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Abstract

Single-cell RNA sequencing (scRNA-seq) of human primary tissues is a rapidly emerging tool for investigating human
health and disease at the molecular level. However, optimal processing of solid tissues presents a number of technical and
logistical challenges, especially for tissues that are only available at autopsy, which includes pancreatic islets, a tissue that
is highly relevant to diabetes. To assess the possible effects of different sample preparation protocols on fresh islet samples,
we performed a detailed comparison of scRNA-seq data generated with islets isolated from a human donor but processed
according to four treatment strategies, including fixation and cryopreservation. We found significant and reproducible dif-
ferences in the proportion of cell types identified, and more minor effects on cell-specific patterns of gene expression. Fresh
islets from a second donor confirmed gene expression signatures of alpha and beta subclusters. These findings may well
apply to other tissues, emphasizing the need for careful consideration when choosing processing methods, comparing
results between different studies, and/or interpreting data in the context of multiple cell types from preserved tissue.
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Introduction

Type 2 diabetes (T2D) is a growing worldwide problem charac-
terized by insufficient insulin production in the face of periph-
eral insulin resistance. Genome-wide association studies have
identified up to 243 T2D risk loci [1], and many of those point to
the pancreatic islet as the relevant tissue. More than 90% of the
T2D risk variants fall in noncoding regions, however, indicating
that they act through regulatory mechanisms. Interrogating the
transcriptome of the human islet, the source of insulin and
other important metabolic hormones, is therefore expected to
provide valuable insights into the pathophysiology of diabetes.

Single-cell RNA sequencing (scRNA-seq) offers the ability to
assess the transcriptomes of individual cells from pancreatic
tissue, a heterogeneous population of exocrine cells (acinar and
ductal) and hormone-secreting endocrine cells (beta, alpha,
delta, gamma, and epsilon).

A number of scRNA-seq technologies with variable technical
and cost efficiencies are currently available to investigate a
wide range of organ/tissue systems (reviewed in [2–6]). But the
biological validity of scRNA-seq data with regard to capturing
the native transcriptional state of the cell is critically dependent
on minimizing technical perturbations that may stress and/or
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damage cells. Such perturbations can occur during tissue har-
vesting, single-cell isolation, and/or preservation of cells prior
to RNA-seq. These issues are expected to be less significant for
tissues such as blood lymphocytes that can be obtained fresh,
and that are already present in single-cell suspensions. But
solid tissues obtained by biopsy or autopsy require more exten-
sive treatments for harvesting and dissociation into single cells.
The ability to use methods such as fixation or cryopreservation
can offset the logistical complexities of matching the timing of
tissue acquisition and sample preparation—but the effect of
such methods on single-cell gene expression has received lim-
ited attention.

Human islets secrete insulin, glucagon, and other important
hormones that regulate metabolism, and this a critically impor-
tant tissue for research on the pathophysiology of diabetes. But
human islets can currently only be obtained at autopsy, and
only a subset of this limited resource is released for scientific re-
search. Receiving fresh human pancreatic islets for experimen-
tal analyses is thus challenging, infrequent, and unpredictable.
The timing of scRNA-seq processing of islet tissue relies on sev-
eral factors including (i) tissue availability, (ii) tissue transport
time to the processing and sequencing laboratory, and (iii) labo-
ratory personnel and equipment availability at the time of re-
ceipt of tissue. Ideally, the ability to process multiple tissue
samples from different donors in parallel could contribute to
technical, time, and cost efficiencies, and reduce batch effects
between scRNA-seq runs. Thus, it would be highly desirable to
identify a sample preparation option that could preserve tissues
and/or cells for scRNA-seq processing at a later time.

A few groups have preserved tissues/cells from various sour-
ces for scRNA-seq utilizing fixation [7–10] or cryopreservation
[11, 12] strategies, and recovered RNA-seq data that correlate
reasonably well with that obtained from fresh cells. But pancre-
atic islets may represent a particularly challenging case. In this
work, we report a comparison of single-cell islet transcriptomic
data from fresh material (considered as the “gold standard”) to
those obtained after methanol fixation or cryopreservation. We
find significant cell type-specific differences with regard to cell
abundance and gene expression that should inform future deci-
sions about sample preparation for scRNA-seq.

