
Single-cell transcriptomic characterization of 20 organs and tissues from individual mice 1 

creates a Tabula Muris 2 
 3 

 4 

The Tabula Muris Consortium 5 

 6 

We have created a compendium of single cell transcriptome data from the model 7 

organism Mus musculus comprising more than 100,000 cells from 20 organs and 8 

tissues.  These data represent a new resource for cell biology, revealing gene 9 

expression in poorly characterized cell populations and allowing for direct and 10 

controlled comparison of gene expression in cell types shared between tissues, such 11 

as T-lymphocytes and endothelial cells from distinct anatomical locations. Two 12 

distinct technical approaches were used for most tissues: one approach, microfluidic 13 

droplet-based 3’-end counting, enabled the survey of thousands of cells at relatively 14 

low coverage, while the other, FACS-based full length transcript analysis, enabled 15 

characterization of cell types with high sensitivity and coverage. The cumulative 16 

data provide the foundation for an atlas of transcriptomic cell biology. 17 

 18 

 The cell is a fundamental unit of structure and function in biology, and multicellular 19 

organisms have evolved a wide variety of different cell types with specialized roles.  20 

Although cell types have historically been characterized on the basis of morphology and 21 

phenotype, the development of molecular methods has enabled ever more precise 22 

defining of their properties, typically by measuring protein or mRNA expression 23 

patterns
1
.  Technological advances have enabled increasingly greater degrees of 24 

multiplexing of these measurements
2-7

, and it is now possible to use highly parallel 25 

sequencing to enumerate nearly every mRNA molecule in a given single cell
7,8

. This 26 

approach has provided many novel insights into cell biology and the composition of 27 

organs from a variety of organisms
9-18

.  However, while these reports provide valuable 28 

characterization of individual organs, it is challenging to compare data taken with varying 29 

experimental techniques in independent labs from different animals. It therefore remains 30 

an open question whether data from individual organs can be synthesized and used as a 31 

more general resource for biology. 32 

 33 

Here we report a compendium of cell types from the mouse Mus musculus. We analyzed 34 

multiple organs and tissues from the same animal, thereby generating a data set 35 

controlled for age, environment and epigenetic effects.  This enables the direct 36 

comparison of cell type composition between organs as well as comparison of shared cell 37 

types across the entire organism. The compendium is comprised of single cell 38 

transcriptome sequence data from 100,605 cells isolated from 20 organs and tissues (Fig. 39 

1). Those were collected from 3 female and 4 male, C57BL/6 NIA, 3 month old mice 40 

(10-15 weeks), whose developmental age is roughly analogous to humans at 20 years of 41 

age. All data, protocols, and analysis scripts from the Tabula Muris are shared as a public 42 

resource (http://tabula-muris.ds.czbiohub.org/), gene counts and metadata from all single 43 

cells are accessible on Figshare (https://figshare.com/account/home#/projects/27733), 44 

raw data are available on GEO (GSE109774), and all code used for analysis is available 45 

on GitHub (https://github.com/czbiohub/tabula-muris). While these data are by no means 46 
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a complete representation of all mouse organs and cell types, they provide a first draft 47 

attempt to create an organism-wide representation of cellular diversity and a comparative 48 

framework for future studies using the large variety of murine disease models. 49 

 50 

We developed a procedure to collect 20 organs and tissues from the same mouse in which 51 

aorta, bladder, bone marrow, brain (cerebellum, cortex, hippocampus, striatum),  52 

diaphragm, fat (brown, gonadal, mesenteric, subcutaneous), heart, kidney, large intestine, 53 

limb muscle, liver, lung, mammary gland, pancreas, skin, spleen, thymus, tongue, and 54 

trachea were immediately dissected and processed into single cell suspensions, which in 55 

turn were either single cell sorted into plates with FACS or loaded into microfluidic 56 

droplets (see Extended Data and Methods). Single cell transcriptomes were sequenced to 57 

an average depth of 814,488 reads per cell for the plate data and 7,709 unique molecular 58 

identifiers (UMI) per cell for the microfluidic droplet data.  After quality control filtering, 59 

44,949 FACS sorted cells and 55,656 microfluidic droplet processed cells were retained 60 

for further analysis.  A comparison of the two methods shows differences for each organ 61 

in the number of cells analyzed (Fig. 1b,c), reads per cell (Supp. Fig. 1a,c) and genes per 62 

cell (Supp. Fig. 1b,d).  63 

 64 

We performed unbiased graph-based clustering of the pooled set of transcriptomes across 65 

all organs, and visualized them using tSNE (Fig. 2 and Supp. Fig. 2). The majority of 66 

clusters contain cells from only one organ (n=29/54), but a number of clusters (n=25/54) 67 

(Supp. Fig. 2) contained cells from multiple organs.  To further dissect these clusters we 68 

analyzed each organ independently, first by performing principal component analysis 69 

(PCA) on the most variable genes in the organ, followed by nearest-neighbor graph-based 70 

clustering. We then used cluster-specific gene expression of known markers as well as 71 

genes differentially expressed between clusters to assign cell type annotations (Fig. 3, 72 

