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Single-cell transcriptomic analysis of tissue-resident
memory T cells in human lung cancer
James Clarke1,2, Bharat Panwar1, Ariel Madrigal1, Divya Singh1, Ravindra Gujar1, Oliver Wood2, Serena J. Chee2,3, Simon Eschweiler1, Emma V. King2,4,
Amiera S. Awad3,5, Christopher J. Hanley2, Katy J. McCann2, Sourya Bhattacharyya1, Edwin Woo3, Aiman Alzetani3, Grégory Seumois1,
Gareth J. Thomas2, Anusha-Preethi Ganesan1, Peter S. Friedmann5, Tilman Sanchez-Elsner5, Ferhat Ay1, Christian H. Ottensmeier2*, and
Pandurangan Vijayanand1,5,6*

High numbers of tissue-resident memory T (TRM) cells are associated with better clinical outcomes in cancer patients.
However, the molecular characteristics that drive their efficient immune response to tumors are poorly understood. Here,
single-cell and bulk transcriptomic analysis of TRM and non-TRM cells present in tumor and normal lung tissue from patients
with lung cancer revealed that PD-1–expressing TRM cells in tumors were clonally expanded and enriched for transcripts
linked to cell proliferation and cytotoxicity when compared with PD-1–expressing non-TRM cells. This feature was more
prominent in the TRM cell subset coexpressing PD-1 and TIM-3, and it was validated by functional assays ex vivo and also
reflected in their chromatin accessibility profile. This PD-1+TIM-3+ TRM cell subset was enriched in responders to PD-
1 inhibitors and in tumors with a greater magnitude of CTL responses. These data highlight that not all CTLs expressing PD-1 are
dysfunctional; on the contrary, TRM cells with PD-1 expression were enriched for features suggestive of superior
functionality.

Introduction
In lung cancer and many other solid tumors, patient survival is
positively correlated with an effective adaptive antitumor im-
mune response (Galon et al., 2006). This response is mediated
primarily by CD8+ CTLs. Because CTLs in tumors are chronically
activated, they can become “exhausted,” a hyporesponsive state
that, in the setting of infection, prevents inflammatory damage
to healthy tissue (Wherry, 2011). Exhaustion involves up-
regulation of surface molecules such as PD-1 and TIM-3, along-
side a gradual diminution of functional and proliferative
potential (Pardoll, 2012). Anti-PD-1 therapies have revolution-
ized cancer treatment by inducing durable responses in some
patients (Robert et al., 2015). Given the association of PD-1 with
exhaustion and the description of CTLs expressing PD-1 in hu-
man cancers, exhausted CTLs are generally assumed to be the
cells reactivated by anti-PD-1 therapy, though definitive evi-
dence for this is lacking in humans (Simon and Labarriere, 2017).

Though anti-PD-1 therapies can eradicate tumors in some
patients, they also lead to serious “off-target” immune-mediated

adverse reactions (June et al., 2017), calling for research to
identify features unique to tumor-reactive CTLs. One subset of
CTLs that may harbor such distinctive properties are tissue-
resident memory T (TRM) cells which mediate the response to
antitumor vaccines (Nizard et al., 2017) and facilitate rejection of
tumors in animal models (Malik et al., 2017). TRM cell responses
have also recently been shown by our group (Ganesan et al.,
2017) and others (Djenidi et al., 2015) to be associated with
better survival in patients with solid tumors. The molecular
features of TRM cell responses have been characterized in in-
fection models and involve rapid clonal expansion and up-
regulation of molecules aiding recruitment and activation of
additional immune cells alongside the conventional effector
functions of CTLs (Schenkel and Masopust, 2014). To date, the
properties of TRM cells found in the background lung, compared
with those in the tumor, are not fully elucidated. Furthermore,
the properties of these cell subsets in the context of immuno-
therapy are still poorly understood. To address this question, we
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compared the transcriptome of TRM and non-TRM CTLs present
in tumor and normal lung tissue samples from treatment-naive
patients with lung cancer. Furthermore, we investigated the
same tissue-resident populations in head and neck squamous
cell carcinoma (HNSCC) and during immunotherapy regimens.

Results
TRM cells in human lungs are transcriptionally distinct from
previously characterized TRM cells
We analyzed the transcriptome of CTLs isolated from lung tu-
mor and adjacent uninvolved lung tissue samples obtained from
patients (n = 30) with treatment-naive lung cancer (Table S1)
sorted according to CD103 expression to separate TRM cells from
non-TRM cells, as previously described (Ganesan et al., 2017).
Lung CD103+ and CD103− CTLs clustered separately and showed
differential expression of nearly 700 transcripts, including
several previously linked to TRM cell phenotypes; we validated
CD49A and KLRG1 at the protein level, as described previously
(Fig. 1 A; Fig. S1, A–C; and Table S2; Hombrink et al., 2016;
Ganesan et al., 2017). Gene set enrichment analysis (GSEA)
showed that the pattern of expression of these transcripts cor-
related with a murine core tissue-residency signature in CTLs
isolated from both lung and tumor samples (Fig. S2 D and Table
S3; Milner et al., 2017). Together, these data confirm that CD103+

CTLs in human lungs and tumors are highly enriched for TRM

cells; for simplicity, hereafter, we refer to CD103+ CTLs as TRM

cells and CD103− CTLs as non-TRM cells.
We next compared differentially expressed transcripts be-

tween lung TRM and non-TRM cells with those reported for
other TRM cells. The comparison with gene signatures of human
skin TRM cells (Cheuk et al., 2017) and that of murine TRM cells
isolated from multiple organs (Milner et al., 2017) revealed
limited, yet statistically significant overlap (≤5%; Fig. 1, B and C),
which suggested that core tissue-residency features were well
preserved. However, those differentially expressed transcripts
that were not preserved across organs or species were not sig-
nificantly enriched (Fig. S1 E). Thus, the transcriptional pro-
gram, outside of a core tissue-residency program of human lung
TRM cells, is distinct from that of human skin TRM cells and
murine TRM cells present in several organs. Importantly, many
of the features observed in human lung TRM cells have not been
previously reported (Table S2; Hombrink et al., 2016).

PD-1 expression is a feature of lung and tumor TRM cells
We next asked if TRM cells in lung tumors share tissue-residency
features (Materials and methods) with TRM cells in adjacent
normal lung tissue. Nearly one third (89/306) of the TRM

properties (i.e., transcripts differentially expressed between
CD103+ and CD103− CTLs) in tumors were shared with those of
normal lung TRM cells (Fig. 1, D and E; and Table S4). Coex-
pression analysis (Fig. 1 F) and weighted gene coexpression
network analysis (WGCNA; Fig. 1 G; Materials and methods) of
the 89 “shared tissue residency” transcripts revealed a number
of novel genes whose expression was highly correlated with
known tissue-residency genes (S1PR1, S1PR5, ITGA1 [CD49A],
ZNF693 [HOBIT], and RBPJ; Mackay et al., 2013, 2016; Hombrink

et al., 2016), suggesting that their products may also play im-
portant roles in the development, trafficking, or function of TRM
cells (Fig. 1, D–G; and Table S4). Notable examples encoding
products likely to be involved in TRM cell functionality, migra-
tion, or retention include GPR25 (Kim et al., 2013), SRGAP3
(Bacon et al., 2013), AMICA1 (Witherden et al., 2010), CAPG
(Parikh et al., 2003), ADAM19 (Huang et al., 2005), and NUAK2
(Namiki et al., 2011; Fig. 1, F and G; and Fig. 1 H, upper panel).

Another important shared tissue-residency transcript was
PDCD1, encoding PD-1 (Fig. 1 H, lower panel). We confirmed at
the protein level that PD-1 is expressed at higher levels in both
tumor and lung TRM cells compared with non-TRM cells (Fig. 1 I).
Although PD-1 expression is considered typical of exhausted
T cells, as well as activated cells (Pardoll, 2012), recent reports
have suggested that high PD-1 expression is a tissue-residency
feature of murine brain TRM cells independent of antigen stim-
ulation (Prasad et al., 2017; Shwetank et al., 2017) and of murine
TRM cells from multiple organ systems (Milner et al., 2017). In
support of the conclusion that high expression of PD-1 reflects
tissue residency rather than exhaustion, we found that when
TRM and non-TRM cells isolated from both lung and tumor tissue
were stimulated ex vivo (Materials and methods), they showed
robust up-regulation of TCR-activation–induced genes (NR4A1,
CD69, TNFRSF9 [4-1BB], and EGR2) and cytokines (TNF and IFNG;
Fig. 1, J and K; and Tables S1 and S5). In addition to PDCD1, shared
tissue-residency transcripts included several genes (SPRY1
[Collins et al., 2012], TMIGD2 [Janakiram et al., 2015], CLNK
[Utting et al., 2004], and KLRC1 [Rapaport et al., 2015]) that
encode products reported to play a regulatory role in other
immune cell types (Fig. 1 H, lower panel). We speculate that the
expression of these inhibitory molecules may restrain the
functional activity of tumor TRM cells and may represent targets
for future immunotherapies. Overall, our transcriptomic
analysis of TRM cells has identified molecules that are potentially
important for the function of TRM cells and thus serves as an
important resource for investigating the biology of human
TRM cells.

Tumor TRM cells display greater clonal expansion
To identify features unique to tumor TRM cells, we compared the
transcriptome of TRM cells and non-TRM cells from both normal
lung and tumors and detected 92 differentially expressed tran-
scripts (Fig. 2 A and Table S4) specifically in this subset, hence
termed “tumor TRM-enriched transcripts.” Reactome pathway
analysis of these tumor TRM-enriched transcripts showed sig-
nificant enrichment for transcripts encoding components of the
canonical cell cycle, mitosis, and DNA replication machinery
(Fig. 2 B and Table S4). The tumor TRM cell subset thus appears
to be highly enriched for proliferating CTLs, presumably
responding to tumor-associated antigens (TAAs), despite PD-
1 expression. Unique molecular identifier (UMI)–based TCR se-
quencing assays (Materials and methods) revealed that TRM

cells in tumors expressed a significantly more restricted TCR
repertoire than non-TRM cells in tumors, as shown by signifi-
cantly lower Shannon–Wiener and inverse Simpson diversity
indices (Fig. 2 C and Table S6). Furthermore, the tumor TRM

population contained a higher mean percentage of expanded
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Figure 1. PD-1 expression is a feature of lung and tumor TRM cells. (A) tSNE plot of tumor and lung CTL transcriptomes segregated by CD103 expression
(lung non-TRM = 21, lung TRM = 20, tumor non-TRM = 25, and tumor TRM = 19). (B and C) Top: Venn diagrams showing overlap of transcripts differentially
expressed in lung TRM versus other previously characterized TRM cells. Bottom: Waterfall plots represent the DESeq2 normalized fold change from the human
lung comparison of genes not significantly (change twofold or less, with an adjusted P value of >0.05) differentially expressed between lung TRM (CD103+) and
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clonotypes (73% versus 52%, in tumor TRM versus non-TRM

populations; Fig. 2 D). The most expanded clonotype in each
patient comprised, on average, 19% of all TRM cells with se-
quenced TCRs (three examples; Fig. 2 D, right, and Table S6),
suggesting marked expansion of a single TAA-specific T cell
clone in the tumor TRM population, in keeping with recent
publications (Guo et al., 2018; Savas et al., 2018).

