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The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to

revolutionize our understanding of diseases and associated biological processes at an

unprecedented resolution. It opens the door to reveal intercellular heterogeneity and

has been employed to a variety of applications, ranging from characterizing cancer

cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving

experimental protocols to deal with technological issues, deriving new analytical methods

to interpret the complexity in scRNA-Seq data is just as challenging. Here, we review

current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as

well as addressing some critical analytical challenges that the field faces.
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INTRODUCTION

Characterization of genomic signatures in individual patients is a key step toward the realization of
precision medicine. Recently, next-generation sequencing (NGS) based RNA expression profiling
(RNA-seq) has made broad impacts on biomedical fields. However, population-averaged RNA-seq
has limited discovery power, and it can also mask the presence of rare subpopulations of cells (such
as cancer stem cells) and thus may overlook important biological insights. The emerging single-cell
RNA-Seq (scRNA-Seq) technology is designed to overcome these limitations by investigating
expression profiles at the cell level. In just a few years, the number scRNA-Seq experiments
has grown beyond exponentially. This new approach offers the potential to revolutionize our
understanding of diseases and associated biological processes, with the capacity to reveal the
intercellular heterogeneity within a specific tissue at an unprecedented resolution (Yan et al.,
2013; Trapnell et al., 2014). Using single-cell level features, we can infer cell lineages (Treutlein
et al., 2014), identify subpopulations (Trapnell et al., 2014) and highlight cell-specific biological
characteristics (Tang et al., 2010). Moreover, single-cell analyses have already demonstrated their
utilities in the clinical applications, ranging from characterizing cancer cells subpopulations (Navin
et al., 2011; Patel et al., 2014; Ting et al., 2014), highlighting specific resistance mechanisms (Kim,
K. T. et al., 2015; Miyamoto et al., 2015) to being used as diagnostic tools (Ramsköld et al., 2012;
Kvastad et al., 2015).

Despite the expansion of scRNA-Seq studies and rapid maturing of experimental methods,
major analytical challenges remain as the consequences of experimentation. One major challenge is
that scRNA-Seq datasets present a very high level of noise (Brennecke et al., 2013; Kharchenko
et al., 2014). Much of the noise is due to the nature of single-cell technologies. Because of the
extremely low amount of starting biological material in the single cell, amplification processes are
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required. These procedures are prone to distortion and
contamination (Leng et al., 2015). To tackle these issues,
rigorous efforts have been made to develop analytical methods
for scRNA-Seq data. Here, we summarize current state-of-the-
art bioinformatics analysis tools and methods for scRNA-Seq
(Figure 1 and Table 1), and address some critical analytical
challenges that we are facing. The first section describes specific
pre-processing steps for noise removal of scRNA-Seq datasets.
The second section reviews specific scRNA-Seq bioinformatics
analysis procedures with emphasis on subpopulation detection.
The third section focuses on microevolution analysis for scRNA-
Seq data. In the last section, we highlight the challenges to
be addressed and work to be accomplished in scRNA-Seq
bioinformatics field.

DATA PREPROCESSING AND NOISE
REMOVAL

Quality Control
scRNA-Seq experiments generate FASTQ files from the
sequencing machine, which contain millions of reads composed
of RNA sequences and add-on sequences (UMI tag and the
cell tag etc). These reads need to be pre-processed before
being aligned back to the reference genome. For scRNA-seq,
pre-processing and quality control (QC) analyses similar to
bulk RNA-seq are used. Cutadapt (Martin, 2011) is a tool that
removes adapter sequences, and Trimmomatic (Bolger et al.,
2014) performs quality-based trimming in addition to removing
adapter sequence. These tools are commonly used in scRNA-seq
experiments (Treutlein et al., 2014; Handel et al., 2016; Hou
et al., 2016). Other generic quality control tools such as FASTQC
or HTQC (Yang et al., 2013) might also be useful to produce
quality metrics. Finally, it is worth noting that platform-specific
QC tools such as SolexaQA (Cox et al., 2010) provide QC
pipelines specific for Illumina sequencing, with trimming and
quality-based filtering.