Supp.Fig.3, TableS1). A detailed description of the cell types and defining genes for each 73 

organ and tissue is available in the Supplementary Information. We used a standardized 74 

analysis approach for all organs and tissues and an example using liver can be found in 75 

the Organ Annotation Vignette. For each cell, we provide annotations in the controlled 76 

vocabulary of a cell ontology
19

 to facilitate comparisons with other experiments. Many of 77 

these cell clusters have not previously been obtained in pure populations and our data 78 

provide a wealth of new information on their characteristic gene expression profiles. 79 

Initial annotation of the cellular diversity of each organ and tissue can be found in the 80 

extended data, and a detailed discussion of each cell type on an organ by organ basis can 81 

be found in the supplement.  Some unexpected discoveries include a potential new role 82 

for genes Neurog3, Hex3, and Prss53 in the adult pancreas, a cell population expressing 83 

Chodl in limb muscle, transcriptional heterogeneity of brain endothelial cells, the 84 

expression of MHCII genes by adult mouse T cells, and sets of transcription factors that 85 

can specifically distinguish between similar cell types across multiple organs and tissues.  86 

 87 

Any individual single-cell sequencing experiment offers a partial view of the diversity of 88 

cell types within an organism and the gene expression within each cell type. We illustrate 89 

the variability to be expected between methods and experiments by comparing our two 90 

measurement approaches to one another, and to data from Han et al.
20

 generated using a 91 

third method, microwell-seq. One striking feature is the variability in the number of 92 
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genes detected per cell between organs and tissues and between methods. For example, 93 

the median number of genes detected per cell in bladder is about 4900 in the FACS data, 94 

2900 in the droplet data, and 900 in the microwell-seq data, while the number detected in 95 

kidney is about 1400 in the FACS data, 1900 in the droplet data, and 500 in the 96 

microwell-seq data. The bladder, liver, lung, mammary gland, trachea, tongue, and spleen 97 

all show nearly twice as many genes detected per cell in the FACS data as compared to 98 

the microfluidic data, whereas heart and marrow show comparable numbers detected in 99 

both methods (Supp. Fig. 4a). This difference does not appear to be due to sequencing 100 

depth, as the microfluidic droplet libraries are nearly saturated (Supp. Fig. 4b) and deeper 101 

sequencing of the FACS libraries could only increase the number of genes detected. In 102 

every organ, there are fewer genes detected per cell in microwell-seq data than either 103 

droplet or FACS data. In these comparisons, a gene is considered detected if a single read 104 

maps to it, as that is the only standard for expression at which reads and UMIs can be 105 

treated equally. We also looked at how the number of detected genes across each organ 106 

changes with different thresholds on the number of reads or UMIs (Supp. Fig. 5). We 107 

found that the number of detected genes decreases monotonically with increasing 108 

thresholds at similar rates across different organs and tissues within each method. We 109 

observed that in the droplet data more than half of the detected genes are represented by 110 

only a single UMI; this is to be expected given that only a few thousand UMIs are 111 

captured per cell. The FACS data are sampled much more deeply and one needs to set a 112 

relatively high threshold of 40 reads to see a comparable reduction in gene detection 113 

sensitivity.  114 

 115 

Next, we investigated whether the three methods demonstrate concordance on the genes 116 

which define each of the cell clusters. To do so, we computed lists of genes (see Methods 117 

“Differential expression overlap analysis”) that differentiate between each cell cluster and 118 

the rest of the cell clusters in each organ across all three methods, focusing on common 119 

organs and cell clusters for the three methods. As expected, data from FACS and 120 

microfluidic droplet are in better agreement due to the fact that cells originated from the 121 

exact same organ or tissue and were prepared in parallel. For each cell cluster there 122 

appears to be a core of a few hundred defining genes on which all three methods agree 123 

(Supp. Fig. 6 and Table S2). This comparison suggests that independent datasets 124 

generated from the various tissue atlases that are beginning to arise can be combined and 125 

collectively analyzed to generate more robust characterizations of gene expression. 126 

 127 

To understand the relationships between cell types, we mapped the annotations of organ-128 

specific cell types onto the unbiased clustering of all cells. It is evident that the clusters in 129 

Figure 2 (also Supp. Fig. 2) containing cells from multiple organs generally represent 130 

shared cell types common to those organs (Fig. 4).  For example, B cells from fat, limb 131 

muscle, diaphragm, lung, spleen and marrow cluster together, as do T cells from spleen, 132 

marrow, lung, limb muscle, fat and thymus. Interestingly, while endothelial cells from 133 

fat, heart, and lung cluster together, they are segregated from endothelial cells from the 134 

mammary gland, kidney, trachea, limb muscle, aorta, diaphragm, and pancreas. Such 135 

differences could be caused by true differential gene expression signatures across 136 

different organs, but could also potentially be influenced by organ-specific batch effects. 137 