Tumor TRM-enriched transcripts that were highly correlated
with cell cycle genes may encode products with important
functions, as they are likely to reflect the molecular features of
TRM cells that are actively expanding in response to TAA (Table
S4). HAVCR2, encoding the coinhibitory checkpoint molecule
TIM-3, was most correlated and connected with cell cycle genes
(Fig. 2, E–G). Thus, TIM-3 expression may be a feature of lung
tumor TRM cells that is not linked to exhaustion but rather re-
flects a state of functionality, as the other transcripts that cor-
related with expression of TIM-3 and cell cycle genes encode
molecules that likely confer additional functionality, such as
CD39 (encoded by ENTPD1; Pallett et al., 2017), CXCL13 (Bindea
et al., 2013), CCL3 (Castellino et al., 2006), TNFSF4 (OX-40 lig-
and; Croft et al., 2009), and a marker of antigen-specific en-
gagement (4-1BB; Bacher et al., 2016; Fig. 2, E–G). Robust
expression of this set of molecules was not observed in either
human lung TRM cells or in the mouse TRM signatures
(Hombrink et al., 2016; Mackay et al., 2016; Milner et al., 2017),
indicating that the human tumor TRM population contains novel
cell subsets.

Single-cell transcriptomic analysis reveals previously
uncharacterized TRM subsets
To determine whether tumor TRM-enriched transcripts are ex-
pressed in all or only a subset of the tumor TRM populations, we
performed single-cell RNA sequencing (RNA-seq) assays in
CD103+ and CD103− CTLs isolated from tumor and matched
adjacent normal lung tissue from an additional 12 patients
with early-stage lung cancer (Table S1). Analysis of the
∼12,000 single-cell transcriptomes revealed five clusters (Ma-
terials and methods) of TRM cells and four clusters of non-TRM

cells with varying frequency per donor, highlighting the im-
portance of studying multiple patient samples (Fig. 3, A and B;
and Fig. S2, A–C). Among the five TRM clusters, clusters 1–3 (light
purple, purple, and blue, respectively) contained a greater pro-
portion of the tumor TRM population, while clusters 4 and 5
(green and red) contained more lung TRM cells (Fig. 3 C). Most

strikingly, clusters 1–3 contained very few lung TRM cells (Fig. 3
C).We infer that the tumor TRM-enriched transcripts detected in
our analysis of bulk populations (Fig. 2 A) were likely to be
contributed by cells in these subsets.

In agreement with that conclusion, cells in cluster 1 (light
purple) expressed high levels of the 25 cell cycle–related tumor
TRM-enriched transcripts (Fig. 3 D; Macosko et al., 2015), indi-
cating that the enrichment of cell cycle transcripts in the bulk
tumor TRM population was contributed by this relatively small
subset. Because these cells are actively proliferating, they likely
represent TAA-specific cells. The majority of cells in this cycling
cluster were from the tumor TRM population (Fig. 3 E). These
cells, as well as those in the larger cluster 2 (purple), were highly
enriched for other prominent tumor TRM-enriched transcripts
like HAVCR2 (TIM-3), including those encoding products that
could confer additional functionality, such as CD39 (Ganesan
et al., 2017), CXCL13 (Bindea et al., 2013), and CCL3 (Castellino
et al., 2006; Fig. 3 F), consistent with recent reports (Guo et al.,
2018; Savas et al., 2018), but with a noteworthy caveat that
transcript expression does not necessarily reflect functionality.
This shared expression pattern suggests that the cycling cluster
(cluster 1, light purple) may represent cells in cluster 2 that are
entering the cell cycle. Confirming this idea, cell-state hierarchy
maps of all TRM cells, constructed using Monocle2 (Trapnell
et al., 2014; Materials and methods), revealed that cells in clus-
ter 2 were most similar to the cycling TRM cells (cluster 1,
Fig. 3 G). Additionally, when we performed hierarchical clus-
tering (Materials and methods) of these cells, we noted that the
proliferating cluster 1 clustered more with cells assigned to
cluster 2, than the other TRM clusters (Fig. 3 H). This finding was
corroborated when we calculated the average distance in prin-
cipal component (PC) space (Materials and methods) between
each cell in cluster 1 to the other TRM clusters (Fig. S2 D).

T cells expressing TCF7, encoding the transcription factor
TCF-1, are linked to “stemness” and have been shown to sustain
T cell expansion and responses following anti-PD-1 therapy
during chronic infections and in tumormodels in mice (Im et al.,
2016; Utzschneider et al., 2016). Applying unbiased differential
expression analysis (Model-based Analysis of Single-cell Tran-
scriptomics; MAST), we found that among the tumor-infiltrating
CTLs TCF7 expression was enriched in the CCR7 (CD197)- and
SELL (CD62L)-expressing non-TRM subset, likely to reflect cen-
tral memory cells (Figs. 3 B and S2 E; light orange), with no
significant enrichment observed in any of the TRM clusters

non-TRM (CD103−) CTLs (marked in red font in the Venn diagram). (D and E) Venn diagram (D) and heat map (E) of RNA-seq analysis of 89 common transcripts
(one per row) expressed differentially by lung TRM versus lung non-TRM and tumor TRM versus tumor non-TRM (pairwise comparison; change in expression of
twofold with an adjusted P value of ≤0.05 [DESeq2 analysis; Benjamini–Hochberg test]), presented as row-wise z-scores of TPM counts; each column
represents an individual sample; known TRM or non-TRM transcripts are indicated. The color scheme and number of samples are identical to A. (F) Spearman
coexpression analysis of the 89 differentially expressed genes as in D and E; values are clustered with complete linkage. (G) WGCNA visualized in Gephi, the
nodes are colored and sized according to the number of edges (connections), and the edge thickness is proportional to the edge weight (strength of the
correlation). (H) Expression values according to RNA-seq data of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each sym-
bol represents an individual sample, the bar represents the mean (colored as in A), and t-lines represents SEM. (I) Flow cytometry analysis of the expression of
PD-1 versus that of CD103 on live and singlet-gated CD14−CD19−CD20−CD56−CD4−CD45+CD3+CD8+ cells obtained from lung cancer CTLs and matched paired
lung CTLs. Right: Frequency of cell that express PD-1 in the indicated populations (*, P ≤ 0.05; **, P ≤ 0.01; n = 8; Wilcoxon rank-sum test); each symbol
represents a sample, bars represent the mean, and t-lines represent SEM, colored as per A. (J) RNA-seq analysis of genes (row) commonly up- or down-regulated
in the four cell types following 4 h of ex vivo stimulation; heat map as in E. (K) Bar graphs showing expression of transcripts in the indicated populations (n = 6 for
all comparisons; as per J); left bar is ex vivo (−), and right bar is the expression profile following stimulation (+).
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Figure 2. Tumor TRM cells were clonally expanded. (A) RNA-seq analysis of transcripts (one per row) differentially expressed by tumor TRM relative to lung
TRM, lung non-TRM, and tumor non-TRM (pairwise comparison; change in expression of twofold with an adjusted P value of ≤0.05 [DESeq2 analysis;
Benjamini–Hochberg test]), presented as row-wise z-scores of TPM counts; each column represents an individual sample (lung non-TRM = 21, lung TRM = 20,
tumor non-TRM = 25, and tumor TRM = 19). (B) Summary of overrepresentation analysis (using Reactome) of genes involved in the cell cycle that are dif-
ferentially expressed by lung tumor TRM cells relative to the other lung CTLs; q values represent FDR. (C) Shannon–Wiener diversity and inverse Simpson
indices obtained using V(D)J tools following TCR-seq analysis of β chains in tumor TRM and tumor non-TRM populations. Bars represent the mean, t-lines
represent SEM, and symbols represent individual data points (*, P ≤ 0.05; **, P ≤ 0.01; n = 10 patients; Wilcoxon rank-sum test). (D) Left: Bar graphs show the
percentage of total TCRβ chains that were expanded (≥3 clonotypes). Bars represent the mean, t-lines represent SEM, and dots represent individual data points
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(1 and 2) linked to cell proliferation (Fig. S2 E and Table S7)
compared with other TRM clusters. This finding is consistent
with recent reports which showed that in mouse tumor models
Tcf7+ tumor-infiltrating T cells were enriched for central
memory, but not TRM, cell features (Siddiqui et al., 2019), and in
patients with melanoma, TCF7+ tumor-infiltrating T cells were
mainly bystander cytotoxic T cells, whereas tumor-reactive cells
were TCF7low/negative (Li et al., 2019). Overall, our single-cell
transcriptome uncovered additional phenotypically distinct
subsets of lung and tumor TRM cells that have not previously
been described and are likely to play an important role in an-
titumor immune responses.

TIM-3+IL7R− TRM cell subset was enriched for transcripts linked
to cytotoxicity
To dissect the molecular properties unique to tumor-infiltrating
TRM cells in each of the four larger TRM clusters (clusters 2–5),
we performed multiple pairwise single-cell differential gene
expression analyses (Materials and methods). Over 250 differ-
entially expressed genes showed higher expression in any one of
the four clusters (Fig. 4 A and Table S7), indicating that cells in
different clusters had divergent gene expression programs. For
example, cells in cluster 3 were highly enriched for transcripts
encoding heat shock proteins (e.g., HSPA1A, HSPA1B, and
HSP90AA1), whereas cells in cluster 5, comprising TRM cells from
both normal lung and tumor tissue, expressed high levels of
IL7R, which encodes the IL-7 receptor, a marker of memory
precursor cells (Patil et al., 2018), and transcripts such as GPR183
(Emgård et al., 2018), MYADM (Aranda et al., 2011), VIM
(Nieminen et al., 2006), and ANKRD28 (Tachibana et al., 2009),
which encode proteins involved in cell migration and tissue
homing (Fig. 4, A and B).