Other QC procedures for scRNA-seq involve the analysis of
the expression of housekeeping genes (Ting et al., 2014; Treutlein
et al., 2014), overall gene expression patterns (Zeisel et al., 2015)
and the number of genes or reads detected per cell (Kumar
et al., 2014). However, one issue of these approaches is that the
thresholds chosen for filtering are arbitrary and should differ
according to the dataset (Jiang, P. et al., 2016). SinQC (Jiang,
P. et al., 2016) and SCell (Diaz et al., 2016) are two QC tools
specifically designed for scRNA-seq data. SinQC uses sequencing
library quality to confirm gene expression outliers. It computes
different quality metrics (e.g., total number of mapped reads,
mapping rate and library complexity) to identify a user-specified
fraction of the dataset as noise. SCell is a versatile tool that allows
for outlier detection. It estimates genes that are expressed at the
background level using Gini index, which measures statistical
dispersion, and removes samples whose background fraction is
significantly higher than the average. Recently, a new mapping
and quality assessment pipeline Celloline detects low quality cells
from expression profiles, using curated biological and technical
features (Ilicic et al., 2016).

Alignment
To our knowledge, there are currently no specific aligners
dedicated to scRNA-seq, and scRNA-seq studies use existing
aligners made for bulk RNA-Seq. Tophat is one of the most
popular aligners capable of detecting novel splice (Trapnell et al.,
2009; Kim et al., 2013), and it is widely used in scRNA-seq studies
(Treutlein et al., 2014; Fan et al., 2016; Freeman et al., 2016;
Handel et al., 2016; Hou et al., 2016). RNA-Seq by Expectation
Maximization, or RSEM, is a popular framework that includes
an aligner (Li and Dewey, 2011). It is also used in some scRNA-
seq studies (Gao et al., 2016; Kimmerling et al., 2016; Meyer
et al., 2016). Other aligners used in scRNA-Seq studies include
MapSplice (Wang et al., 2010), GSNAP (Brennecke et al., 2013;
Buettner et al., 2015; Wu et al., 2016), and STAR (Dobin and
Gingeras, 2015; Moignard et al., 2015; Petropoulos et al., 2016).
Among these aligners, TopHat and STAR were found to be
about one to two magnitudes faster than GSNAP and MapSplice
(Engström et al., 2013). More recently developed aligners include
Kallisto (Bray et al., 2016) and HISAT (Kim, D. et al., 2015).
Kallisto uses pseudo-alignment with hashing de Bruijn graphs
and avoids alignment altogether, which drastically improves the
speed of expression quantification. HISAT (hierarchical indexing
for spliced alignment of transcripts) seems also promising in term
of the speed and accuracy. It is worth mentioning that some
major scRNA-Seq methods do not get enough coverage across
the gene to measure alternative splicing, therefore algorithms for
isoform measurements are not as critical in scRNA-Seq, at least
at this stage.

Feature Quantification
Feature quantification is the process of converting alignment
results into a gene expression profile. An expression profile is
conventionally represented as a numeric matrix where rows are
genes and columns are cells. Each entry in the matrix is the
abundance of a particular gene or transcript in a particular
sample. Just as is the case for aligners, most scRNA-Seq studies
use canonical feature quantification methods applied to bulk
RNA-Seq.

Quantification methods for gene expression differ
dramatically. The simplest approach, employed by programs
such as HTSeq (Anders et al., 2014) and FeatureCounts (Liao
et al., 2013), is to count the number of reads located within the
boundaries of a gene (Liao et al., 2013; Anders et al., 2014). These
programs have simple but flexible parameters for determining
read counts in the case of overlapping genes, and were used in
some scRNA-Seq studies (Brennecke et al., 2013; Moignard et al.,
2015; Fan et al., 2016; Handel et al., 2016). More sophisticated
approaches calculate probabilistic estimates of gene expression.
For example, RSEM and Cufflinks both employ a maximum
likelihood approach (Trapnell et al., 2010; Li and Dewey, 2011).
These programs are based on statistical models where reads in
a RNA-Seq sample are observed random variables predicted
from the latent variables, such as the transcript sequence,
strand and length. The new Kallisto pipeline (Bray et al., 2016)
as described before, is shown to have up to two orders of
magnitude speed improvement over previous aligner-quantifier
combinations (Ntranos et al., 2016). Interestingly, while
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FIGURE 1 | General workflow of Single-cell analysis.

probabilistic approaches are conceptually more refined, simple
counting programs such as HTSeq and FeatureCounts showed
comparable or even stronger performance (Chandramohan et al.,
2013; Fonseca et al., 2014), suggesting that these probabilistic
models are yet to be improved.

Given the uncertainties of quantifying fragments post-
amplification, a new technique was shown to reduce
amplification noise by introducing random sequences called
unique molecular identifiers, or UMIs (Islam et al., 2014). UMIs
are tagged on individual RNA molecules before amplification
and used for tracking transcripts directly rather than using
sophisticated statistical modeling. This approach may lead
to a different workflow than conventional fragment-based
quantification methods (e.g., gene filtering and normalization).