Material and methods
Origin and processing of pancreatic islets

Purified human pancreatic islets were obtained from Prodo
Laboratories (Aliso Viejo, CA) and were isolated from cadaver-
ous donors whose organs were consented for research. As per
Office for the Protection of Research Subjects policy, islets
obtained from nonliving individuals do not fall under the guide-
lines of human subject research. All experimental protocols per-
formed for this study are approved under the National
Institutes of Health (NIH) guidelines.

The main source Donor 1 (whose islet cells were used in
each of the preservation treatment groups in this manuscript)
was a nondiabetic (HbA1c¼ 4.2%) 28-year-old Caucasian male,
with BMI of 34.7. The isolated islets were 95% pure by dithizone
staining and 95% viable by dye exclusion [13]. Islet size index
indicates 93% of the purified islets were �100um in size. A sec-
ond source Donor 2, referred to as “Fresh-Donor 2” and used to
support findings of the Donor 1 “Fresh” samples, was a diabetic
(HbA1c ¼ 7.1%) 61-year-old Haitian male, with BMI of 27.31 and
islet purity of 85%. The purified islets were cultured in Prodo

Islet Media [PIM(S)] complete media (Prodo Laboratories, Aliso
Viejo, CA, USA) at a density of 10 000 Islet Equivalents (IEQ)/
150 mm2 for 72 h at 37�C. Islets were then packaged and trans-
ported to our laboratory at 4�C over a period of �24 h. Upon re-
ceipt, islets were equilibrated to 37�C for 1 h prior to
downstream processing for either bulk sequencing or scRNA-
seq under four treatment conditions.

Main islet source (Donor 1) for single-cell preservation
treatment groups

Twelve aliquots, each with 3000 IEQ from a single source of human
pancreatic islets, were assembled to test, in triplicate four condi-
tions of preserving islet cells for scRNA-seq (Figure 1). Treatment 1
islets (“Fresh”) were dissociated to single cells immediately after 1-
h equilibration at 37�C and then put through the scRNA-seq
pipeline beginning on Day 1. Treatment 2 islets (“FreshON”) were
incubated overnight at 37�C prior to dissociation and scRNA-seq on
Day 2. Treatment 3 islets (“Fixed”) were dissociated to single cells
immediately upon arrival, fixed with methanol and stored over-
night at 4�C prior to scRNA-seq on Day 2. Treatment 4 islets
(“Frozen”) were dissociated to single cells immediately upon
arrival, frozen at�80�C overnight prior to scRNA-seq on Day 2.

Additional islet source (Fresh-Donor 2) for Fresh
treatment group

Two aliquots (to serve as replicates), each with 3000 IEQ, were
tested under the “Fresh” condition as described for Donor 1. The
two Fresh-Donor 2 samples were processed separately from 12
Donor 1 samples, including library preparation, sequencing,
and data analysis.

Dissociation of pancreatic islets

Each islet aliquot was dissociated as follows: 3000 IEQ in 1 mL
Accutase solution (Innovation Cell Technologies, Inc) were incu-
bated at 37�C for 10 min and then washed with 2 mL PIM(S)TM

(Prodo Islet Media, Prodo Laboratory Inc, Irvine, CA, USA). This

24 hrs
Islet isolation

Transport to laboratory for scRNA-seq 

Dissociate islets  

SC capture 

cDNA libraries SC capture and
cDNA libraries 

SC capture and
cDNA libraries 

SC capture and
cDNA libraries 

Methanol
Fixation

Freeze at
-80°C

“Fresh”

O/N at
4°C 

O/N at
-80°C 

“Fixed” “Frozen”“FreshON”

D
ay

 1
D

ay
 2

<9
6

hr
s

Pancreas

O/N at
37°C

Dissociate islets

Figure 1: Experimental design and preservation treatment groups for Donor 1.