Because of their close relationship with cycling TRM cells
(Fig. 3, D, G, and H), we focused our analysis on the TRM cells in
cluster 2. The 91 transcripts enriched in cluster 2 compared with
the other TRM cell clusters (Fig. 4 A) included several that en-
coded products linked to cytotoxic activity such as PRF1, GZMB,
GZMA, and CTSW (Patil et al., 2018), RAB27A (Stinchcombe et al.,
2001), ITGAE (Franciszkiewicz et al., 2013), and CRTAM (Patil
et al., 2018; Figs. 4 C and S3 A), as well as transcripts encoding
effector cytokines and chemokines such as IFN-γ, CCL3, CXCL13,
IL-17A, and IL-26. Cluster 2 also expressed high levels of tran-
scripts encoding transcription factors known to promote the
survival of memory or effector CTLs (ID2 [Yang et al., 2011],
STAT3 [Cui et al., 2011], ZEB2 [Dominguez et al., 2015], and ETS-1
(Muthusamy et al., 1995) or those that are involved in estab-
lishing and maintaining tissue residency (RBPJ, a key player in
Notch signaling [Hombrink et al., 2016], and BLIMP1 [Mackay
et al., 2016], encoded by PRDM1; Figs. 4 A and S3 A). TRM cells in
cluster 2 also strongly expressed ENTPD1 (Fig. 4, A and B), which

encodes CD39, an ectonucleotidase that cleaves ATP, which may
protect this TRM cell subset from ATP-induced cell death in the
ATP-rich tumor microenvironment (Pallett et al., 2017) and has
recently been shown to be enriched for tumor neoantigen-
specific CTLs (Duhen et al., 2018; Simoni et al., 2018). This ex-
pression pattern likely confers highly effective and sustained
antitumor immune function; in combination with earlier results,
we conclude that this TIM-3+IL7R− TRM subset likely represents
TAA-specific cells that were enriched for transcripts linked to
cytotoxicity.

Intriguingly, TRM cells in cluster 2 (TIM-3+IL7R− subset) ex-
pressed the highest levels of PDCD1 transcripts (Fig. 4 A) and
were enriched for transcripts encoding other molecules linked
to inhibitory functions such as TIM-3, TIGIT (Chan et al., 2014),
and CTLA4 (Pardoll, 2012), and inhibitors of TCR-induced sig-
naling and activation, like CBLB, SLAP, DUSP4, PTPN22, and
NR3C1 (glucocorticoid receptor; Fig. 4, A–C; and Fig. S3 A; Huang
et al., 2012; Xiao et al., 2015; Engler et al., 2017). Nonetheless,
these TRM cells expressed high transcript levels for cytotoxicity
molecules (perforin, granzyme A, and granzyme B) and several
costimulatory molecules such as 4-1BB, ICOS, and GITR
(TNFRSF18; Figs. 4 C and S3 A; Pardoll, 2012). This coexpression
program appeared to be specific to the tumor TRM compartment,
given it was also reflected in a SAVER (single-cell analysis via
expression recovery)-imputed (Huang et al., 2018) coexpression
profile being identified specifically in the TRM subsets, but not
the non-TRM subsets (Fig. S3 B). In addition, direct comparison
(Materials and methods) of the transcriptome of all PDCD1-
expressing TRM cells versus the non-TRM cells present in tu-
mors confirmed that PDCD1+ TRM cells displayed significantly
higher expression of transcripts linked to effector function
(IFNG, CXCL13, GZMB, and CCL3) when compared with PDCD1+

non-TRM cells and CTLs not expressing PDCD1 (Fig. 4 D and Table
S7). More specifically PDCD1+ TRM cells that also coexpressed
TIM-3 (cells in cluster 2) showed the highest expression levels of
effector molecules compared with other subsets (Fig. 4 D).
Overall, these findings agree with the bulk RNA-seq analysis,
indicating that in TRM cells, expression of particular inhibitory
molecules, such as PD-1 and TIM-3, does not reflect exhaustion.

PD-1– and TIM-3–expressing tumor-infiltrating TRM cells are
not exhausted
To further address whether PDCD1-expressing TRM cells in
cluster 2 (TIM-3+IL7R− TRM cells) were exhausted or functionally
active, we performed single-cell RNA-seq in tumor-infiltrating
TRM and non-TRM cells using the more sensitive Smart-seq2
assay (Table S1). This also enabled paired transcriptomic and
TCR clonotype analysis (Picelli et al., 2014; Patil et al., 2018). We
reconstructed the TCRβ chains (Materials and methods) in
80.5% of single cells, the TCRα chain in 76.6% of cells, and both

(*, P ≤ 0.05; n = 10 patients). Right: Pie charts show the distribution of TCRβ clonotypes based on clonal frequency. (E) Spearman coexpression analysis of the
77 genes up-regulated (A) in tumor TRM cells; values are clustered with complete linkage. (F) WGCNA visualized in Gephi; the nodes are colored and sized
according to the number of edges (connections), and the edge thickness is proportional to the edge weight (strength of correlation). (G) Correlation of the
expression of HAVCR2 (TIM-3) transcripts and the indicated transcripts in the tumor TRM population; r indicates Spearman correlation value (*, P ≤ 0.05; ***, P ≤
0.001; ****, P ≤ 0.0001; n = 19 patients).
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Figure 3. Single-cell transcriptomic analysis reveals previously uncharacterized TRM subsets. (A) tSNE visualization of ∼12,000 live and singlet-gated
CD14−CD19−CD20−CD4−CD56−CD45+CD3+CD8+ single-cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples. Each symbol rep-
resents a cell; color indicates protein expression of CD103 detected by flow cytometry. (B) Seurat clustering of cells in A, identifying nine clusters. (C) Cells
from tumor and lung were randomly down-sampled to equivalent numbers of cells. Left: Distribution of TRM-enriched clusters in tumor and lung. Right: Pie
chart representing the relative proportions of cells in each TRM cluster. (D) Expression of transcripts previously identified as up-regulated in the bulk tumor TRM
population (Fig. 2 A) by each cluster; each column represents the average expression in a particular cluster. (E) Breakdown of cell type and tissue localization of
cells defined as being in cluster 1 (shown in light purple in B and D). (F) Violin plots of expression of example tumor TRM genes in each TRM-enriched cluster
(square below indicates the cluster type) and non-TRM cells; shape represents the distribution of expression among cells and color represents the Seurat-
normalized average expression counts. (G) Cell-state hierarchy maps generated by Monocle2 bioinformatic modeling of the TRM clusters. In the center plot,
each dot represents a cell colored according to Seurat-assigned cluster. Surrounding panels show relative Seurat-normalized expression of the indicated genes.
(H) Cluster analysis of the location in PCA space for cells. Each cluster was randomly down sampled to the equivalent size of the smallest cluster (n = 135 cells
per cluster, 675 total). The correlation method was Spearman, and the dataset was clustered with average linkage.
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chains in 66.6% of cells (Table S8). As expected, clonally ex-
panded tumor-infiltrating TRM cells, which are likely to be re-
active to TAA, were significantly enriched for genes specific to
TIM-3+IL7R− TRM cells (Fig. 5 A and Table S7). Among tumor-
infiltrating CTLs, a greater proportion of TIM-3–expressing
(Materials and methods) TRM cells were clonally expanded
compared with other TRM and non-TRM cells (Fig. 5 B). Fur-
thermore, TIM-3–expressing TRM cells were significantly en-
riched for key effector cytokines and cytotoxicity transcripts
(Table S9), despite expressing significantly higher levels of
PDCD1 (Fig. 5 C).

The higher sensitivity of the SMART-seq2 assay compared
with the high-throughput 10X Genomics platform also al-
lowed coexpression analysis due to lower dropout rates (Patil
et al., 2018). Coexpression analysis showed that expression of
PDCD1 and HAVCR2 (TIM-3) correlated with that of activation
markers (TNFRSF9 and CD74), IFNG, and cytotoxicity-related
transcripts more strongly in TRM cells than in non-TRM cells
(Fig. 5 D). Specifically, IFNG and PDCD1 expression levels were
better correlated in TIM-3–expressing TRM cells compared
with all TRM cells and non-TRM cells (Fig. 5 D and Table S10),
and the proportion of cells strongly coexpressing these tran-
scripts was notably higher (30.3% versus 9.2% versus 0.6%;
Fig. 5 E). Furthermore, in concordance with our high-
throughput single-cell RNA-seq assays, this higher-resolution
analysis verified that IFNG, alongside additional effector
molecule–associated transcripts (CXCL13, CCL3, GZMB, and PRF1),
were particularly enriched in TIM-3+ TRM cells versus TIM-3–

TRM cells and both PDCD1+ and PDCD1− non-TRM cells (Fig. 4 D;
and Fig. 5, F and G). Overall, these results strongly support that
PD-1– and TIM-3–expressing tumor-infiltrating TRM cells were
not exhausted but instead were enriched for transcripts (IFNG,
PRF1, and GZMB) encoding for molecules linked to effector
functions.

In keeping with our transcriptomic assays, when stimu-
lated ex vivo, the percentage of tumor-infiltrating TRM cells
that coexpressed PD-1 (stained before stimulation) and ef-
fector cytokines was significantly higher when compared
with non-TRM CTLs (Fig. 5 H; gating previously reported;
Ganesan et al., 2017). Analysis directly ex vivo demonstrated
there was also greater coexpression of the PD-1 and cytotoxic-
associated proteins granzyme A and granzyme B in TRM cells,
when compared with non-TRM CTLs in the tumor (Fig. 5 I).
These data verify that PD-1 expression in the TRM subset of
tumor-infiltrating CTLs does not necessarily reflect dysfunc-
tional properties.