Gene Filtering
Due to the high level of noise in scRNA-Seq datasets, it is
necessary to filter out low quality genes and samples. Various

practices have been made to filter out genes that are expressed
in too few samples (Brennecke et al., 2013; Treutlein et al., 2014;
Petropoulos et al., 2016). Usually, a gene is defined as “expressed”
by a minimal expression level threshold. For experiments
that quantify gene expression with fragment counting, an
FPKM (Fragment per Kilobase per Million Reads) threshold is
appropriate. Common FPKM thresholds are 1 (Freeman et al.,
2016) and 10 (Petropoulos et al., 2016). Other studies also
set the threshold by Transcript Per Million (TPM) instead of
FPKM (Meyer et al., 2016). Yet better filtering reference could
come from External RNA Controls Consortium (ERCC) spike-
ins added to the experiment, which provides calibration of the
relative amount of starting material (Brennecke et al., 2013;
Treutlein et al., 2014).

Recently, specific methods have been developed to filter genes
from scRNA-seq dataset. OEFinder is designed to identify artifact
genes from scRNA-seq experiments using the Fluidigm C1
platform for cell capture (Leng et al., 2016). For experiments that
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TABLE 1 | List of single-cell analytical tools mentioned in this chapter.

Category Tool name References Availability

Preprocessing cutadapt Martin, 2011 https://cutadapt.readthedocs.org/en/stable/index.html

Preprocessing Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Preprocessing FASTQC Andrews, 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Preprocessing SolexaQA Cox et al., 2010 http://solexaqa.sourceforge.net/

Preprocessing BIGpre Zhang et al., 2011 https://sourceforge.net/projects/bigpre/

Preprocessing HTQC Yang et al., 2013 https://sourceforge.net/projects/htqc/

Preprocessing SinQC Jiang, P. et al., 2016 http://www.morgridge.net/SinQC.html

Preprocessing SCell Diaz et al., 2016 https://github.com/diazlab/scell

Preprocessing celloline Ilicic et al., 2016 https://github.com/Teichlab/celloline

Alignment Tophat Trapnell et al., 2009; Kim et al.,

2013

https://ccb.jhu.edu/software/tophat/index.shtml

Alignment RSEM Li and Dewey, 2011 http://deweylab.github.io/RSEM/

Alignment GSNAP Wu et al., 2016 http://research-pub.gene.com/gmap/

Alignment STAR Dobin and Gingeras, 2015 https://github.com/alexdobin/STAR

Alignment Mapsplice Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/MapSplice2

Quantification Cufflinks Trapnell et al., 2010 http://cole-trapnell-lab.github.io/cufflinks/

Quantification HISAT Kim, D. et al., 2015 https://ccb.jhu.edu/software/hisat2/index.shtml

Quantification HTSeq Anders et al., 2014 http://www-huber.embl.de/HTSeq/doc/overview.html

Quantification FeatureCounts Liao et al., 2013 http://bioinf.wehi.edu.au/featureCounts/

Quantification Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/about.html

Gene filtering OEFinder Leng et al., 2016 https://github.com/lengning/OEFinder

Cofounding factor removal scLVM Buettner et al., 2015 https://github.com/PMBio/scLVM

Cofounding factor removal COMBAT Johnson et al., 2007 https://github.com/brentp/combat.py

Normalization GRM Ding et al., 2015 http://wanglab.ucsd.edu/star/GRM/

Normalization BASICS Vallejos et al., 2015 http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/

journal.pcbi.1004333.s009

Normalization SAMstrt Katayama et al., 2013 https://github.com/shka/R-SAMstrt

Normalization Deconvolution Aaron et al., 2016 https://github.com/MarioniLab/Deconvolution2016

Dimension Reduction pcaReduce Zurauskiene and Yau, 2015 https://github.com/JustinaZ/pcaReduce

Dimension Reduction t-SNE der Maaten and Hinton, 2008 https://lvdmaaten.github.io/tsne/

Dimension Reduction ACCENSE Shekhar et al., 2014 http://www.cellaccense.com/

Dimension Reduction ZIFA Pierson and Yau, 2015 https://github.com/epierson9/ZIFA

Differential Expression SCDE Kharchenko et al., 2014 http://hms-dbmi.github.io/scde/