For each of the four sample preparation methods, biological triplicates were

prepared for scRNA-seq. Drawing by Julia Fekecs, NHGRI-NIH.
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was followed with a 10 min 37�C incubation in 3 mL PBS with 5 U
Dispase I (Roche Diagnostics)/3 U DNase I (ThermoFisher
Scientific), then washed once and resuspended in PIM(S). The fi-
nal cell suspension was passed through a BD 40 lm cell strainer
to remove aggregates, and then assessed for cell viability and
cell numbers via staining with acridine orange and DAPI
(Chemometec Nucleocounter NC-3000).

Fixation of dissociated islets (single cells)

Cells were fixed as per the 10X GenomicsTM Sample Preparation
Demonstrated Protocol Rev B. Briefly, dissociated islet cells
were washed twice with chilled rehydration buffer Phosphate
Buffer Saline (PBS), 1% Bovine Serum Albumin (BSA) and 500 U/
mL Ribonuclease inhibitor), resuspended in 100 lL rehydration
buffer, vortexed at low speed during addition of 900 lL chilled
methanol, incubated on ice for 15 min, and stored overnight at
4�C. The following day, the fixed cell solutions were pelleted to
remove methanol, washed once, and resuspended
in rehydration buffer, passed through BD 40 lm cell strainer to
remove debris, and assessed for cell counts.

Freezing dissociated islets (single cells)

Cells were resuspended in Recovery Cell Culture Freezing
Medium (ThermoFisher Scientific), frozen overnight at �80�C,
thawed in 37�C water bath (on Day 2), washed twice, and resus-
pended in PIM(S), and assessed for cell viability and cell num-
bers prior to processing for scRNA-seq.

Bulk RNA extraction, sequencing, and data alignment

One sample (2000 IEQ) of each of the two donor sources was proc-
essed for bulk RNA sequencing. Each sample was flash-frozen at
�80�C for total RNA extraction (bulk islets). Total RNA was
extracted and purified using Trizol reagent (Invitrogen) as previ-
ously described [14], yielding RNA Integrity Number (RIN) 9.5 and
9.4, for Donors 1 and 2, respectively. Strand-specific PolyAþ-
enriched messenger RNA (mRNA) libraries were generated with
the TruSeq Stranded mRNA kit using an input of 1 ug mRNA and
sequenced on an Illumina NovaSeq 6000. Total of 159 million and
193 million paired-end 151 bp reads were generated for Donors 1
and 2, respectively. RNA-seq reads passing the Illumina chastity
filter were mapped to a reference sequence of hg19 (with chromo-
some M replaced with Cambridge Reference Sequence and chro-
mosome Y pseudoautosomal region masked). Read alignment
was performed with the Spliced Transcript Alignment to a
Reference (STAR) software (version 2.5.1 [15]) using default
parameters and a splice junction catalog based on the basic
Gencode v19 annotations [16]. Duplicate read pairs were retained
but read aligning to alternate haplotypes were excluded.
Nonuniquely mapping reads and read pairs with unpaired align-
ments were also excluded. Read counts for each gene were deter-
mined with the Quality of RNA-Seq Toolset (QoRTs) v1.1.18 [17]
and generated expression values as reads per kilobase transcripts
per million mapped reads (RPKM). The quality and integrity of
this bulk library were confirmed by assessing quality control (QC)
metrics in QoRTs along with 10 other samples that were proc-
essed and sequence in the same batch.

scRNA-seq and read alignments

Single-cell mRNA isolation and sequencing library generation
were performed with the 10X Genomics SC3’v2 chemistry
according to manufacturer’s instructions. This chemistry labels

each input RNA molecule with a unique molecular identifier
(UMI) that can be used during data analysis to account for PCR
amplification bias. Barcoded sequencing libraries were quantified
by Quant-IT PicoGreen dsDNA kit (P11496, Invitrogen), diluted at
3 nM and sequenced on Illumina HiSeq3000 using the following
read length: 26 bp for Read1, 8 bp for I7 Index, and 98 bp for Read2.
All 12 libraries from Donor 1 were pooled together and sequenced
in 12 lanes, generating a total of more than 3.6 billion reads with
an average of 301 million reads per sample. Fresh-Donor 2 repli-
cate libraries were pooled together and sequenced separately
from the 12 Donor 1 treatment group samples.