The fact that many cells cluster together across organs and biological replicates is 138 
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evidence that batch effects are not the main source of variance in the dataset. Our 139 

findings show that manual annotation of cell types is consistent with unbiased 140 

transcriptomic clustering, and that most cell types are unique enough to enable their 141 

unbiased identification across organs and tissues. We expect that further refinements of 142 

comparison algorithms will facilitate the discovery of finer, organ-specific distinctions 143 

between these shared cell types. 144 

 145 

To investigate common cell types across all organs, we pooled all cells annotated as T 146 

cells and analyzed them collectively (Fig. 5). Our analysis revealed 5 clusters. Cluster 0 147 

comprises cells from the thymus that are undergoing VDJ recombination characterized by 148 

the expression of RAG (Rag1, Rag2) and TdT (Dntt), and includes uncommitted double 149 

positive T-cells (Cd4
+
, Cd8a

+
). Cluster 4 contains proliferating T cells, predominantly 150 

from the thymus. We hypothesize that these are pre-T cells expanding after the 151 

completion of VDJ recombination. Clusters 1-3 contain predominantly single positive T 152 

cells (Cd4
+
 or Cd8a

+
). Cluster 3 contains Cd5

high
 thymic T cells possibly undergoing 153 

positive selection while Cluster 2 contains mostly non-thymic T cells expressing the high 154 

affinity IL2 receptor (Il2ra, Il2rb), suggesting they are activated. Interestingly, they also 155 

express MHC type II genes (H2-Aa, H2-Ab1). While this is known to occur in human T 156 

cells, MHCII was previously thought restricted to professional antigen presenting cells in 157 

mice
11

. Finally, Cluster 1 also represents mature T cells, but primarily from the spleen.   158 

 159 

A key challenge for many single cell studies is understanding the potential changes to the 160 

transcriptome caused by handling, dissociation and other experimental manipulation.  A 161 

previous study in limb muscle showed that quiescent satellite cells tend to become 162 

activated by dissociation and consequently express immediate early genes among other 163 

genes
21

. We found that expression of these dissociation-related markers was also clearly 164 

observed in our limb muscle data, as well as in mammary gland and bladder (Supp. Fig. 165 

7), but that many organs and tissues showed little evidence of similar cellular activation.  166 

Therefore the dissociation-related activation markers found in limb muscle are not 167 

universal across all organs and tissues.  This is not to say that other organs lack 168 

dissociation-related gene expression changes, but that some of the genes involved are 169 

specific to a given organ.  Importantly, the presence of such gene expression changes 170 

does not prevent the identification of cell type or the comparison of cell types across 171 

organs and tissues.  172 

 173 

One major goal of defining cell identities is to understand the transcription factor (TF) 174 

regulatory networks that underlie them. We first investigated the combinatorial 175 

specificity of TF expression across all cell types (defined as unique combinations of cell 176 

ontology annotation and tissue)  (Fig. 6). We searched for the combination of four (n=4) 177 

enriched TFs that best specified each target cell type over all others. For each 178 

combination of TFs, we counted every cell expressing all four TFs as a positive, and 179 

anything else as a negative. We then calculated cell type-specificity by the precision 180 

(ratio of number of positive target cells to total number of positive cells) and recall (ratio 181 

of number of positive target cells to total number of target cells) of each combination of 182 

TFs for the target cell type over the rest of the cells (Table S3). We found 41 cell types 183 

with TF combinations with precision > 0.3 and recall > 0.3. We noted that the 184 
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combinatorial nature of TF expression was critical to specificity; for example, Ctnnb1, 185 

combined with one of two TF sets, specified either skin keratinocyte stem cells or lung 186 

type II pneumocytes (Fig. 6a). We found many TF combinations for cell types with 187 

challenging in vitro differentiation protocols
22

 (e.g., hepatocytes; Creb3l3, Nr1h3, Hnf4a, 188 

and Klf15) and cell types with no established direct differentiation protocol (e.g., 189 

microglia; Mafb, Sall1, Irf5, and Maf) (Fig. 6a). 190 

 191 

We then analyzed organ-specific TFs by isolating a set of closely-related, cross-organ 192 

cell groups (epithelial cells and endothelial cells). We performed TF correlation analysis, 193 

similar to 
15

 within the cell groups (Fig. 6b-g). We found many TFs within epithelial cells 194 

that clustered strongly by organ and were enriched in organ-specific epithelial clusters 195 

(Fig. 6b). For example, Sox4 (mammary basal cells), Foxq1 (bladder basal cells of the 196 

urothelium), Pax9 (tongue basal cells of the epidermis), and Lhx2 (skin keratinocyte stem 197 

cells) were highly organ-specific (Fig. 6c,d). Within endothelial cells, liver, brain, 198 

mammary gland/limb muscle, and lung-specific clusters of TFs were evident (Fig. 6e-g). 199 

Gata4, known to specify liver endothelium, appeared in a cluster of liver-enriched TFs 200 

(Fig. 6g). Another cluster of TFs, including Pbx1, were enriched in kidney endothelial 201 

cells (Fig. 6g). The roles of Pbx1 in kidney endothelial development are not explored, 202 

and could aid in tissue engineering for kidney regeneration. A highly distinct cluster of 203 

cells specified the heart endocardium, including Plagl1, a TF whose role in endocardial 204 

specification is unknown (Fig. 6g). These results illustrate how single cell data taken 205 

across many organs and organs can identify the transcriptional regulatory programs 206 

which are specific to cell types of interest. 207 

  208 

In conclusion, we have created a compendium of single-cell transcriptional 209 

measurements across 20 organs and tissues of the mouse. This Tabula Muris, or “Mouse 210 