Differential Expression PAGODA Fan et al., 2016 http://hms-dbmi.github.io/scde/

Differential Expression EdgeR Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/html/edgeR.html

Differential Expression DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential Expression MAST Finak et al., 2015 https://github.com/RGLab/MAST

Subpopulation Detection GiniClust Jiang, L. et al., 2016 https://github.com/lanjiangboston/GiniClust

Subpopulation Detection Geneteam Harris et al., 2015

Subpopulation Detection AscTC Ntranos et al., 2016 https://github.com/govinda-kamath/clustering_on_transcript_compatibility_

counts

Subpopulation Detection SIMLR Wang et al., 2016 https://github.com/BatzoglouLabSU/SIMLR

Subpopulation Detection BISCUIT Prabhakaran et al., 2016 http://www.c2b2.columbia.edu/danapeerlab/html/pub/prabhakaran16-supp.pdf

Subpopulation Detection BackSPIN Zeisel et al., 2015 https://github.com/linnarsson-lab/BackSPIN

Microevolution Moncole Trapnell et al., 2014 http://cole-trapnell-lab.github.io/monocle-release/

Microevolution embeddr Campbell et al., 2015 https://github.com/kieranrcampbell/embeddr

Microevolution SCUBA Marco et al., 2014 https://github.com/gcyuan/SCUBA

Microevolution Oscope Leng et al., 2015 https://www.biostat.wisc.edu/∼kendzior/OSCOPE/

Microevolution SLICER Welch et al., 2016 https://github.com/jw156605/SLICER

Microevolution TSCAN Ji and Ji, 2016 http://bioconductor.org/packages/release/bioc/html/TSCAN.html

Workflow SINCERA Guo et al., 2015 https://research.cchmc.org/pbge/sincera.html

Links for their availability are attached.
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quantify gene expression with UMI counting, one can directly set
up a molecule number threshold, e.g., 25 (Zeisel et al., 2015). It
is also recommended to remove UMIs that have reads <1/100 of
average non-zero UMI reads, in order to avoid erroneous UMIs
generated during amplification.

Removal of Confounding Factors
When the entire data set consists of several runs of experiments
with potentially varied conditions, systematic variations called
batch effects might be introduced. These artifacts may pose
substantial problems to downstream statistical analysis, or even
mask biological signals. For studies concerning over-dispersion
of gene expression, it is necessary to factor out the extra
variance caused by the systematic differences between batches
(Fan et al., 2016). The appropriate way to compensate for
batch effect depends on the quantification method as well as
the downstream analysis. For most studies batch effects can
be eliminated by using down-sampling methods, however the
complexity is reduced (Wang et al., 2012; Dey et al., 2015; Grün
and van Oudenaarden, 2015). For studies that use traditional
fragment counting, COMBAT (Johnson et al., 2007) is a batch
effect eliminating method based on empirical Bayes frameworks
and purports to be robust to outliers for small sample sizes. It was
originally designed for microarray data but was used in scRNA-
Seq experiments (Kim, K. T. et al., 2015). Although unsupervised
batch effect detection or removal methods exist (Leek, 2014),
the batches called by such methods often correlate highly
with subpopulations detected by other scRNA-Seq methods
(Finak et al., 2015). Since it is usually desirable to consider
subpopulations for valuable biological insights, unsupervised
batch effect removal methods should be used with discretion in
single-cell experiments.

Besides batch-effect removal, it is also important to remove
technical variability within the noise. The technical noise level
of a genes correlates with its average expression level. Thus,
a probabilistic model can be built to fit this correlation using
technical spike-ins and further infer the biological variability of
each gene (Brennecke et al., 2013). For most studies, it is also
desirable to avoid the ubiquitous cell-cycle induced variation to
mask other interesting biological variations. scLVM is a package
that tries to introduce a cell-cycle factor removal step before
subpopulations detection (Buettner et al., 2015). Recently, a
new package called ccRemover was developed to remove the
principal components that are identified as cell-cycle affected,
which claimed to perform better than scLVM in several simulated
and real datasets (Barron and Li, 2016).