Demultiplexing of the Illumina base call files and generation
of fastq files containing the scRNA-seq data were done using
the “mkfastq” function in the CellRanger software package (10X
Genomics, v. 1.2.1). Alignment of scRNA-seq reads to the human
reference (GRCh37/hg19, Ensembl release 82) and transcript
quantification was performed using the “count” function in
CellRanger.

Single-cell RNA-seq data quality control filtering

Outlier cells potentially representing low-quality cells or multi-
ple cell captures were removed by excluding cells with very low
or high library sizes [18]. Thus, cells with either log-normalized
UMI/cell or gene/cell values >2.5 standard deviations (SDs) or
<�2.5 SDs from the median value were removed. Rarely
expressed genes were also removed by excluding those
expressed in <0.2% of cells in a sample.

Single-cell data normalization for cell type classification
and differential gene expression

Gene expression data (represented by UMI count) were normal-
ized by both library size and by loge transformation. Gene-
specific UMI counts in each cell were normalized by dividing the
gene-specific UMI count by the total number of UMI in the cell
and then multiplied by a scaling factor of 10 000 (“CP10K”). To
adjust for 0 counts, 1 was added to all UMI values prior to loge

transformation (Seurat V2.0—“NormalizeData” function)
(https://satijalab.org/seurat [19]). These normalized and log-
transformed (In[CP10Kþ 1]) expression values were used for
downstream in cell type classifications and differential gene ex-
pression analyses.

Cell type classification

Gaussian mixture models (GMMs) were used to classify cell types
according to the In[CP10Kþ 1] expression values of known cell
type-enriched “major” marker genes: INS—beta, GCG—alpha,
SST—delta, GHRL—epsilon, PPY—gamma, KRT19—ductal,
PRSS1—acinar, COL1A1—stellate, VWF—endothelial, and SDS—
macrophage. GMMs were built using the R package mclust
(v. 5.3) with two mixture components, each component repre-
senting cells expressing either low levels or high levels of each
marker gene. Cell type identity was assigned to a cell if it
expressed a major marker gene at a high level. Cells not express-
ing any major marker gene at the high threshold level were con-
sidered “unknown.” Cells with high expression levels for more
than one major marker gene were considered “mixed” cells. The
mixed cells were removed from further downstream analysis.

Generation of heatmaps

The expression data shown in heatmaps are scaled z-scores
that were calculated as follows: zi, j ¼ (xi, j � li)/ri, where xi, j is
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the normalized expression of gene i in cell j, li is the mean ex-
pression of gene i for all cells of a sample, and ri is the SD of ex-
pression for gene i for all cells of a sample. Cells, shown as
columns, were ordered and grouped according to cell type as de-
termined from the expression levels of the “major marker”
genes (shown in bold on the right side). Genes, shown as rows,
were ordered and grouped according to previously known asso-
ciations with the different islet cell types.

Differential gene expression for pathway (IPA) analyses

Pairwise differential gene expression comparisons were made
across treatment groups or cell type (alpha or beta) subclusters.
In[CP10K] expression values were used in these analyses
(Seurat V2.0—“FindMarkers” with default test method of
Wilcoxon rank-sum). Genes with significant differential expres-
sion for each pairwise comparison (P-adjBonfcorr <0.05 and ratio
of expression change for the pairwise comparison �0.8 or �1.3)
were used as input for Ingenuity Pathway Analysis (IPA—
QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis).