Atlas”, has many uses, including the discovery of new putative cell types, the discovery 211 

of novel gene expression in known cell types, and the ability to compare cell types across 212 

organs and tissues.  It will also serve as a reference of healthy young adult organs and 213 

tissues which can be used as a baseline for current and future mouse models of disease. 214 

While it is not an exhaustive characterization of all organs of the mouse, it does provide a 215 

rich data set of the most highly studied organs and tissues in biology. The Tabula Muris 216 

provides a framework and description of many of the most populous and important cell 217 

populations within the mouse, and represents a foundation for future studies across a 218 

multitude of diverse physiological disciplines.   219 

 220 

Supplementary Information is available in the online version of the paper. 221 
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Methods 423 

 424 

Mice and Tissue Collection 425 

Four 10-15 week old male and four virgin female C57BL/6 mice were shipped from the 426 

National Institute on Aging colony at Charles River to the Veterinary Medical Unit 427 

(VMU) at the VA Palo Alto (VA). At both locations, mice were housed on a 12-h 428 

light/dark cycle, and provided food and water ad libitum. The diet at Charles River was 429 

NIH-31, and Teklad 2918 at the VA VMU. Littermates were not recorded or tracked, and 430 

mice were housed at the VA VMU for no longer than 2 weeks before euthanasia. Prior to 431 

tissue collection, mice were placed in sterile collection chambers for 15 minutes to collect 432 

fresh fecal pellets. Following anesthetization with 2.5% v/v Avertin, mice were weighed, 433 

shaved, and blood drawn via cardiac puncture before transcardial perfusion with 20 ml 434 

PBS. Mesenteric adipose tissue (MAT) was then immediately collected to avoid exposure 435 

to the liver and pancreas perfusate, which negatively impacts cell sorting. Isolating viable 436 

single cells from both pancreas and liver of the same mouse was not possible, therefore, 2 437 

males and 2 females were used for each. Whole organs were then dissected in the 438 

following order: large intestine, spleen, thymus, trachea, tongue, brain, heart, lung, 439 

kidney, gonadal adipose tissue (GAT), bladder, diaphragm, limb muscle (tibialis 440 

anterior), skin (dorsal), subcutaneous adipose tissue (SCAT, inguinal pad), mammary 441 

glands (fat pads 2, 3, and 4), brown adipose tissue (BAT, interscapular pad), aorta, and 442 

bone marrow (spine and limb bones). Following single cell dissociation as described 443 

below, cell suspensions were either used for FACS sorting of individual cells into 384-444 

well plates, or for microfluidic droplet library preparation. All animal care and 445 

procedures were carried out in accordance with institutional guidelines approved by the 446 

VA Palo Alto Committee on Animal Research. 447 

 448 

Tissue dissociation and sample preparation 449 

Specific protocols for each tissue are described in the supplement. 450 

 451 

Single Cell Methods 452 

 453 

Lysis plate preparation 454 

Lysis plates were created by dispensing 0.4 µl  lysis buffer (0.5 U Recombinant RNase 455 

Inhibitor (Takara Bio, 2313B), 0.0625% Triton
TM

 X-100 (Sigma, 93443-100ML), 3.125 456 

mM dNTP mix (Thermo Fisher, R0193), 3.125 µM  Oligo-dT30VN (IDT, 457 

5’AAGCAGTGGTATCAACGCAGAGTACT30VN-3’) and 1:600,000 ERCC RNA 458 

spike-in mix (Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Biorad 459 

HSP3901) using a Tempest liquid handler (Formulatrix). 96-well lysis plates were also 460 

prepared with 4 µl lysis buffer. All plates were sealed with AlumaSeal CS Films (Sigma-461 

Aldrich Z722634) and spun down (3,220 x g, 1 minute) and snap frozen on dry ice. Plates 462 

were stored at -80°C until sorting.   463 

 464 

FACS sorting 465 
After dissociation, single cells from each organ and tissue were isolated into 384- or 96-466 

well plates via Fluorescence Activated Cell Sorting (FACS). Most organs were sorted 467 

into 384-well plates using SH800S (Sony) sorters. Heart and liver were sorted into 96-468 
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well plates and cardiomyocytes were hand-picked into 96-well plates. Limb muscle and 469 

diaphragm were sorted into 384-well plates on an Aria III (Becton Dickinson) sorter. The 470 

last two columns of each 384 well plate were intentionally left as blanks.  For most 471 

organs, single cells were selected with forward scatter, and dead cells and common cell 472 

types were excluded with a single color channel. Combinations of fluorescent antibodies 473 

were used for most organs to enrich for rare cell populations (see supplemental text), but 474 

some were stained only for viable cells. Color compensation was used whenever 475 

necessary. On the SH800, the highest purity setting (“Single cell”) was used for all but 476 

the rarest cell types, for which the “Ultrapure” setting was used. Sorters were calibrated 477 

using FACS buffer every day before collecting any cells, and also after every 8 sorted 478 

plates. For a typical sort, 1-3 ml of pre-stained cell suspension was filtered, vortexed 479 

gently, and loaded onto the FACS machine. A small number of cells were flowed at low 480 

pressure to check cell and debris concentrations. The pressure was then adjusted, flow 481 

paused, the first destination plate unsealed, loaded and sorting started. If a cell suspension 482 

was too concentrated, it was diluted using FACS buffer or 1X PBS. For some cell types 483 

like hepatocytes, 96-well plates were used because it was not possible to sort individual 484 

cells accurately into 384-well plates. Immediately after sorting, plates were sealed with a 485 

pre-labeled aluminum seal, centrifuged, and flash frozen on dry ice. On average, each 486 

