autoprep system

After counting, cells were diluted to a final concentration range of
250–400 cells/μL and 5 µL loaded onto each C1 integrated fluidic
circuit (IFC; 10- to 17-μm chip) for cell capture on the C1 single-
cell Autoprep system. For each islet preparation, up to two micro-
fluidic chips were used. After capture, cells were imaged within
each capture nest with an EVOS FL auto microscope (Life
Technologies). IFCs were subsequently loaded with additional re-
agents for subsequent cell lysis; SMARTer v1- based (Clontech),
olio-(dT)-primed reverse transcription; template switching for sec-
ond-strand priming; and amplification of cDNA on the C1 System.
Qualitative and quantitative analysis of all single-cell cDNA prod-
ucts was performed on a 96 capillary fragment analyzer (Advanced
Analytical). Only cell singlets, as determined by imaging, with ad-
equate cDNA yield and quality were processed for subsequent se-
quencing. Fragmentation and tagmentation of cDNA was done
with Nextera XT reagent (Illumina) using dual indices to prepare
single-cell multiplexed libraries.

Bulk-cell RNA-seq

Bulk cells were pelleted and RNA purified using the PicoPure RNA
isolation kit (Life Technologies). All RNA-seq libraries from bulk-
sample RNAwere generated with the same SMARTer v1 chemistry
(Clontech) as for the C1 single-cell data largely following theman-
ufacturer’s instructions. Unlike the C1 workflow, after first-strand
DNA synthesis, cDNAwas purified using Agencourt AMPure beads
(Beckman Coulter). cDNAwas subsequently amplified through 12
PCR cycles. The cDNA yield and fragment size were measured on a
2100 Bioanalyzer (Agilent). For sequencing library preparation,
amplified cDNA was sheared using a Covaris LE220 system to ob-
tain fragments of ∼200 bp. The fragmented cDNA was prepared
for sequencing using the NEBNext DNA library prep kit for
Illumina sequencing (New England BioLabs).

Sequencing, read mapping, and quality control

All sequencing was performed on a NextSeq500 (Illumina) using
the 75-cycle high-output chip. RNA-seq reads were subjected to
quality control using custom scripts developed at the computa-
tional sciences group at The Jackson Laboratory. Briefly, reads
with >30% of bases with quality scores less than 30 were removed
from the analysis, and samples with >50% of the low-quality reads
were removed from the cohort. Trimmed readsweremapped to hu-
man transcriptome (GRCh37, Ensembl v70) using Bowtie 2
(Langmead and Salzberg 2012), and expression levels of all genes
were estimated using RSEM (Li and Dewey 2011). Transcript per
million (TPM) values as defined by RSEM were added a value of
one prior to log

2
transformation to avoid zeros. GRCh37was select-

ed for mapping to facilitate integration and comparative analyses
with existing islet data sets (e.g., Parker et al. 2013; Fadista et al.
2014; van de Bunt et al. 2015) and ENCODE and NIH Roadmap
data by members of the islet biology, diabetes, and functional ge-
nomics communities. The observation of expected “positive con-
trol” genes for each cell type strongly suggested that mapping to
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GRCh37 instead of GRCh38 did not mask or alter any important
conclusions that could be drawn from the data.

Single-cell sample processing and quality filtering

We used 26,616 protein-coding genes and lincRNAs from the
GRCh37, Ensembl v70 build in our study. Genes with expression
five or more TPMs in a sample were defined as expressed.
Seventy-two single-cell samples that expressed fewer than 3500
genes according to these criteria were removed from downstream
analysis.

Islet cell type classification

GMM of islet marker genes was performed on a per gene basis us-
ing the R-packagemclust_5.2 (Scrucca et al. 2016). Each single-cell
sample was classified as a specific pancreatic cell type if and only if
a single gene from the selected marker gene list—INS (beta), GCG
(alpha), SST (delta), PPY (PP/gamma), KRT19 (ductal), PRSS1 (aci-
nar), and COL1A1 (stellate)—was expressed in the sample and
none of the other marker genes were expressed. Cells expressing
no marker genes were labeled as “none,” and those expressing
>1 marker gene were labeled as “multiple.” Fluidigm released a
white paper report detailing the potential for single cells to “z-
stack” in up to 30% of capture nests on the medium (10–17 µm)
Fluidigm C1 chip (http://info.fluidigm.com/rs/673-MRG-416/
images/C1-Med-96-IFC-Redesign_wp_101-3328B1_FINAL.pdf).
DAPI staining identified z-stacked islet cell doublets in 10% and
30% of capture nests from two additional C1 single-cell captures.
Because the proportion of “multiple” labeled cells approximately
equaled that of z-stacked doublets, we discarded these cells (n =
340) from subsequent analyses.

Unsupervised dimensionality reduction and hierarchical

clustering

Barnes-Hut variant of t-SNE (van der Maaten 2014) was imple-
mented using the R-package Rtsne_0.10 (https://github.com/
jkrijthe/Rtsne). ND single-cell transcriptomes were reduced to
two dimensions in an unsupervised manner using genes with log2
CPM values greater than 10.5 in at least one sample. Similar anal-
yses were repeated using only the T2D single-cell data and the
combined single-cell data. Hierarchical clustering of cell transcrip-
tomes was performed using Euclidean distance, Ward.D2 linkage,
and the same gene selection criteria. Resultant “fan” dendrogram
images were produced using the R-packages dendextend_1.1.8

(Galili 2015) and ape_3.5 (Paradis et al. 2004). Bulk islet transcrip-
tomes were clustered using the same criteria.