Surface TIM-3+IL-7R− status uniquely characterizes a set of
tumor TRM cells
We next evaluated the protein expression of selected molecules
to better discern the tumor-infiltrating TRM subsets. Multipa-
rameter protein analysis of CTLs (Materials and methods) pre-
sent in tumors and adjacent normal lung revealed a subset of
TRM (CD103+) cells localized distinctly when the data were
visualized in two-dimensional space (Fig. 6 A). This subset
consisted of tumor TRM cells only from tumor tissue (purple
circle, Fig. 6 A), and uniquely expressed high levels of TIM-3 and
lacked IL-7R, indicating that this cluster is the same as the TIM-
3–expressing tumor TRM cluster (cluster 2) identified by single-
cell RNA analysis (Fig. 6 B). Consistent with the single-cell
transcriptome analysis, the TIM-3–expressing TRM cluster was
unique to the TRM cells isolated from the tumor and expressed
higher levels of CD39, PD-1, and 4-1BB (Fig. 6, A and C). PD-1 and
TIM-3 expression levels were also positively correlated with
expression of 4-1BB, which is expressed following TCR engage-
ment by antigen (Bacher et al., 2016; Fig. 6, D and E), indicating
that these cells are highly enriched for TAA-specific cells. TIM-
3–expressing CTLs were also detected among tumor-infiltrating
TRM cells isolated from both treatment-naive lung cancer and
HNSCC samples (Fig. 6 F), but not among non-TRM cells in these
treatment naive tumors or TRM cells in lung. Multicolor immu-
nohistochemistry (IHC) was used to confirm the presence of
TIM-3–expressing TRM cells in lung tumor samples, which also
showed enrichment of this subset in TILhiTRM

hi “immune hot”
tumors (Fig. 6, G and H; and Table S11). These findings con-
firmed, at the protein level, the restriction of the TIM-3+IL-7R−

TRM subset to tumors from two cancer types.

Single-cell transcriptome analysis of CTLs from anti-PD-1
responders
We next analyzed tumor-infiltrating T cells from 19 biopsies
(Table S1) with known divergent responses to anti-PD-1 therapy.
Flow cytometry analysis of tumor TRM cells isolated from re-
sponding patients before, during, and after treatment, showed
increased proportion of TIM-3+IL-7R− TRM cells compared with
the tumor TRM cells from our cohort of treatment-naive lung
cancer patients and those not responding to anti-PD-1 (median,
∼70% versus ∼24% and ∼19%, respectively; Figs. 7 A and S4 A).
This population also expressed high levels of PD-1 in samples
before anti-PD-1 therapy that decreased after treatment, which
is likely reflective of the clinical antibody blocking flow cyto-
metric analysis (Huang et al., 2017; Fig. 7 B). Given this popu-
lation had high expression of PD-1 (Figs. 6, A–E; and Fig. 7 B), we

Figure 4. The TIM-3+IL7R− TRM subset was enriched for transcripts linked to cytotoxicity. (A) Single-cell RNA-seq analysis of transcripts (one per row)
uniquely differentially expressed by each tumor TRM subset in pairwise analysis compared with other clusters (adjusted P value of ≤0.01; MAST analysis),
presented as row-wise z-scores of Seurat-normalized count; each column represents an individual cell. Horizontal breaks separate genes enriched in each of
the four tumor TRM subsets. (B) Seurat-normalized expression of indicated transcripts identified as differentially enriched in each cluster (as per A), overlaid
across the tSNE plot, with expression levels represented by the color scale. (C) Violin plot of expression of functionally important genes identified as sig-
nificantly enriched in a tumor TRM subset; shape represents the distribution of expression among cells and color represents the Seurat-normalized average
expression (cluster identification as per A). (D) Percentage of cells expressing the indicated transcripts in each population, where positive expression was
defined as >1 Seurat-normalized count; “TRM” corresponds to tumor-infiltrating CTLs isolated from clusters 2, 3, 4, and 5, and “non-TRM” corresponds to to the
remaining cells not assigned into the proliferating TRM cluster 1.
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concluded that these TIM-3+IL-7R− TRM cells are likely to be one
of the key immune cell types that respond to anti-PD-1 therapy.

To comprehensively evaluate the molecular features and
clonality of the CTLs (Fig. S4, A–C; and Materials and methods)
responding to anti-PD-1 therapy, we performed paired single-
cell transcriptomic and TCR analysis of CTLs isolated from bi-
opsies both before and after therapy from two donors. This
enabled us to maximize the usage of the material in these small,
clinically difficult to obtain biopsies. Differential expression
analysis of all CD8+ tumor-infiltrating CTLs revealed a signifi-
cant enrichment of markers linked to cytotoxic function (PRF1,
GZMB, and GZMH) and activation (CD38) in posttreatment
samples when compared with pretreatment samples (Fig. 7, C
and D; and Tables S1 and S12). Notably, we found increased
expression of ITGAE, a marker of TRM cells, in CTLs from post-
treatment samples (Fig. 7, C and D). GSEA also showed that
tumor-infiltrating T cells from posttreatment samples were
enriched for TRM features as well as those linked to the TIM-
3+IL-7R− TRM subset (Fig. 7 E and Tables S4 and S7). Unbiased
coexpression analysis of transcripts from posttreatment CTLs
demonstrated that transcripts linked to cytotoxicity (GZMH) and
activation (CD38) clustered together with the TRM marker gene
(ITGAE; Fig. 7 F and Table S12). Furthermore, we found several
expanded TCR clones that were present before and after therapy
(Fig. S4, D and E), which indicated that TIM-3–expressing TRM

cells (> 87% of the TRM cells in pretreatment samples) with these
clonotypes persisted in vivo for several weeks during treatment
and largely maintained TIM-3 expression in posttreatment
samples (>79% of the TRM cells; Fig. S4 C). By restricting our
analysis to these expanded clones, we found that the expression
of GZMB, PRF1, GZMH, and CD38 (Fig. S4 F) was increased in
CTLs from posttreatment samples, which suggested that tumor-
infiltrating CTLs with the same specificity displayed enhanced
cytotoxic properties following anti-PD-1 treatment and that TRM

cells likely contributed to this feature.
To provide a further line of evidence for the functional po-

tential of TIM-3+IL-7R− TRM cells and further characterize their
epigenetic profile, we performed an assay for transposase-
accessible chromatin using sequencing (OMNI-ATAC-seq;

Corces et al., 2017) on purified populations of tumor-infiltrating
TIM3+IL7R− TRM and non-TRM subsets pooled from lung cancer
patients (n = 9; Table S1 and Fig. 6 B). These subsets clustered
separately, highlighting the distinct chromatin accessibility
profiles of these populations (Fig. 7 G). In keeping with our
transcriptomic analyses (Fig. 1 E), we identified greater chro-
matin accessibility within 5 kb of the transcriptional start site
of the CD103 (ITGAE) and KLF3 loci in the TRM and non-TRM

compartment, respectively. Furthermore, consistent with
single-cell transcriptional data, the TIM3+IL7R− TRM cells when
compared with non-TRM cells showed increased chromatin
accessibility of genes encoding effector molecules such as
granzyme B and IFN-γ, despite showing increased accessibility
at the PDCD1 (PD-1) and TIM-3 (HAVCR2) loci (Fig. 7 H). Taken
together, these epigenetic and transcriptomic data, combined
with protein validation, highlight the potential functionality of
TIM-3+IL-7R− TRM cells, which positively correlate with ex-
pression of PD-1 specifically in this subset.

Discussion
Our bulk and single-cell transcriptomic analysis showed that the
molecular program of tumor-infiltrating TRM cells is substan-
tially distinct from that observed in the human background lung
tissue or murine models. The most striking discovery was the
identification of a TIM-3+IL-7R− TRM subset present exclusively
in tumors. This subset expressed high levels of PD-1 and other
molecules previously thought to reflect exhaustion. Surpris-
ingly, however, they proliferated in the tumor milieu, were
capable of robust up-regulation of TCR activation–induced
genes, and exhibited a transcriptional program indicative of
superior effector, survival, and tissue-residency properties.
Functionalitymay not be truly reflected by transcript expression
levels; hence, to support the conclusion that PD-1 expression
does not reflect exhaustion in TRM cells, we showed that the
expression of the key effector cytokines, IL-2, TNF, and IFN-γ
and the cytotoxicity molecules granzyme A and granzyme B
was increased in PD-1–expressing TRM cells when compared
with non-TRM cells. When compared with recent reports on