Normalization
In scRNA-seq experiments, technical factors such as read
depth, cell capture efficiency, 3′ bias or full sequence coverage
due to particular library prep methods, might differ among
different scRNA-Seq data sets. Thus, raw read counts should
be normalized before downstream analyses. This procedure
maximally ensures that the difference between the values in the
matrix correctly reflects the abundance difference of transcripts
or genes between the cells. When experiments are designed
with ERCC spike-ins, ERCC can be used as internal controls

and serve as anchors for normalization. GRM is a scRNA-seq
normalization tool fitting a Gamma Regression Model between
the reads (FPKM, RPKM, TPM) and spike-ins (Ding et al., 2015).
The trained model is then used to estimate gene expression
from the reads. BASICS, another recent workflow, provides
a Bayesian model allowing to infer cell-specific normalization
factor (Vallejos et al., 2015). This workflow estimates the
technical variability using spike-ins. Finally, SAMstrt (Katayama
et al., 2013) is an earlier algorithm that applies the resampling
normalization procedure of the SAMseq algorithm to spike-
ins, which was originally developed for bulk RNA-seq (Li and
Tibshirani, 2013).

For experiments without spike-ins, if the quantification
is count-based, one can normalize the expression profile by
the scaling methods used in DESeq and edgeR etc. (Love
et al., 2014). A new specific scRNA-seq procedure proposes
a de-convolution approach on the pooled counts of gene
expression for multiple cells, thus allows to infer the size factor
for individual cells without using spike-ins (Aaron et al., 2016).
The authors claimed that their approach improved the accuracy
of the normalization compared with existing methods. However,
experiments designed with UMIs as mentioned earlier quantify
gene expression on an absolute basis and thus they do not need
computational normalization.

Differential Expression
Differential expression (DE) analysis is the process of calling gene
expression that show statistically significant difference between
pre-specified groups of samples. Although DE is typically not the
main objective of a single-cell experiment design, as it requires
pre-defined grouping information among cells of interest, it
is nevertheless common in scRNA-Seq experiments. Simple
statistical methods such as t-test and Wilcoxon rank sum test
are used in scRNA-Seq workflows such as SINCERA (Guo
et al., 2015). Interestingly, EdgeR and DESeq2, two DE methods
developed for bulk RNA-Seq, gave the best results for some
scRNA-Seq data (Schurch et al., 2016).

The dropout event is a unique type of noise of scRNA-Seq
that rarely occurs in bulk RNA-Seq experiments. It refers to
the phenomenon that a gene is shown expressed abundantly in
one cell but not detectable in another cell, as a consequence of
the transcript loss in the reverse-transcription step. To account
for frequent dropout events and biological variability within cell
population, more sophisticated algorithms have been developed
for scRNA-Seq data. Single-Cell Differential Expression (SCDE)
is a package developed specifically for single-cell differential
expression (Kharchenko et al., 2014). The model assumes
that observed expression levels in scRNA-Seq data follow a
mixture of negative binomial distribution for amplified genes,
as proposed before (Anders and Huber, 2010); and a low-
mean poisson distribution for dropout genes, as is observed in
transcriptionally silenced genes. This model is then fit using
Expectation Maximization (EM) algorithm (Kharchenko et al.,
2014). It claimed higher sensitivity of differentially expressed
genes compared toDESeq andCuffDiff.More recently, PAGODA
improved upon SCDE’s method in several aspects, including
optimization of the computational process and a refined model

Frontiers in Genetics | www.frontiersin.org 5 September 2016 | Volume 7 | Article 163

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Poirion et al. Single-Cell RNA-Seq Bioinformatics

for better fitting (Fan et al., 2016). MAST is another scRNA-
Seq differential expression detection method that uses a two-part
generalized linear model and adjusts for the fraction of cells that
express a certain gene (Finak et al., 2015).

Another challenge unique to scRNA-Seq is that some genes
may exhibit bimodality, meaning that the expression levels across
a group of cells concentrate around two modes instead of one.
A beta-Poisson distribution was proposed in order to provide
a more accurate differential expression analysis that captures
bimodality (Vu et al., 2016). Another tool Monocle (Trapnell
et al., 2014) also has a module for differential expression, which
fits the data with a non-parametric generalized additive model.
Finally, the workflow of BASICS as described earlier, provides an
criterion to detect high- or low-variable genes within the single
cells dataset (Vallejos et al., 2015). However, it is not clear which
methods have generally superior performance.