384-well plate took 8 minutes to sort. 487 

 488 

cDNA synthesis and library preparation 489 

cDNA synthesis was performed using the Smart-seq2 protocol
2,3

. Briefly, 384-well plates 490 

containing single-cell lysates were thawed on ice followed by first strand synthesis. 0.6 µl 491 

of reaction mix (16.7 U/µl SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 492 

1.67 U/µl Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer 493 

(Takara Bio, 639538), 1.67 µM TSO (Exiqon, 5’-494 

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG-3’), 8.33 mM DTT (Bioworld, 495 

40420001-1), 1.67 M Betaine (Sigma, B0300-5VL), and 10 mM MgCl2 (Sigma, M1028-496 

10X1ML)) was added to each well using a Tempest liquid handler.
 
Reverse transcription 497 

was carried out by incubating wells on a ProFlex 2 x 384 thermal-cycler (Thermo Fisher) 498 

at 42°C for 90 minutes, and stopped by heating at 70°C for 5 minutes.  499 

  500 

Subsequently, 1.5 µl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa 501 

Biosystems, KK2602), 0.17 µM IS PCR primer (IDT, 5’-502 

AAGCAGTGGTATCAACGCAGAGT-3’), and 0.038 U/µl Lambda Exonuclease (NEB, 503 

M0262L)) was added to each well with a Mantis liquid handler (Formulatrix), and second 504 

strand synthesis was performed on a ProFlex 2x384 thermal-cycler by using the 505 

following program: 1) 37°C for 30 minutes, 2) 95°C for 3 minutes, 3) 23 cycles of 98°C 506 

for 20 seconds, 67°C for 15 seconds, and 72°C for 4 minutes, and 4) 72°C for 5 minutes.  507 

 508 

The amplified product was diluted with a ratio of 1 part cDNA to 10 parts 10mM Tris-509 

HCl (Thermo Fisher, 15568025), and concentrations were measured with a dye-510 

fluorescence assay (Quant-iT dsDNA High Sensitivity kit; Thermo Fisher, Q33120) on a 511 

SpectraMax i3x microplate reader (Molecular Devices). Sample plates were selected for 512 

downstream processing if the mean concentration of blanks (ERCC-containing, non-cell 513 

wells) was greater than 0 ng/µl, and, after linear regression of the values obtained from 514 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/237446doi: bioRxiv preprint 

https://doi.org/10.1101/237446


the Quant-iT dsDNA standard curve, the R
2
 value was greater than 0.98. Sample wells 515 

were then selected if their cDNA concentrations were at least one standard deviation 516 

greater than the mean concentration of the blanks. These wells were reformatted to a new 517 

384-well plate at a concentration of 0.3 ng/μl and final volume of 0.4 μl using an Echo 518 

550 acoustic liquid dispenser (Labcyte).  519 

 520 

Illumina sequencing libraries were prepared as described in Darmanis et al. 2015.
4
 521 

Briefly, tagmentation was carried out on double-stranded cDNA using the Nextera XT 522 

Library Sample Preparation kit (Illumina, FC-131-1096). Each well was mixed with 0.8 523 

μl Nextera tagmentation DNA buffer (Illumina) and 0.4 μl Tn5 enzyme (Illumina), then 524 

incubated at 55°C for 10 minutes. The reaction was stopped by adding 0.4 μl “Neutralize 525 

Tagment Buffer” (Illumina) and centrifuging at room temperature at 3,220 x g for 5 526 

minutes. Indexing PCR reactions were performed by adding 0.4 μl of 5 μM i5 indexing 527 

primer, 0.4 μl of 5 μM i7 indexing primer, and 1.2 μl of Nextera NPM mix (Illumina). 528 

PCR amplification was carried out on a ProFlex 2x384 thermal cycler using the following 529 

program: 1) 72°C for 3 minutes, 2) 95°C for 30 seconds, 3) 12 cycles of 95°C for 10 530 

seconds, 55°C for 30 seconds, and 72°C for 1 minute, and 4) 72°C for 5 minutes. 531 

 532 

Library pooling, quality control, and sequencing 533 

Following library preparation, wells of each library plate were pooled using a 534 

Mosquito
 
liquid handler (TTP Labtech). Pooling was followed by two purifications using 535 