Figure 5. PD-1– and TIM-3–expressing tumor-infiltrating TRM cells are not exhausted. (A) GSEA of the TIM-3+IL7R− TRM subset signature in the tran-
scriptome of clonally expanded tumor TRM versus that of nonexpanded TRM cells. Top: Running enrichment score (RES) for the gene set, from most enriched at
the left to most underrepresented at the right. Middle: Positions of gene set members (blue vertical lines) in the ranked list of genes. Bottom: Value of the
ranking metric. Values above the plot represent the normalized enrichment score (NES) and FDR-corrected significance. (B) Left: Percentage of cells that were
clonally expanded in TIM-3+ (HAVCR2 ≥10 TPM counts) TRM cells, remaining TRM cells, and non-TRM cells; clonal expansion was determined for cells from four
and two patients for TRM and non-TRM, respectively. Right: Section of a clonotype network graph of cells from a representative patient. TIM-3+ (HAVCR2 ≥10
TPM counts) TRM cells are marked with a purple circle; cells with >10 TPM counts expression of either MKI67 or TOP2A were considered cycling and denoted
with an asterisk. (C) Violin plot of expression of indicated transcripts; shape represents the distribution of expression among cells and color represents average
expression, calculated from the TPM counts (color coded as per B). (D) Spearman coexpression analysis of genes whose expression is enriched in the TIM-
3+IL7R− TRM cluster (Fig. 4 A) in tumor TRM and non-TRM populations, respectively; matrix is clustered according to complete linkage. (E) Correlation of PDCD1
and IFNG expression in non-TRM cells, all TRM cells, and then in TIM-3+ TRM; each dot represents a cell. Percentages indicate the percentage of cells inside each
of the graph sections (r indicates Spearman correlation value; **, P ≤ 0.01; N/S, no significance). (F) Percentage of cells expressing IFNG in each indicated
population segregated on PD-1+ (PDCD1 ≥ 10 TPM counts). The final two bars are the TRM population, as segregated by having expression of HAVCR2 (TIM-3) ≥
10 TPM counts. (G) Percentage of cells expressing the indicated transcript as identified above the plot in each population (as per F). (H) Flow cytometry
analysis of the percentage of PD-1+ TRM and PD-1+ non-TRM cells that express effector cytokines (as indicated above the graph) following 4 h of ex
vivo stimulation. Gated on live and singlet-gated CD14−CD20−CD4−CD45+CD3+CD8+ cells obtained from lung cancer TILs, discriminated on CD103 expression
(**, P ≤ 0.01; n = 11; Wilcoxon rank-sum test); each symbol represents a sample. Surface molecules (e.g., PD-1) were stained before stimulation. (I) Analysis of
granzyme A and granzyme B directly ex vivo, gated and analyzed as per H (***, P ≤ 0.001; Wilcoxon rank-sum test).
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Figure 6. Surface TIM-3+IL-7R− status uniquely characterizes a set of tumor TRM cells. (A) tSNE visualization of flow cytometry data from 3,000
randomly selected live and singlet-gated CD14−CD19−CD20−CD56−CD4−CD45+CD3+CD8+ cells isolated from eight paired tumor and lung samples; each cell is
represented by a dot colored as TRM or non-TRM (left), tumor or lung (second and third from left), and according to z-score expression value of the protein
indicated above the plot (remaining panels). (B) Left: Contour plots show the expression of TIM-3 versus IL-7R in the cell type and tissue indicated above the
plot; percentage of tumor CTLs (gated as above) in the indicated populations that express TIM-3 is shown. Right: Quantification of TIM-3+ in cells isolated from
each tissue location; each symbol represents an individual sample. The small line indicates SEM, and bars represent the mean and are colored as indicated
(*, P ≤ 0.05; n = 8, 3). (C) Geometric mean fluorescent intensity (GMFI) of CD39, PD-1, and 4-1BB for each lung tumor-TRM subset; bars represent the mean,
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transcriptomic analysis of tumor-infiltrating lymphocytes (Guo
et al., 2018; Savas et al., 2018), our in-depth study of TRM cells in
tumor and lungs clarifies the impact of PD-1 expression in dif-
ferent CTL subsets in the tumor and challenges the current
dogma of PD-1 expression representing dysfunctional T cells in
human tumors. While this protein-validated transcriptomic as-
sessment was also corroborated by the results of a chromatin
accessibility profile, an important caveat is that functional val-
idation was performed using PMA and ionomycin stimulation,
which does not fully reflect physiological TCR activation.

We defined a core set of genes commonly expressed in both
lung and tumor TRM cells, including a number of novel genes
whose expression was highly correlated with known TRM genes.
Any of these genes may also be critically important for the de-
velopment, trafficking, or function of lung or lung tumor-
infiltrating TRM cells. Some notable examples known or likely
to have such functions are GPR25, whose closest homologue,
GPR15 (Kim et al., 2013), enables homing of T cell subsets to and
retention in the colon; AMICA1 (Witherden et al., 2010), encoding
JAML (junctional adhesion molecule-like), which contributes to
the proliferation and cytokine release of skin-resident γδT cells;
and SRGAP3, whose product functions in neuronal migration
(Bacon et al., 2013). Thus, our study provides a valuable resource
for defining molecules that are likely to be important for the
development and function of human lung and tumor TRM cells.

PDCD1 was a prominent hit in the “shared lung tissue resi-
dency” gene list, and its expression was confirmed at the protein
level in both lung and tumor TRM cells. The fact that PD-1 was
expressed by the majority of the TRM cells isolated from unin-
volved lung tissue of subjects with no active infection suggests
that PD-1 might be constitutively expressed by these cells, as has
been recently described for brain TRM cells (Shwetank et al.,
2017). Given that TIM-3+IL7R− expressing tumor-infiltrating
TRM cells also express substantial levels of PD-1, we speculate
that they may be the major cellular targets of anti-PD-1 therapy.
We speculate that differences in the magnitude of this popula-
tion of TRMs could thus be an explanation for the variation in the
clinical response to PD-1 inhibitors. We speculate further that
the constitutive expression of PD-1 by the majority of TRM cells
in the lung tissue and presumably other organs (skin and pitu-
itary gland) raises the possibility that anti-PD-1 therapy may
nonspecifically activate potentially non–TAA-reactive TRM cells
to cause adverse immune reactions such as pneumonitis, der-
matitis, and hypophysitis (June et al., 2017). Comprehensive
analysis of the TRM phenotype and TCR repertoire of CTLs
present in tumor and organs affected by adverse reactions may
substantiate these hypotheses. A recent study that compared PD-
1high versus other tumor-localized CTL populations demonstrated

that the presence of PD-1high cells was predictive of response to
anti-PD-1 therapy (Thommen et al., 2018). However, the authors
did not segregate PD-1high cells based on expression of TRM-as-
sociated molecules; hence, this population of cells will have a
mixture of PD-1+ non-TRM cells and PD-1+ TRM cells. Our findings
have highlighted the profound differences in the properties of
PD-1–expressing TRM cells and non-TRM cells. Hence, by studying
a mixed population without delineating the contribution from
PD-1–expressing TRM cells, their study lacked the resolution to
highlight the contribution of a specific TRM subsets with tran-
scriptomic features associated with increased functional prop-
erties and potential responsiveness to anti-PD-1 therapy.

Our findings also raise the question of which molecular
players are essential for the generation and maintenance of this
TIM-3+IL-R7− subset of TRM cells. Our analysis identified a num-
ber of potential transcription factors (e.g., STAT3, ID2, ZEB2, and
ETS-1) and other molecules (e.g., PTPN22, DUSP4, LAYN, KRT86,
and CD39) that are uniquely expressed in this subset and could
thus be key players in their development or function, further
underscoring the utility of the resource generated here.

The results herein also provide a rationale for assessing tu-
mor TRM subsets in both early- and late-phase studies of novel
immunotherapies and cancer vaccines to provide early proof of
efficacy as well as potential response biomarkers. The TIM-3+IL-
7R− TRM subset can be readily isolated from tumor samples using
the surface markers we identified and potentially expanded
in vitro to screen and test for TRM-targeted T cell therapies. In
summary, our studies have provided richmolecular insights into
the potential roles of human tumor–infiltrating TRM subsets and
thus should pave the way for developing novel approaches to
improve TRM immune responses in cancer.

Materials and methods
Ethics and sample processing
The Southampton and South West Hampshire Research Ethics
Committee approved the study, and written informed consent
was obtained from all subjects (Ganesan et al., 2017). Newly
diagnosed, untreated patients with respiratory malignancies or
HNSCC were prospectively recruited once referred (Chee et al.,
2017; Wood et al., 2017). Freshly resected tumor tissue and,
where available, matched adjacent nontumor tissue was ob-
tained from lung cancer patients following surgical resection.
HNSCC tumors were macroscopically dissected and slowly fro-
zen in 90% FBS (Thermo Fisher Scientific) and 10% DMSO
(Sigma) for storage, until samples could be prepared. Pre– and
post–anti-PD-1 therapy samples were frozen as per HNSCC
samples.

t-lines represent SEM, and each symbol represents data from individual samples (**, P ≤ 0.01; n = 8; Wilcoxon rank-sum test); representative histograms are
shown at left. (D) Coexpression analysis of flow cytometry data (C), as per Spearman correlation. (E) Contour plot highlighting the expression of PD-1 versus
TIM-3 in CD14−CD19−CD20−CD56−CD4−CD45+CD3+CD8+CD103+ cells in a representative donor. (F) Analysis of three HNSCC samples, as per B. (G) Left:
Representative multiplexed immunohistochemistry of CD8A, CD103, and TIM-3 in tumor specimens from a patient with TILlow/TRMlow tumor status; the
representative false color image (middle) and the overlaid image (bottom) are shown. Right: As the left plots for a patient with TILhigh/TRMhigh tumor status
(scale bar, 50 µm). (H) Left: Quantification of the number of CD8A+CD103+TIM-3+ cells per region in biopsies defined as having a TILhigh/TRMhigh status versus
TILlow/TRMlow status. Right: Percentage of CD8A+CD103+ CTLs expressing TIM-3 in each clinical subtype. Bars represent the mean, t-lines represent SEM, and
symbols represent individual data points (*, P ≤ 0.05; ****, P ≤ 0.0001; n = 21; Mann–Whitney U test).
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Figure 7. Single-cell transcriptome analysis of CTLs from anti-PD-1 responders. (A) Left: Contour plots show the expression of TIM-3 and IL-7R in
CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103+ cells isolated from patients receiving anti-PD-1 treatment at the time point (TP) indicated above the plot;
number in red indicates the percentage of tumor TRM cells (CD8+CD103+) with TIM-3+IL-7R− surface phenotype. Right: Quantification of the percentage of
tumor-infiltrating TIM-3+IL-7R− TRM cells, isolated from the anti-PD-1 responding, nonresponding, and treatment-naive patients. Bars represent the mean,
t-lines represents SEM, and symbols represent individual data points (*, P ≤ 0.05; **, P ≤ 0.01; n = 7, 8, and 12 biopsies for responders, treatment-naive
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Flow cytometry of fresh material
Samples were processed as described previously (Wood et al.,
2016; Ganesan et al., 2017). For sorting of fresh CTLs for popu-
lation transcriptomic analysis, cells were first incubated at 4°C
with Fc receptor (FcR) block (Miltenyi Biotec) for 10 min and
then stained with a mixture of the following antibodies: anti-
CD45-FITC (HI30; BioLegend), anti-CD4-PE (OKT4; BD
Biosciences), anti-CD3-APC-Cy7 (SK7; BioLegend), anti-CD8A-
PerCP-Cy5.5 (SK1; BioLegend), and anti-CD103-APC (Ber-ACT8;
BioLegend) for 30 min at 4°C. Live/dead discrimination was by
DAPI staining (Wood et al., 2016; Ganesan et al., 2017). CTLs were
sorted based on CD103 expression using a BD FACSAria-II (BD
Biosciences) into ice-cold TRIzol LS reagent (Thermo Fisher
Scientific).