SUBPOPULATION AND MODULE
DETECTION

General Machine-Learning Approaches
Different classical unsupervised approaches have been used to
highlight single cell subgroups among a population. Principal
Component Analysis (PCA) and its variants (e.g., Robust PCA
and Kernel PCA) have been used in different single cell studies
(Amir et al., 2013; Yan et al., 2013; Pollen et al., 2014; Trapnell
et al., 2014; Treutlein et al., 2014; Satija et al., 2015; Fan
et al., 2016; Ilicic et al., 2016). K-means and other distance
based clustering algorithms such as hierarchical clustering or
WARD are also widely used (Yan et al., 2013; Jaitin et al.,
2014; Kharchenko et al., 2014; Lohr et al., 2014; Marco et al.,
2014; Pollen et al., 2014; Shin et al., 2015). For example,
Jaitin et al. combined hierarchical clustering and probabilistic
mixture models to classify single cells from different tissues
(Jaitin et al., 2014). A refined clustering method called pcaReduce
(Zurauskiene and Yau, 2015) was designed for scRNA-Seq. It
iteratively uses PCA combined with K-means to produce the
hierarchical tree of the cells. For distance metrics employed
by these methods, Euclidean distance, Pearson and Spearman
correlation coefficients have been popular (though may not be
optimal) choices (Pollen et al., 2014; Rotem et al., 2015).

Machine-Learning Approaches Tailored for
scRNA-Seq Analysis
More sophisticated machine-learning algorithms have great
potentials to overcome some issues of scRNA-Seq functional
analysis. A main issue of scRNA-Seq analysis is that gene
expression data cannot be expressed as a linear combination
of the relationships between two cells in general (Buettner and
Theis, 2012; Bendall et al., 2014; Levine et al., 2015). Also classical
similarities (such as cosine or Euclidean distances) are less
meaningful as the dimensionality increases (Beyer et al., 1999),
and may not be appropriate for scRNA-Seq (Xu and Su, 2015).
Possible irrelevant associations may arise with inappropriate
metrics, while searching for the nearest neighbors on noisy
data (Balasubramanian and Schwartz, 2002). Adequate analytical

methods for scRNA-Seq data should also be able to highlight
“rare events,” such as the small fraction of metastatic cancer
cells amongst a large cell population (Bose et al., 2015; Shin
et al., 2015). We describe the scRNA-Seq specific algorithms
below in the order of dimension reduction, clustering, and other
clustering variant methods. The datasets that were used to test
these algorithms are listed in Table 2.

Among the dimension reduction methods, Zero-inflated
factor analysis (ZIFA) algorithm is a new method that includes
dropout events by representing the probability of gene dropout
as an exponential function of its mean expression (Pierson and
Yau, 2015). Using a latent variable model based on factor analysis,
ZIFA reduces the dimension of scRNA-Seq dataset and allows the
probability of each gene expression to be zero. Experiments in
the original study suggest that ZIFA is a more robust alternative
to PCA. As mentioned earlier, scLVM is another method
for identifying cell subpopulations, which features removal of
confounding factor like cell-cycle effects (Buettner et al., 2015). It
first computes cell-to-cell covariance using a set of marker genes
related to biological hidden factors of interest (such as the cell
cycle). Another approach, PAGODA as mentioned before, uses a
weighted PCA to characterize multiple aspects of heterogeneity
in mouse neuronal progenitors (Fan et al., 2016). PAGODA
evaluates over-dispersion of individual genes using error models.

SIMLR is a new clustering method designed to learn
a distance metric that best fits the structure of the data.
It infers a distance function as a linear combination of
several distance metrics (Wang et al., 2016). It is designed to
tackle the heterogeneity observed amongst single-cell datasets
related to both technological difference across platforms as
well as biological difference across studies. In another single-
cell clustering approach named analysis of scRNA-seq based
on transcript-compatibility counts (AscTC), read counts from
scRNA-Seq dataset are transformed into probabilities using
transcript-compatibility counts, rather than the conventional
transcript abundance (Ntranos et al., 2016). Individual cells are
clustered using an affinity propagation algorithm, a derivative of
spectral clustering.

A few other hierarchical clustering approaches are worth
mentioning. Geneteam is a multi-level recursive clustering
method that searches for bipartitions of cells sharing exclusive
expression profiles for a subset of genes (Harris et al., 2015).
Similarly, Backspin is another hierarchical dividing clustering
algorithm, allowing to cluster both genes and cells (Zeisel et al.,
2015). It uses the SPIN algorithm (Tsafrir et al., 2005) at each
iteration to sort the expression matrix and then separates genes
(rows) and cells (columns) into two groups by a specific splitting
criterion. Alternatively, BISCUIT is a new iterative normalization
and clustering procedure based on Dirichlet Process, which was
designed to correct technical variation in scRNA-seq together
with cell clustering (Prabhakaran et al., 2016).