0.7x AMPure beads (Fisher, A63881). Library quality was assessed using capillary 536 

electrophoresis on a Fragment Analyzer
 
(AATI), and libraries were quantified by qPCR 537 

(Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System 538 

(Biorad). Plate pools were normalized to 2 nM and equal volumes from 10 or 20 plates 539 

were mixed together to make the sequencing sample pool. A PhiX control library was 540 

spiked in at 0.2% before sequencing. 541 

 542 

Sequencing libraries from 384-well and 96-well plates 543 

Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina) using 2 x 544 

100bp paired-end reads and 2 x 8bp or 2 x 12bp index reads with either a 200- or 300-545 

cycle kit (Illumina, 20012861 or 20012860). 546 

 547 

Microfluidic droplet single cell analysis 548 
Single cells were captured in droplet emulsions using the GemCode Single-Cell 549 

Instrument (10x Genomics, Pleasanton, CA, USA), and SC RNA-seq libraries were 550 

constructed as per the 10X Genomics protocol using GemCode Single-Cell 3′ Gel Bead 551 

and Library V2 Kit. Briefly, single cell suspensions were examined using an inverted 552 

microscope, and if sample quality was deemed satisfactory, the sample was diluted in 553 

PBS with 2% FBS to a concentration of 1000 cells/μl.  If cell suspensions contained cell 554 

aggregates or debris, two additional washes in PBS with 2% FBS at 300 x g for 5 minutes 555 

at 4°C were performed. Cell concentration was measured either with a Moxi GO II (Orflo 556 

Technologies) or a hemocytometer. Cells were loaded in each channel with a target 557 

output of 5,000 cells per sample. All reactions were performed in the Biorad C1000 558 

Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles were used for 559 

cDNA amplification and sample index PCR. Amplified cDNA and final libraries were 560 
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evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit (Advanced 561 

Analytical). The average fragment length of 10x cDNA libraries was quantitated on a 562 

Fragment Analyzer (AATI), and by qPCR with the Kapa Library Quantification kit for 563 

Illumina. Each library was diluted to 2 nM, and equal volumes of 16 libraries were 564 

pooled for each NovaSeq sequencing run. Pools were sequenced with 100 cycle run kits 565 

with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read 2 (Illumina 566 

20012862). A PhiX control library was spiked in at 0.2 to 1%.  Libraries were sequenced 567 

on the NovaSeq 6000 Sequencing System (Illumina) 568 

 569 

Data Processing 570 

Sequences from the Novaseq were de-multiplexed using bcl2fastq version 2.19.0.316. 571 

Reads were aligned using to the mm10plus genome using STAR version 2.5.2b with 572 

parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default 573 

parameters, except “stranded” was set to “false”, and “mode” was set to “intersection-574 

nonempty”. 575 

 576 

Sequences from the microfluidic droplet platform were de-multiplexed and aligned using 577 

CellRanger, available from 10x Genomics with default parameters. 578 

 579 

Clustering 580 
Standard procedures for filtering, variable gene selection, dimensionality reduction, and 581 

clustering were performed using the Seurat package. A detailed worked example, 582 

including the mathematical formulae for each operation, is in the Tissue Annotation 583 

Vignette. The parameters that were tuned on a per-tissue basis (resolution and number of 584 

PCs can be viewed in the tissue-specific Rmd files available on GitHub). For each tissue 585 

and each sequencing method (FACS and microfluidic droplet), the following steps were 586 

performed: 587 

 588 

1. Cells were lexicographically sorted by cell ID to ensure reproducibility. 589 

2. Cells with fewer than 500 detected genes were excluded. (A gene counts as 590 

detected if it has at least one read mapping to it). Cells with fewer than 50,000 591 

reads (FACS) or 1000 UMI (microfluidic droplet) were excluded. 592 

3. Counts were log-normalized for each cell using the natural logarithm of 1 + 593 

counts per million (for FACS) or 1 + counts per ten thousand (for microfluidic 594 

droplet). 595 

4. Variable genes were selected using a threshold (0.5) for the standardized log 596 

dispersion, where the standardization was done in separately according to binned 597 

values of log mean expression.  598 

5. The variable genes were projected onto a low-dimensional subspace using 599 

principal component analysis. The number of principal components was selected 600 

based on inspection of the plot of variance explained. 601 

6. A shared-nearest-neighbors graph was constructed based on the Euclidean 602 

distance in the low-dimensional subspace spanned by the top principal 603 

components. Cells were clustered using a variant of the Louvain method that 604 

includes a resolution parameter in the modularity function
23

.  605 
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7. Cells were visualized using a 2-dimensional t-distributed Stochastic Neighbor 606 

Embedding of the PC-projected data. 607 

8. Cell types were assigned to each cluster using the abundance of known marker 608 

genes. Plots showing the expression of the markers for each tissue appear in the 609 

extended data.  610 

9. When clusters appeared to be mixtures of cell types, they were refined either by 611 

increasing the resolution parameter for clustering or subsetting the data and 612 

rerunning steps 3-7. 613 

 614 

A similar analysis was done globally for all FACS processed cells and for all microfluidic 615 

droplet processed cells to produce an unbiased clustering. 616 

 617 

Differential expression overlap analysis 618 

 619 
For FACS and microfluidic droplet data differential expression analysis for each organ 620 

was performed using a Wilcox rank test as implemented in the “FindAllMarkers” 621 

function of the Seurat package. Differential expression was performed between cell 622 

ontology groups and resulted in a list of differentially expressed genes (logeFoldChange > 623 