Flow cytometry of cryopreserved material
For single-cell transcriptomic, stimulation assays, and pheno-
typic characterization, tumor and lung samples were first dis-
persed (as above) and cryopreserved in freezing media (50%
complete RPMI (Fisher Scientific), 40% human decomplemented
AB serum, 10% DMSO (both Sigma). Cryopreserved samples
were thawed, washed twice with prewarmed (37°C) and room
temperature MACS buffer, and prepared for staining as above.
The second wash included an underlayer of FBS to help collect
debris. The material was stained with a combination of anti-
CD45-Alexa Fluor 700 (HI30; BioLegend), anti-CD3-APC-Cy7
(SK7; BioLegend), anti-CD8A-PerCP-Cy5.5 (SK1; BioLegend), and
anti-CD103-Pe-Cy7 (Ber-ACT8; BioLegend). Cells were counter-
stained where described with anti-CD19/20 (HIB19/2H7; Bio-
Legend), anti-CD14 (HCD14; BioLegend), anti-CD56 (HCD56;
BioLegend), and anti-CD4 (OKT4; BioLegend) for flow cyto-
metric analysis and sorting. Live and dead cells were discrimi-
nated using propidium iodide (PI). Cells were stimulated for
transcriptomic analysis when noted, with PMA and ionomycin,
as previously described (Ganesan et al., 2017). For 10X single-cell
transcriptomic analysis (10X Genomics), 1,500 cells each of
CD103+ and CD103− CTLs from tumor and lung samples were
sorted and mixed into 50% ice-cold PBS, 50% FBS (Sigma) on a
BDAria-II or Fusion cell sorter. From the 12 patients used for 10X
genomics, matched lung tissue was used from 6 of these pa-
tients. For assessments of the bulk transcriptome following
stimulation, CTLs were collected by sorting 200 cells into 8 µl
lysis buffer (Triton X-100 [0.1%] containing RNase inhibitor

[1 U/µl and deoxyribonucleotide triphosphate mix (2.5 mM) on
an Aria-II (BD)]); for Smart-seq2–based single-cell analysis,
CTLs were sorted as above, using single-cell purity, into 4 µl
lysis buffer on a BD Aria-II, as described previously (Picelli et al.,
2014; Engel et al., 2016; Patil et al., 2018).

For tumor TRM phenotyping in treatment-naive patients,
samples were analyzed on a FACS-Fusion (BD) following stain-
ing with anti-CD45-Alexa Fluor 700 (HI30; BioLegend), anti-
CD3-APC-Cy7 (SK7; BioLegend), anti-CD8A-PerCP-Cy5.5 (SK1;
BioLegend), anti-CD103-Pe-Cy7 (Ber-ACT8; BioLegend),
anti-CD127-APC (eBioRDR5; Thermo Fisher Scientific), anti-
CD39-BB515 (TU66; BD), anti-4-1BB-PE (4B4-1; BioLegend),
anti-PD-1-BV421 (EH12.1; BD), and anti-TIM-3-BV605 (F38-
2E2; BioLegend). Cells were counterstained where described
with anti-CD19/20-PE-Dazzle (HIB19/2H7; BioLegend), anti-
CD14-PE-Dazzle (HCD14; BioLegend), anti-CD56-BV570 (HCD56;
BioLegend), and anti-CD4-BV510 (OKT4; BioLegend). Dead cells
were discriminated using PI. Phenotypic characterization of lung
TRM cells was completed using the antibodies above with anti-
CD49A-PE (SR84; BD) and anti-KLRG1-APC (2F1/KLRG1; BioL-
egend) on an LSRII (BD) using a gating strategy previously de-
scribed (Ganesan et al., 2017).

For paired analyses of patients before and after anti-PD-
1 treatment, we collected tissue from patients with metastatic
melanoma (patients 53–54; Tables S1 and S12) before the first
dose and after 6 wk of immunotherapy. Patient 53 received
ipilimumab at 3 mg/kg and nivolumab 1 mg/kg at three weekly
intervals. Patient 54 was treated with pembrolizumab at
2 mg/kg, given once every 3 wk. Both patients achieved a
complete remission. Biopsy specimens were cryopreserved in
90% FBS, 10% DMSO until data acquisition. Phenotypic charac-
terization of TRM cell samples before and after immunotherapy
was completed by thawing the material and dispersing the bi-
opsies using mechanical and enzymatic digestion, as described
previously (Wood et al., 2016; Ganesan et al., 2017). Cells were
stained as above and sorted into 2 µl lysis buffer on a BD Aria-II
as described above (Picelli et al., 2014; Engel et al., 2016; Patil
et al., 2018). Live, singlet, CD14−CD19−CD20−CD45+CD3+ or
CD14−CD19−CD20−CD45+CD3+CD8+ cells (depending upon the
amount of the material available) were then index sorted on a
BD Aria-II using the reagents described above. The data were
then concatenated in FlowJo (v10.4.1) and, if required,
CD8+CD4−CD103+ CTLs were then further isolated in silico based

patients, and nonresponders, respectively; Mann–Whitney U test). (B) Contour plots demonstrate the expression of TIM-3 and PD-1 in the TRM cells isolated
from preimmunotherapy biopsies (gated as per Fig. 7 A). (C) Single-cell RNA-seq analysis of transcripts (one per row) differentially expressed between CTLs
pre– and post–anti-PD-1 (MAST analysis), with an adjusted P value of ≤0.05), presented as row-wise z-scores of TPM counts; each column represents a single
cell (n = 127 and 151 cells, respectively). (D) Violin plot of expression of indicated transcripts differentially expressed between tumor-infiltrating CTLs isolated
from pre– and post–anti-PD-1 treatment samples (as per C); shape represents the distribution of expression among cells, and color represents average ex-
pression, calculated from the TPM counts. (E) GSEA of the bulk tumor CD103+ versus CD103− transcriptional signature (Fig. 2 A) and TIM-3+IL7R− TRM cell
signature (Fig. 4 A) in tumor-infiltrating CTLs isolated from pre– and post–anti-PD-1 treatment samples. Top: RES for the gene set, from most enriched at the
left to most underrepresented at the right. Middle: Positions of gene set members (blue vertical lines) in the ranked list of genes. Bottom: Value of the ranking
metric. Values above the plot represent the NES and FDR-corrected significance. (F) Spearman coexpression analysis of transcripts enriched in tumor-
infiltrating CTLs from post–anti-PD-1 treatment samples (C); matrix is clustered according to complete linkage. (G) Correlation analysis of all peaks identified in
the OMNI-ATAC-seq libraries, pooled from nine donors across two experiments; cells were sorted on CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103+TIM-
3+IL-7R− and CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103−. The matrix is clustered according to complete linkage. (H) University of California Santa Cruz
genome browser tracks for key TRM-associated gene loci as indicated above the tracks. RNA-seq tracks are merged from all purified bulk RNA-seq data,
presented as reads per kilobase million (RPKM; as per Fig. 1 A; tumor non-TRM = 25, tumor TRM = 19; OMNI-ATAC-seq as per Fig. 7 G).
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on protein and/or gene expression data and the analysis com-
pleted as described in the RNA-seq section below. Flow cytom-
etry analysis of the remaining donors were completed as above
using anti-CD45-Alexa-R700 (HI30; BD), anti-CD3-PE-Dazzle
(SK7; BioLegend), anti-CD20-APC-Cy7 (2H7; BioLegend), anti-
CD14-APC-Cy7 (HCD14; BioLegend), anti-CD8A-PerCP-Cy5.5
(SK1; BioLegend), anti-CD103-Pe-Cy7 (Ber-ACT8; BioLegend),
anti-CD127-APC (eBioRDR5; Thermo Fisher Scientific), anti-PD-
1-BV421 (EH12.1; BD), and anti-TIM-3-BV605 (F38-2E2; Bio-
Legend), and live/dead discrimination was completed with
fixable/live dead (Fixable Viability Dye eFluor 780; Thermo
Fisher Scientific). The cytometric analysis was completed on a
Fusion cell sorter (BD). Samples that had <100 CTLs were re-
moved from further analysis.

Flow cytometry–based intracellular protein validation was
completed by thawing and washing samples as described above.
The samples were incubated for 10 min at 4°C with FcR block as
above and then stained using a combination of anti-CD45-Alexa-
R700 (HI30; BD), anti-CD3-PE-Dazzle (SK7; BioLegend), anti-
CD20-APC-Cy7 (2H7; BioLegend), anti-CD14-APC-Cy7 (HCD14;
BioLegend), anti-CD4-BV510 (OKT4; BioLegend), anti-CD8A-
PerCP-Cy5.5 (SK1; BioLegend), anti-CD103-Pe-Cy7 (Ber-ACT8;
BioLegend), anti-CD127-APC (eBioRDR5; Thermo Fisher Scien-
tific), anti-PD-1-BV421 (EH12.1; BD), and live/dead discrimina-
tion was completed with fixable/live dead (Fixable Viability Dye
eFluor 780; Thermo Fisher Scientific). TIM-3 staining following
ex vivo stimulation and fixation was affected, thus limiting our
ability to study the intracellular cytokine profile of TIM-3+ cells
directly. The sample was then washed and material for ex vivo
quantification was immediately fixed (Fixation and Permeabiliza-
tion Solution; BD) for 20 min at room temperature. The sample
was then washed in permeabilization wash (Intracellular
Staining Permeabilization Wash Buffer; BioLegend). The sam-
ple then received additional FcR blocking reagent and was
stained with anti-granzyme B–PE (REA226; Miltenyi Biotec)
and anti-Granzyme A–Alexa Fluor 647 (CB9; BioLegend) for
30 min at 4°C. Following this, the material was washed in
Permeabilization Wash Buffer. For samples analyzed for
ex vivo cytokine production, fixable/live dead was added after
3 h of the stimulation to account for any changes in cell viability
during stimulation. For PMA/ionomycin analysis, the cell sus-
pension was stimulated in for 4 h at 37°C in an incubator, at 5%
CO2, in 200 µl complete RPMI with Cell Activation Cocktail
(with Brefeldin A; BioLegend) as per the manufacturer’s rec-
ommendation. Following the addition of further FcR blocking
reagent, cytokine staining was completed with anti-IL-2-PE
(MQ1-17H12; BioLegend), anti-IFN-γ-BV785 (4S.B3; BioLegend),
and anti-TNF-APC (MAb11; BioLegend). Data acquisition was
completed on a Fortessa (BD), using a gating strategy previously
described (Ganesan et al., 2017) and data were analyzed as above.
One sample with <100 total CTLs quantified was removed.