Graph Approaches beyond Clustering
Traditional clustering methods lack the function of inferring
the inherent lineage between cells. Common approaches for
cell lineage inferences require the creation of a graph or a
tree, where single cells are represented as nodes and edges
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TABLE 2 | Description of the main datasets for subpopulation and module detection analysis.

Dataset description Accession References Species Number of Original analysis Applied algorithms

cells

Cortex and hippocampus cells GSE60361 Zeisel et al., 2015 Mouse 3005 BackSPIN Geneteam, PAGODA,

AscTC, BISCUIT,

GiniClust

11 different cell types SRP041736 Pollen et al., 2014 Human 301 PCA and hierarchical

clustering

ZIFA, SILMR, pcaReduce

Myoblast differentiation GSE52529 Trapnell et al., 2014 Human 372 MONOCLE ZIFA, AscTC, TSCAN,

Embeddr

Embryomic T-cells under different cell

cycle stages

E-MTAB-2512 Buettner et al., 2015 Mouse 182 scLVM ZIFA, SLIMR

Preimplementation embryos and

embryonic stem cells at different stages

GSE36552 Yan et al., 2013 Human 124 PCA and hierarchical

clustering

scLVM, SNN-Cliq

Cells from developing bronchioalveolar at

four different stages of development

GSE52583 Treutlein et al., 2014 Mouse 202 PCA and hierarchical

clustering

SLICER, EMBEDDR

between the cells indicate their similarities. The lengths of the
edges are computed from a similarity matrix based on a given
metric. Before constructing the graph, a de-noising procedure
is necessary. A useful de-noising procedure is to compute the
k-Nearest-Neighbor graph (kNNG; Bendall et al., 2014; Levine
et al., 2015; Xu and Su, 2015). Samples from the kNNG could then
be compared using the geodesic distance, defined as the shortest
path between two nodes (Bendall et al., 2014). Such an approach
can remove “shortcuts” between irrelevant pairs of samples due
to the curse of high dimensionality (Tenenbaum et al., 2000).
Clustering analysis can then be performed on the graph using
community detection algorithms (Fortunato, 2010). Xu and
Su first used Euclidean distance to compute Shared Nearest-
Neighbor (SNN) graph, then searched for quasi-cliques to obtain
clusters of cells (Xu and Su, 2015). Quasi-cliques are communities
of nodes, densely but not necessarily fully connected. Highly
Connected Sub-graph (HPC) is another community detection
algorithm that showed very similar performances as SNN
(Hartuv and Shamir, 2000).

MICROEVOLUTION OF SINGLE CELLS

Inference without Spatial and Temporal
Information
scRNA-Seq data are also informative to reveal single-cell
microevolution. Different algorithms have been specifically
designed for scRNA-Seq to infer a pseudo temporal ordering of
single cells. Moncole is the first scRNA-Seq bioinformatics tool
to infer the temporal ordering of single cells (Trapnell et al.,
2014). It first uses Independent Component Analysis (ICA) to
reduce the dimension, then computes a Minimum Spanning
Tree (MST) on the graph constructed by Euclidean distance
between cell pairs. MST connects all nodes of a graph using edges
with a minimal total weighting, based on the hypothesis that
the longest path through the MST corresponds to the longest
series of transcriptionally similar cells. Another similar method,
Waterfall, uses PCA coupled with k-means to produce clusters,
then connects the cluster centroids with MST (Shin et al., 2015).

Similar to Waterfall, TSCAN is a new approach based on MST.
Cells are first clustered using a model-based approach before
constructing an MST, allowing the reduction of the tree space
complexity (Ji and Ji, 2016).

Embeddr is a method that uses the correlation metric between
cells to construct kNNG, then projects the samples into a low-
dimensional embedding using Laplacian eigen maps. The pseudo
time order is then fitted using the principal curves (Campbell
et al., 2015). Embeddr aims to tackle the drawbacks of Monocle,
where gene expression ismodeled as a linear combination and the
result is highly sensitive to outliers. This scheme is also used in
the workflow of SLICER, a recent algorithm using Locally Linear
Embedding (LLE) to project the dataset and to construct a kNNG
among cells (Welch et al., 2016).

Since visualization is key in understanding reconstructed
single-cell trajectories, better visualization algorithms are
as important as methods to reconstruct the single-cell
microevolution. t-SNE is a popular method to visualize
single cells, as part of a more complex workflow (Jiang, L. et al.,
2016; Petropoulos et al., 2016). Another approach derived from
diffusion map was developed, allowing one to visualize a clear
bifurcation event among the cells which may be missed by
independent component analysis (ICA) or t-SNE (Haghverdi
et al., 2015; Moignard et al., 2015).