0.25) between each cell ontology group and all other ontology groups of the same organ. 624 

For the microwellSeq we used the corresponding published lists for each cell type and for 625 

every organ. We then assessed the overlap (Supp. Fig. 6) of those lists between the three 626 

methods. As the nomenclature is not identical, the analysis was performed between cell 627 

types that could be matched with a certain degree of confidence between the three 628 

methods (TableS2).  629 

 630 

Calculation of dissociation scores 631 
 632 

For each organ, gene expression matrices were subset to 140 genes
24

, and principal 633 

component analysis was performed on this gene subset. The first principal component 634 

was used as the “dissociation score” as it corresponds to the variance within these genes.  635 

 636 

Defining cell type-enriched transcription factors 637 

 638 

Transcription factors were defined as the 1140 genes annotated by the Gene Ontology 639 

term “DNA binding transcription factor activity”, downloading from the Mouse Genome 640 

Informatics database (http://www.informatics.jax.org/mgihome/GO/project.shtml, 641 

accessed on 2017-11-10).  Cell types were defined as unique combinations of cell 642 

ontology and organ annotation (e.g. Lung__Endothelial_cell). All analysis was performed 643 

on the full 3 month dataset, subsampled by randomly selecting 60 cells from each cell 644 

type. Enriched TFs were defined by the Seurat FindMarkers function with the 645 

“Wilcoxon” significance test for the target cell type against the all of rest of the cell types 646 

combined. These were filtered by p_val < 10-3, avg_diff > 0.2, pct.1 – pct.2 > 0.1 647 

(percent detected difference > 0.1), and pct.1 > 0.3 (detected in > 30% of target cells).  648 

 649 

Discovering cell type-specific TF combinations 650 

 651 
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For each cell type that contained at least 6 cells, and had at least 4 enriched TFs, the top 652 

30 TFs or all that passed filter, whichever was smaller, were selected by highest avg_diff. 653 

The specificity of each four-TF combination (up to 27405 combinations for 30 TFs) was 654 

assessed by a score defined from two standard metrics, precision and recall: 655 

Precision 	

�


� � �
 

Recall 	  

�


� � �
 

Score 	 2 � Precision � Recall 
 656 

Where TP (true positive) is the number of cells in the target cell type expressing all 4 657 

TFs, FP (false positive) is the number of cells not in the target cell type expressing all 4 658 

TFs, and TN (true negative) is the number of cells in the target cell type not expressing 659 

all 4 TFs. The top TFs by this score for several cell types was plotted in Figure 6a.  660 

 661 

Defining TF networks by correlation analysis 662 

 663 
Organ-specific TF regulatory networks were measured by the correlations of TFs. TFs  664 

were selected by enrichment in a cell type over all other cell type with the test described 665 

in “Defining cell type-enriched transcription factors”, filtered by p_val < 10
-8

, avg_diff > 666 

0.3, and pct.1-pct.2 > 0.1. The top 8 markers per cell type (or however many passed the 667 

filters) were selected by avg_diff. The Pearson correlations between genes were 668 

calculated, and genes ordered by hierarchical clustering with optimal ordering (hclust and 669 

cba::optimal). For analysis of TFs within single broad cross-organ cell types, endothelial 670 

cells were defined as cell ontology annotations containing “endothelial” or “capillary” 671 

(Fig. 6e-g). Epithelial cells were defined as cell ontology annotations containing 672 

“epithelial”, “basal”, “keratinocyte”, or “epidermis” (Fig. 6b-d). Exemplary organ-673 

specific TFs were visualized on t-SNE plots. t-SNE was computed for a single cell 674 

annotation across all organs, by the top variable genes (Seurat FindVariableGenes, 675 

RunPCA with 10 PCs, and RunTSNE with perplexity = 30).    676 

  677 
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 678 

Figure captions  679 
 680 

Figure 1.  Overview of Tabula Muris 681 

a) 20 organs and tissues from 4 male and 3 female mice were analyzed.  After 682 

dissociation, cells were either sorted by FACS or captured in microfluidic oil droplets, 683 

after which they were lysed and their transcriptomes amplified, sequenced, and reads 684 

mapped, followed by data analysis.  b) Barplot showing number of sequenced cells 685 

prepared by FACS sorting from each organ (n=20).  c) Barplot showing number of 686 

sequenced cells prepared by microfluidic droplets from each organ (n=12).  687 

 688 

Figure 2.  tSNE visualization of all FACS sorted cells. 689 

tSNE plot of all cells sorted by FACS, color coded by organ.  690 

 691 

Figure 3.  tSNE visualization of individual organs. 692 

a) tSNE plots for each organ of cells sorted by FACS.  Color coding indicates distinct 693 

clusters.  b) Barplots of annotated cell types based on differential gene expression across 694 

all organs. Coloring of clusters within each organ is consistent between panels a and b.  695 