All FACS data were analyzed in FlowJo (v10.4.1), and
geometric-mean florescence intensity and population percent-
age data were exported and visualized in GraphPad Prism
(v7.0a; Treestar). For t-distributed stochastic neighbor embed-
ding (tSNE) and coexpression analysis of flow cytometry data,
each sample was down-sampled to exactly 3,000 randomly

selected live and singlet-gated, CD14−CD19−CD20−CD4−CD56−

CD45+CD3+CD8+ CTLs using the gating strategy described above,
and 24,000 cells each from the lung and tumor samples were
merged to yield 48,000 total cells. A tSNE plot was constructed
using 1,000 permutations and default settings in FlowJo
(v10.4.1), z-score expression was mean centered. Flow cytome-
try data were exported from FlowJo (using the channel values)
and these data were imported into R for coexpression analysis
(described below).

Bulk RNA-seq and TCR sequencing (TCR-seq)
Total RNA was purified using a miRNAeasy kit (Qiagen) from
CD103+ and CD103− CTLs and quantified as described previously
(Engel et al., 2016; Ganesan et al., 2017). For assessment of the
stimulated transcriptome, RNA from ∼100 sorted cells was used.
Total RNA was amplified according to the Smart-seq2 protocol
(Picelli et al., 2014). cDNA was purified using AMPure XP beads
(0.9:1 ratio; Beckman Coulter). From this step, 1 ng cDNA was
used to prepare a standard Nextera XT sequencing library
(Nextera XT DNA sample preparation and index kits; Illumina;
Ganesan et al., 2017). Samples were sequenced using an Illumina
HiSeq2500 to obtain 50-bp single-end reads. For quality control,
steps were included to determine total RNA quality and quan-
tity, the optimal number of PCR preamplification cycles, and
cDNA fragment size. Samples that failed quality control or had a
low number of starting cells were eliminated from further se-
quencing and analysis. TCR-seq was performed as previously
described (Patil et al., 2018) using Tru-seq single indexes (Illu-
mina). Sequencing data were mapped and analyzed using MI-
GEC (molecular identifier groups–based error correction;
Shugay et al., 2014) software (v1.2.7) with default settings, fol-
lowed by V(D)J tools (v1.1.7) with default settings. Mapping
quality control (QC) metrics are included in Tables S1 and S6.

10X single-cell RNA-seq
Samples were processed using 10X v2 chemistry as per the
manufacturer’s recommendations; 11 and 12 cycles were used for
cDNA amplification and library preparation, respectively (Patil
et al., 2018). To minimize experimental batch effects, cells were
sorted from groups of six donors each day, and cells were pooled
for 10X sequencing library preparation. Barcoded RNA was
collected and processed following the manufacturer recom-
mendations, as described previously. Libraries were sequenced
on a HiSeq2500 and HiSeq4000 (Illumina) to obtain 100- and
32-bp paired-end reads using the following read length: read 1,
26 cycles; read 2, 98 cycles; and i7 index, 8 cycles (Table S1).
Samples were pooled together, and DNA samples from whole
blood were extracted using a high-salt method (Miller et al.,
1988) and quantified using the Qubit 2.0 (Thermo Fisher Sci-
entific). Genotyping was completed through the InfiniumMulti-
Ethnic Global-8 Kit (Illumina) following the manufacturer’s
instructions. Raw data from the genotyping analysis were ex-
ported using the Genotyping module and Plug-in PLINK Input
Report Plug-in (v2.1.4) from GenomeStudio v2.0.4 (Illumina).
Data quality was assessed using the snpQC package (Gondro
et al., 2014) with R, and low-quality single nucleotide poly-
morphisms (SNPs) were detected; SNPs failing in >5% of the
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samples and SNPs with Illumina’s gene call scores <0.2 in >10%
of the samples were flagged. Each subject’s sex was matched
with the genotype data, and flagged SNPs were removed for
downstream analysis using PLINK (v1.90b3w; Purcell et al.,
2007). Genetic multiplexing of barcoded single-cell RNA-seq
was completed using Demuxlet (Kang et al., 2018) and
matched with the Seurat output. Cells with ambiguous or dou-
blet identification were removed from analysis of cluster and/or
donor proportions.

Bulk RNA-seq analysis
Bulk RNA-seq data were mapped against the hg19 reference
using TopHat (Trapnell et al., 2009; v2.0.9 (--library-type
fr-unstranded --no-coverage-search) with FastQC (v0.11.2),
Bowtie (v2.1.0.0; Langmead et al., 2009), and Samtools v0.1.19.0;
Li and Durbin, 2009), and we employed htseq-count -m union -s
no -t exon -i gene_name (part of the HTSeq framework, version
v0.7.1; Anders et al., 2015). Trimmomatic (v0.36) was used to
remove adapters (Bolger et al., 2014). Values throughout are
displayed as log2 TPM (transcripts per million) counts; a value of
1 was added before log transformation. To identify genes ex-
pressed differentially by various cell types, we performed neg-
ative binomial tests for paired comparisons by using the
Bioconductor package DESeq2 (Love et al., 2014; v1.14.1), dis-
abling the default options for independent filtering and Cooks
cutoff. We considered genes to be expressed differentially by
any comparison when the DESeq2 analysis resulted in a
Benjamini–Hochberg–adjusted P value of ≤0.05 and a fold
change ≥ 2. Union gene signatures were calculated using the
online tool jVenn (Bardou et al., 2014), of which genes must have
common directionality. GSEA, correlations, and heat maps were
generated as previously described (Engel et al., 2016; Ganesan
et al., 2017; Patil et al., 2018). Genes used in the GSEA are shown
(Table S3). For the preservation of complementary signatures,
read count data from Cheuk et al. (2017) were downloaded from
Gene Expression Omnibus accession no. GSE83637, and differ-
ential expression analysis was completed as above. For the
murine composite signature (Milner et al., 2017), orthologues
between human and murine signatures were compared using
Ensembl to facilitate converting from the murine to human
signature; genes that had opposing expression changes were not
considered conserved (Table S3). Reactome pathways were
generated using the online tool (https://reactome.org/) for tu-
mor TRM-specific genes; a pathway was considered significantly
different if the false discovery rate (FDR; q) value was ≤0.05;
Table S4). Visualizations were generated in ggplot2 using cus-
tom scripts, while expression values were calculated using
GraphPad Prism7 (v7.0a). For tSNE analysis, the data frame was
filtered to genes with mean ≥1 TPM counts expression in at least
one condition and visualizations created using the top 2,000
most variable genes, as calculated in DESeq2 (Love et al., 2014;
v1.16.1); this allowed for unbiased visualization of the log2 (TPM
counts + 1) data using package Rtsne (v0.13). Coexpression
networks were generated in gplots (v3.0.1) using the heatmap2
function, while weighted correlation analysis was completed
using WGCNA (Langfelder and Horvath, 2008; v1.61) from
the log2 (TPM counts + 1) data matrix and the function

TOMsimilarityfromExpr (Beta = 5) and exportNetworkToCyto-
scape, weighted = true, threshold = 0.05. Highlighted genes were
ordered as per the order in the correlation plot. Networks were
generated in Gephi (v0.92; Mellone et al., 2016; Ottensmeier
et al., 2016) using Fruchterman Reingold and Noverlap func-
tions. The size and color were scaled according to the Average
Degree as calculated in Gephi, while the edge width was scaled
according to the WGCNA edge weight value. The statistical
analysis of the overlap between gene sets was calculated in R
(v3.5.0) using the fisher.test function (Stats v3.5.0) using the
number of total quantified genes used for DESeq2, as the total
value (20,231), with alternative=“greater”.

Single-cell RNA-seq analysis
Raw 10X data (Table S1) were processed as previously described
(Patil et al., 2018), merging multiple sequencing runs using
cellranger count function in cell ranger and then merging
multiple cell types with cell ranger aggr (v2.0.2). The merged
data were transferred to the R statistical environment for
analysis using the package Seurat (v2.2.1; Macosko et al., 2015;
Patil et al., 2018). Only cells expressing >200 genes and genes
expressed in ≥3 cells were included in the analysis. The data
were then log-normalized and scaled per cell and variable genes
were detected. Transcriptomic data from each cell was then
further normalized by the number of UMI-detected and mito-
chondrial genes. A PC analysis (PCA) was then run on variable
genes, and the first eight PCs were selected for further analyses
based on the standard deviation of PCs, as determined by
an “elbow plot” in Seurat. Cells were clustered using the
FindClusters function in Seurat with default settings, resolution
= 0.6 and eight PCs. Differential expression between clusters
was determined by converting the data to counts per million and
analyzing cluster-specific differences using MAST (q ≤ 0.01,
v1.2.1; Finak et al., 2015; Patil et al., 2018; Soneson and Robinson,
2018). A gene was considered significantly different only if the
genewas commonly positively enriched in every comparison for
a singular cluster (Engel et al., 2016; Patil et al., 2018). Further
visualizations of exported normalized data were generated using
the Seurat package and custom R scripts. Cell-state hierarchy
maps were generated using Monocle (v2.6.1; Trapnell et al.,
2014) and default settings with expressionFamily = negbino-
mial.size(), lowerDetectionLimit = 1 and mean_expression ≥ 0.1,
including the most variable genes identified in Seurat for con-
sistency. Average expression across a cell cluster was calculated
using the AverageExpression function, and down-sampling was
achieved using the SubsetData function (both in Seurat). Dis-
tance between clusters was calculated by calculating a particular
cells location in PCA space (PC 1:3) using the function GetCel-
lembeddings (in Seurat), and the values for each cell were then
scaled per column (Scale function, core R) where described; fi-
nally, a distance matrix was calculated (dist function, core R,
method = Euclidean). This matrix was filtered to the cells as-
signed to cluster 1, and the mean distance of each cell in cluster
1 to all cells in each of the remaining TRM clusters (2, 3, 4, and 5)
was calculated. The clustering analysis was completed using the
hclust function in R (Stats, R v3.5.0) with average linkage and
generated from the Spearman correlation analysis of each cell’s
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location in PCA space (as above). SAVER coexpression analysis
(Huang et al., 2018) was completed on the raw-UMI counts of the
TRM cells (clusters 1–5) and the non-TRM cells (remaining cells)
using the function saver (v1.1.1) with pred.genes.only = TRUE,
estimates.only = FALSE on transcripts assigned as uniquely
enriched in cluster 2, removing genes not expressed in any cells
in the non-TRM compartment. Correlation values were isolated
using the cor.genes function in SAVER and coexpression plots
generated as described above.