Modeling Microevolution with Spatial and
Temporal Information
Cell subpopulations can also be characterized by different
temporal and/or spatial gene expressions. Several approaches
have been designed to exploit datasets with explicit temporal
information. SCUBA is a method to detect bifurcation events
using time course data (Marco et al., 2014). It assumes that the
switch between cell states is a stochastic punctual process. To
infer cellular hierarchy, it iteratively divides cells using k-means
algorithm and uses a gap statistic to determine if a bifurcation
event should occur. This process creates a binary tree, which
can then be used to model gene expression dynamics (Marco
et al., 2014). However, one drawback of SCUBA is that it requires
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data with temporal features. Free from such a requirement,
Oscope is another method to infer oscillatory genes among
single cells collected from a single tissue (Leng et al., 2015). It
hypothesizes that these cells represent distinct states according to
an oscillatory process. Oscope fits a two-dimensional sinusoidal
function for each pair of genes, clusters gene pairs by frequency
and reconstructs the order of the cells in a cyclic fashion.
However, Oscope is unable to infer bifurcation events.

Other models also consider the spatial organization of cells in
a tissue. Seurat is an approach that infers the spatial localization
of single cells by integrating RNA-Seq with in situ RNA patterns
(Satija et al., 2015). Seurat divides a cellular tissue into distinct
spatial bins, linked by the expression of landmark genes per RNA
in-situ hybridization. Within each bin, it builds a mixture model
using expression values among correlated genes. The posterior
probability is generated for each cell and assigned to a given bin.
Another approach models the tissue as a 3D map and assumes
that cells spatially close share common scRNA-Seq profiles (Pettit
et al., 2014). This method uses a hidden markov random field
to assign each bin of the map to a given cluster. Similar to
Seurat, it takes the input of spatial gene expression measurement
using whole mount in situ Hybridizations (WiSH) technology,
a confocal microscopic approach that detects the presence of
mRNA linked to a fluorescent probe.

CHALLENGES AND FUTURE WORK

Compared to bulk-cell analysis, single-cell genomics has the
advantage of exploring cellular processes with a more accurate
resolution, but it is more vulnerable to disturbances. Besides
perfecting the experimental protocols to deal with issues such
as dropouts in gene expression and biases in amplification,
deriving new analytical methods to reveal the complexity in
scRNA-Seq data is just as challenging. In this review, we
have listed the different bioinformatics algorithms dedicated
to single-cell analysis. Although the initial few steps of
workflow for scRNA-Seq analysis are similar to bulk-cell
analysis (data pre-processing, batch removal, alignment, quality
check, and normalization), the subsequent analyses are largely
unique for single cells, such as subpopulations detection, and
microevolution characterization (Figure 1). With the increasing
popularity of single-cell assays and ever increasing number
of computational methods developed, these methods need to

be more accessible to research groups without bioinformatics
expertise. Moreover, datasets where cell classes have already
been previously charaterized should be identified as benchmark
data, in order to accurately assess the performance of new
bioinformatics methods.

Although this review focuses on scRNA-Seq analyses, with
the rapid development of technologies, coupled DNA-based
genomics data can be obtained from the same cell, in parallel
with scRNA-Seq data (Han et al., 2014; Dey et al., 2015; Kim, K.
T. et al., 2015; Macaulay et al., 2015). This will further increase
the analytical challenges. Previous multi-omics bioinformatics
tools applied to bulk samples could be leveraged. The use
of graphs and tensor approaches that integrate heterogeneous

features in bulk samples may be good starting points for multi-
dimensional single cell data (Li et al., 2009; Levine et al.,
2015; Katrib et al., 2016; Zhu et al., 2016). Efforts should also
be made toward developing computational methods to make
use of spatial information (possibly guided by imaging) in
combination of scRNA-Seq (Pettit et al., 2014; Satija et al.,
2015). Also most emphasis in scRNA-Seq by far has been made
on protein coding genes, and the dynamics and roles of non-
coding RNAs such as lncRNAs (Travers et al., 2015; Ching
et al., 2016) and micro-RNAs are poorly explored. Finally, a
large number of single-cells (n = 4645) in a single data set
was reported recently (Tirosh et al., 2016), and the scRNA-
Seq data volume is expected to continue growing exponentially.
Foreseeably, this poses a large spectrum of challenges from
developing more efficient aligners to better data storage and data
sharing solutions.
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