 696 

Figure 4. Comparison of cell type determination.  697 

Comparison of cell type determination as done by unbiased whole transcriptome 698 

comparison versus manual annotation by organ-specific experts.  The x-axis represents 699 

clusters from Figure 2 and Figure S2 with multiple organs contributing, while the y-axis 700 

represents manual expert annotation of cell types in an organ-specific fashion.  The 701 

unbiased method discovers relationships between similar cell types found in different 702 

organs (highlighted regions); in particular it groups T cells from different organs into a 703 

single cluster, B cells from different organs into a different single cluster, and endothelial 704 

cells from different organs into a single cluster.  705 

 706 

Figure 5. Analysis of all sorted T-cells. 707 

a) tSNE plot of all T cells colored by cluster membership. Five clusters were identified.  708 

b) Dotplot showing level of expression (color scale) and number of expressing cells 709 

(point diameter) within each cluster of T cells. c) tSNE plot of all T cells colored by 710 

organ of origin (Fat, Lung, Marrow, Limb Muscle, Spleen or Thymus). d) tSNE plot of 711 

all T cells colored by classification of T cells to 4 categories based on expression of Cd4 712 

and Cd8 (Cd4
+
/ Cd8

+
/ Cd4

+
Cd8

+ 
/ Cd4

-
Cd8

-
). 713 

 714 

Figure 6. Transcription factor (TF) expression analysis.   715 

a) Visualization of the precision (ppv) and recall of combinations of 4 TFs. Red bars 716 

indicate the number of cells expressing all 4 TFs in the target cell type (true positive) in 717 

both the ppv and recall columns. Other colored bars in the ppv column represent the 718 

number of cells in the non-target cell types expressing all 4 TFs (false positives). The 719 

height of the grey bar in the recall column is the number of cells in the target cell type not 720 

expressing all 4 TFs (false negatives). The legend indicates the target cell type next to the 721 

red square and all non-target cell types with coexpression. Data shown is the entire 722 

dataset subsampled to at most 60 cells per cell type. b) Correlogram of top organ-specific 723 
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TFs for epithelial cells. Row colors correspond to organ of the most-enriched cell type. c) 724 

tSNE visualization of epithelial cells, colored by organ. d) tSNE visualization of 725 

endothelial cell expression of select TFs. (grey/low to red/high).  e) Correlogram of top 726 

organ-specific TFs for epithelial cells. Row colors correspond to organ of the most-727 

enriched cell type. f) tSNE visualization of epithelial cells, colored by organ. g) tSNE 728 

visualization of epithelial cell expression of select TFs. 729 

 730 

 731 

  732 
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Supplementary Figure Captions 733 

 734 

Supplementary Figure 1  a) Histogram of number of reads per cell for each organ from 735 

FACS sorted cells.  b) Histogram of number of genes detected per cell for each organ 736 

from FACS sorted cells.  c) Histogram of number of unique molecular identifiers (UMI) 737 

sequenced per cell for each organ from cells prepared by microfluidic droplets.  d) 738 

Histogram of number of genes detected per cell for each organ for cells prepared by 739 

microfluidic droplets. 740 

 741 

Supplementary Figure 2.  tSNE visualization of all FACS sorted cells annotated by 742 

cluster. Clusters are discussed in the text and further analyzed in Figure 4. 743 

 744 

Supplementary Figure 3  a) tSNE plot of all cells captured by microfluidic droplets 745 

color coded by organ. b) Dimensionally reduced tSNE plots for each organ of cells sorted 746 

by microfluidic droplets.  Color coding indicates distinct clusters.  c) Barplots of 747 

manually annotated cell types based on differential gene expression across all organs. 748 

Coloring of clusters within each organ is consistent between panels b and c.  749 

 750 

Supplementary Figure 4 a) Number of genes detected by FACS (red), microfluidic 751 

droplets (green) and microwell-Seq (blue) (Han et al.). b) library saturation fraction for 752 

all 10x libraries included in the study. Dotted horizontal line demarcates the median 753 

(=0.86). 754 

 755 

Supplementary Figure 5 Fraction of all detectable genes, for each cell across all organs, 756 

(UMI/read threshold is >0) detected at increasing UMI/read thresholds for FACS (left), 757 

microfluidic droplet (middle) and microwell-Seq (right).  758 

 759 

Supplementary Figure 6 Venn diagrams showing the overlap between differentially 760 

expressed genes for each common cell type and organs across three methods (FACS, 761 

droplet, microwell-Seq). Plotted data are provided in tabular form in Table S2.  762 

 763 

Supplementary Figure 7  Analysis of dissociation induced gene expression scores 764 

across organs.   765 

 766 

Supplementary Tables 767 

 768 

Supplementary Table 1 Number of cells belonging to each annotated cell type across all 769 

organs for FACS and microfluidic droplets.  770 

 771 

Supplementary Table 2 Cell type comparisons and lists of differentially expressed 772 

genes across three methods (FACS, droplet, microwell-Seq) and all common organs and 773 

tissues. 774 

 775 

Supplementary Table 3 Combinatorial specificity of transcription factors (TFs) to single 776 

cell types. Three combinations of 4 TFs with the highest combinatorial specificity score 777 
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are presented. The precision (ppv) and recall of each 4-TF combination and cell type is 778 

calculated as described in the Methods and main text. 779 
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