Smart-seq2 single-cell analysis (Table S1) was completed as
previously described using TraCeR (v0.5.1; Stubbington et al.,
2016; Patil et al., 2018) and custom scripts to identify αβ chains,
showing only cells were both TCR chains were detected and to
remove cells with low QC values as previously described (Patil
et al., 2018). Here, we removed cells with <200,000 reads, and
<30% of sequenced bases were assigned to untranslated regions
and coding regions of mRNA. Samples were mapped as de-
scribed previously (Patil et al., 2018), and the data were log
transformed and displayed as normalized TPM counts; a value of
1 was added before log transformation. Visualizations were
completed in ggplot2, Prism (v7.0a) and custom scripts in
TraCer. A cell was considered expanded when both the most
highly expressed α and β TCR chain sequences matched other
cells with the same stringent criteria. Cells were considered not
expanded when neither α nor β TCR productive chain sequences
matched those of any other cells. A cell was considered PD-1+ or
TIM-3+ when the expression of PDCD1 or HAVCR2 was >10 TPM
counts, while a cell was considered cycling if expression of cell
cycle genes TOP2A and/or MKI67 was >10 TPM counts. Differ-
ential expression profiling was completed using MAST (Finak
et al., 2015; q ≤ 0.05), as previously described (Patil et al., 2018).

Matched flow cytometry data were analyzed using FlowJo
(v10.4.1), values and gates were exported into ggplot and “in-
silico gates”were applied using custom scripts in R. Given ∼85%
of the CD103+ cells were TIM-3+ from our flow cytometry data,
cells were broadly classified into TRM or non-TRM based on an
individual cell’s protein expression (FACS gating) for patient 53.
Where there was no available cell-specific associated protein
data (patient 54), CD3+ T cells were classified based on the lack of
expression of CD4 and FOXP3 to enable removal of CD4+ cells.
Next, we stratified the single-cell transcriptomes into TRM or
non-TRM cells when expression of TRM-associated genes, ITGAE
(CD103), RBPJ, and/or ZNF683 (HOBIT) was >10 TPM counts; the
classification of each single-cell library is summarized in Table
S12. Differential gene expression analysis was completed
as above.

Multiplex immunohistochemistry
Patients included in this cohort had a known diagnosis of lung
cancer. 23 patients were selected in total, categorizing the do-
nors using criteria previously reported (Ganesan et al., 2017). A
multiplexed IHC method was used for repeated staining of a
single paraffin-embedded tissue slide. Deparaffinization, rehy-
dration, antigen retrieval, and IHC staining were performed
using a Dako PT Link Autostainer. Antigen retrieval was per-
formed using the EnVision FLEX Target Retrieval Solution, High
pH (Agilent Dako) for all antibodies. The slide was first stained

with a standard primary antibody followed by an appropriate
biotin-linked secondary antibody and HRP-conjugated strepta-
vidin to amplify the signal. Peroxidase-labeled compounds were
revealed using 3-amino-9-ethylcarbazole, an aqueous substrate
that results in red staining, or 3,39-diaminobenzidine (DAB) that
results in brown staining and counterstained using hematoxylin
(blue).

The slides were stained initially with Cytokeratin (pre-
diluted, Clone AE1/AE3; Agilent Dako) and then sequentially
with anti-CD8α (prediluted Kit IR62361-2; clone C8/144B; Agi-
lent Dako), anti-CD103 (1:500; EPR4166(2); Abcam), and anti-
TIM-3 (1:50; D5D5R; Cell Signaling Technology). The slides were
scanned at high resolution using a Zeiss Axio Scan.Z1 with a 20×
air immersion objective. Between each staining iteration, anti-
gen retrieval was performed along with removal of the labile
3-amino-9-ethylcarbazole staining and denaturation of the
preceding antibodies using a set of organic solvent–based de-
staining buffers as follows: 50% ethanol for 2 min, 100% ethanol
for 2 min, 100% xylene for 2 min, 100% ethanol for 2 min, and
50% ethanol for 2 min. This process did not affect DAB staining.
The process was repeated for each of the antibodies.

Bright-field images were separated into color channels in
imaging processing software ImageJ FIJI (ImageJ Windows 64-
bit final version; Schindelin et al., 2012). For the TILhighTRM

high

and TILlowTRM
low tumors, the number of CD8+CD103+TIM3+ cells

were quantified manually. Two samples with ≤3 CD8+CD103+

CTLs quantified were removed to prevent calculating percen-
tages of single events, resulting in a final number of 21 samples.
These images were processed and combined to create pseudo-
color multiplexed images. The raw counts for each protein, in-
dividually and together, are presented in Table S11 as the
number of cells per 0.15 mm2.

OMNI-ATAC-seq
CTLs were FACS sorted from cryopreserved lung cancer samples
as described above using the following antibody cocktail: anti-
CD45-Alexa Fluor 700 (HI30; BioLegend), anti-CD3-APC-Cy7
(SK7; BioLegend), anti-CD8A-PerCP-Cy5.5 (SK1; BioLegend),
anti-CD103-Pe-Cy7 (Ber-ACT8; BioLegend), anti-CD127-APC
(eBioRDR5; Thermo Fisher Scientific), and anti-TIM-3-BV605
(F38-2E2; BioLegend). Cells were counter stained with anti-
CD19/20-PE-Dazzle (HIB19/2H7; BioLegend), anti-CD14-PE-Daz-
zle (HCD14; BioLegend), and anti-CD4-BV510 (OKT4; BioLegend).
Dead cells were discriminated using PI. Samples were sorted
into low-retention 1.5-ml Eppendorfs containing 250 µl FBS
and 250 µl PBS. Three to six donors were pooled together to
guarantee sufficient cell numbers. For each pool of cells, two or
three technical replicates of 15,000–25,000 CTLs were gener-
ated for each library.

OMNI-ATAC-seq was performed as described in Corces et al.
(2017), withminor modifications. Isolated nuclei were incubated
with tagmentation mix (2× TD buffer, 2.5 µl transposase enzyme
fromNextera kit; Illumina) at 37°C for 30min in a thermomixer,
shaking at 1,000 RPM (Corces et al., 2017). Following tagmen-
tation, the product was eluted in 0.1X Tris-EDTA buffer using
DNA Clean and Concentrator-5 kit (Zymo). The purified product
was preamplified for five cycles using Kappa 2X enzyme along
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with Nextera indexes (Illumina), and based on quantitative PCR
amplification, an additional seven cycles of amplification were
performed for 20,000 cells. The PCR-amplified product was
purified using DNA Clean and Concentrator-5 kit (Zymo), and
size selection was done using AMPure XP beads (Beckman
Coulter). Finally, concentration and quality of libraries were
determined by picogreen and bioAnalyzer assays. Equimolar
libraries were sequenced as above or on a NovaSeq 6000 for
sequencing.

Next, technical replicates were randomly down sampled to
between 25,000,000 and 40,000,000 total reads (Table S1) and
merged using Bash scripts, resulting in two TIM-3+IL-7R− TRM

pools and two non-TRM pools. These reads were mapped to hg19
with bowtie2 (v2.3.3.1). Chromosomes 1–22 and X were retained,
chrY, chrM, and other arbitrary chromosome information based
reads were removed. Samtools (v1.9) was used to get the
uniquely mappable reads, and only reads with mapping quality
score ≥ 30 were considered. Duplicate reads are removed using
the “MarkDuplicates” utility of Picard tool (v 2.18.14). Before
peak calling, tag align files were created by shifting forward
strands by four bases and reverse strands by five bases (TN5
shift). Peaks were identified with MACS2 (v 2.1.1.20160309) using
the function -f BED -g ’hs’ -q 0.01 --nomodel --nolambda --keep-
dup all --shift -100 --extsize 200. BamCoverage (v2.4.2) was
used for converting bam files into bigwig and further UCSC
track generation (same normalization across all ATAC-seq and
RNA-seq samples), as per the following example: bamCoverage -b
TIL_103pos.bam -o TIL_103pos_NormCov.bw -of bigwig -bs
10 --normalizeTo1x 2864785220 --normalizeUsingRPKM -e
200. The R package DiffBind (v2.2.12) was used to highlight
differentially accessible peaks (based on DEseq2). R packages of
org.Hs.eg.db (v3.4.0) and TxDb.Hsapiens.UCSC.hg19.knownGene
(v3.2.2) were used to annotate peaks. Following differential ex-
pression, peaks were filtered to those within 5 kb of a transcrip-
tion start site to focus directly on promoter accessibility. The
correlation plot (Spearman) was completed as described above
using all identified peaks. The plot was clustered according to
complete linkage.

Accession codes
Sequencing data have been uploaded onto the Gene Expression
Omnibus with the accession no. GSE111898.

Other statistical analysis
The significance of differences among matched samples was
determined by a Wilcoxon rank-sum test for paired data or a
Mann–Whitney U test for nonpaired data, unless otherwise
stated. Statistical analyses were performed using GraphPad
Prism7 (v7.0a). The Spearman correlation coefficient (r value)
was used to access the significance of correlations between the
levels of any two components of interest.

Online supplemental material
Fig. S1 includes additional analysis on lung-resident TRM cells.
Fig. S2 provides additional information regarding the break-
down per donor in each cluster and expression of TCF7. Fig. S3
demonstrates additional transcripts identified as coexpressed in

a particular cluster of tumor TRM cells. Fig. S4 presents addi-
tional data regarding TRM cells in the context of anti-PD-1 ther-
apy. Table S1 provides matched clinical data for the patient
samples used in this study. Table S2 includes the output and
additional analysis of the differentially expressed genes in the
lung TRM cell population. Table S3 presents the genes used for
GSEA. Table S4 provides further information regarding shared
tissue-residency and tumor TRM-enriched transcripts. Table S5
includes additional information regarding the transcriptome of
TRM cells following ex vivo stimulation. Table S6 comprises
output of TCR-seq analysis. Table S7 covers the single-cell
transcriptomic analysis of clusters of tumor TRM cells. Table
S8 contains the output of single cell TCR-seq analysis. Table S9
incorporates single-cell transcriptomic analysis of TIM-3+ TRM
cells. Table S10 presents transcriptomic and protein coex-
pression analysis of tumor TRM and non-TRM cells. Table S11
provides raw data associated with the immunohistochemistry
analysis. Table S12 contains single-cell transcriptomic and TCR-
seq analysis of TRM and non-TRM cells before and after anti-PD-1
therapy.
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