Supervised differential gene expression analysis

Differential expression analyses were performed using the
Bioconductor package edgeR_3.14.1 (Robinson et al. 2010).
Gender was used as a blocking factor to account for variability be-
tweenmale and female patient islets. In each comparison, protein-
coding genes and lincRNAs with 20 or fewer counts in at least 20%
of either cell type population being compared or at least a mini-
mum of three cells were used. Differentially expressed genes with
FDR < 5%were regarded as significant results. Endocrine cell signa-
ture geneswere identified by first performing the abovedifferential
expression analysis procedure between each endocrine cell type
(e.g., beta vs. alpha, beta vs. delta, and beta vs. PP/gamma).
Afterward, the intersection of these results was performed to iden-
tify genes exclusively enriched in the cell type. Exocrine cell signa-
ture genes were identified after pairwise comparisons between
each respective exocrine cell type (e.g., acinar vs. stellate, acinar

vs. ductal). Comparisons between T2D and ND single-cell tran-
scriptomes were performed for the same cell types (e.g., T2D beta
cells vs. ND aeta cells) to identify cell-type–specific differences in
gene expression between T2D and ND states.

ANOVA and post-hoc analyses

For each collection of diabetes-associated and eQTL genes exam-
ined, one-way analysis of variance (ANOVA) was used to identify
statistically significant differences (FDR > 5%) in islet cell-type
gene expression. Following this, we performed a post hoc analysis
using a THSD test to determine genes with cell-type–specific ex-
pression patterns (fold change > 4). Genes were classified as
“pan-islet” if they had an average log2(CPM) expression greater
than four in all islet cell types. Genes that were not enriched in a
cell type or pan-islet were classified as “lowly expressed” (average
log2(CPM) < 2 in all cell types), and the remaining genes were clas-
sified as “less than fourfold change.” This same methodology was
used to characterize expression of the previously reported alpha-
and beta-specific genes from Dorrell et al. (2011b), Bramswig
et al. (2013), Nica et al. (2013), and Blodgett et al. (2015). Similar
methods were used to characterize expression patterns of genes
nearby diabetes-related GWAS SNPs (downloaded from the
GWAS Catalog, https://www.ebi.ac.uk/gwas/, and available in
Supplemental Table S12). Protein-coding RNAs and lincRNAs
that overlapped within one megabase upstream of and down-
stream from the diabetes-associated SNPs were analyzed.

Gene set enrichment analysis

The Bioconductor package gage_2.22.0, (Luo et al. 2009) was used
with default parameters to identify enrichment (FDR < 5%) of hu-
man Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways in each of the ND islet cell transcriptomes. Enriched
pathways were determined by comparing each cell-type transcrip-
tome against the other aggregate islet cell-type transcriptomes
(e.g., beta vs. alpha, delta, and PP/gamma).

RNA in situ hybridization

RNA transcripts were visualized in OCT-embedded pancreatic islet
sections from two ND donors (P3 and P4) using QuantiGene
ViewRNA ISH cell assay kit (catalog no. QVC0001, Affymetrix).
Human INS ViewRNA type 6 probe (Catalog no. VA6-13248-06),
SST ViewRNA type 6 probe (catalog no. VA6-17244-06), LEPR

ViewRNA type 1 probe (catalog no. VA1-15221-06), and HADH

ViewRNA type 1 probe (catalog no. VA1-12106-06) were purchased
from Affymetrix (Santa Clara). The assay was performed according
to the cell-based ViewRNA assay protocol with a 15-min formalde-
hyde fixation and a 10-min protease treatment (dilution factor
1:4000). ViewRNA probes were detected at 550 nm (Cy3) and
650 nm (Cy5) using a Leica TSC SP8 confocal microscope at 63×
magnification.

Islet cell subpopulation analyses

Dorrell et al. 2016 previously defined four beta cell subpopulations
with differing expression of 59 genes. With this gene set, we at-
tempted to validate the presence of these four subpopulations
via unsupervised t-SNE and hierarchical clustering of all ND beta
cell transcriptomes (n = 168). Similarly, Bader et al. (2016) charac-
terized proliferative (Fltp+/FVR+) and mature (Fltp−/FVR−) mouse
beta cells that showed differential expression of 996 transcripts.
By using the Mouse Genome Informatics (MGI; http://www.
informatics.jax.org) database, these 996 transcripts corresponded
to 691 human orthologs that were detected in our data set. Beta
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cell transcriptomeswere clustered using these orthologs to attempt
to identify mature and proliferating subpopulations. Finally, we
used the functions available in scran_1.04 (http://bioconductor.
org/packages/release/bioc/html/scran.html) to computationally
assign single-cell samples into cell cycle phases (G1, G2/M, or S
phase) and investigate whether our data set contained proliferat-
ing islet cells.

Data access

Raw sequence data from this study have been submitted to the da-
tabases of NCBI Sequence Read Archive (SRA; http://www.ncbi.
nlm.nih.gov/sra) under accession number SRP075970 and
BioProject (http://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA323853. Processed data sets from this
study have been submitted to Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE86473. UCSCGenomeBrowser tracks of aggregateND islet sin-
gle-cell-type transcriptomes are available at http://genome.ucsc.
edu/ and may be accessed with the user name “lawlorn” and ses-
sion name “Islet_Single_Cell_Type_Transcriptomes.” The source
code used to produce the figures and tables in this paper is avail-
able in the Supplemental_Methods_Source_Code folder as sug-
gested by Hoffman (2016).
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