Cell type-specific enriched genes

Triplicate samples were combined to generate four treatment-
specific datasets. Within each treatment dataset, differential
gene expression (Seurat V2.0—“FindMarkers” with default test
method of Wilcoxon rank-sum) was used to determine the top
genes enriched in each endocrine cell type (except for the rare
epsilon cells). Specifically, one cell type was compared to all
other types i.e. beta vs. the remainder of the islet cells (“other
types”), alpha vs. other types, delta vs. other types, gamma vs.
other types, etc. and this process was repeated for each treat-
ment group independently. A “positive” fold change value (�1.2)
was taken as an enrichment of one cell over the “other types.”
The top 100 most significantly (P-adjBonfcorr< 0.01) and enriched
genes observed in four major endocrine cell types (beta, alpha,
delta, and gamma) from the Fresh treatment group was
assessed for their presence in the corresponding lists of the top
100 significantly enriched genes from the FreshON, Fixed, and
Frozen groups.

Correlation of gene expression across biological
replicates

Gene expression in each cell was normalized for library size by
dividing the gene-specific UMI count by the total number of UMI
in the cell and multiplying by 10 000 (“CP10K”). A synthetic bulk
value for each gene was then generated by averaging the gene
CP10K expression value across all cells within each replicate
sample, followed by loge transformation. Only genes with non-
zero values in all samples were used in the pairwise linear cor-
relation (Pearson) analyses.

Correlation analyses of treatment groups and bulk
sample

Triplicate samples were combined to generate four independent
single-cell treatment-specific datasets. A synthetic bulk value
for each gene was then generated by averaging the gene CP10K
expression value across all cells within each treatment-specific
dataset, followed by loge transformation. For the bulk sample,
RPKM values (as described above) were also loge transformed
for this analysis. Only genes with nonzero values in all datasets

were used in the pairwise linear (Pearson) or rank-order
(Spearman’s) correlation analyses.

Clustering of single cells and tSNE projections

In[CP10Kþ 1] expression values were scaled prior to clustering
(Seurat V2.0—“ScaleData” with regression by total UMI/per cell)
to standardize the range of expression and to remove additional
variation based on library size. The top 1000 most variable genes
[43] from each sample were used to cluster cells (Seurat V2.0—
“FindCluster”). The resulting clusters were visualized with t-
Distributed Stochastic Neighbor Embedding (tSNE) (Seurat
V2.0—“RunTSNE”).

Results
Islet preservation treatment groups

We utilized a single shipment of fresh human pancreatic islets
from a single donor (Donor 1) to assess the integrity of single-
cell transcriptomic data from dissociated cells preserved under
four treatment conditions (Figure 1): (i) “Fresh”—cells dissoci-
ated from islets upon arrival from the islet resource center and
processed immediately for scRNA-seq, (ii) “FreshON”—islets in-
cubated overnight at 37�C prior to dissociation to single cells
and scRNA-seq on the second day, (iii) “Fixed”—cells dissociated
from islets upon arrival and fixed in methanol and stored over-
night at 4�C prior to scRNA-seq processing on the second day,
and (iv) “Frozen”—cells dissociated from islets upon arrival and
frozen overnight at �80�C prior to scRNA-seq processing on the
second day. Treatment groups were performed in triplicate for a
total of 12 samples, generating transcriptomic data from 19 521
cells of 12 libraries (Table 1).

The major hormone-secreting cells in pancreatic islets are
alpha cells (glucagon), beta cells (insulin), delta (somatostatin),
gamma or PPY-cells (pancreatic polypeptide), and epsilon (ghre-
lin). Cell type composition can be variable among islets within
the same pancreas, suggesting a high level of heterogeneity in
islet morphology [20]. As such, the RNA composition of a
“sample” of islets is distinct from another islet sample from the
same donor. Thus, we consider each treatment group to consist
of three biological replicates—though we also acknowledge that
the distinction between biological and technical replicates is
somewhat blurry in this situation.

RNA-seq metrics and quality control exclusions

We performed single-cell mRNA isolation and library genera-
tion on the 10X Genomics Chromium System and sequenced
the cDNA libraries on the Illumina HiSeq 3000 to an average
depth of 302 million reads per sample (Table 1). Across the dif-
ferent samples, the mean reads per cell ranged from 114 456 to
295 332 depending on the number of cells captured and the total
sequence reads for that sample. UMIs attached to each se-
quence read identified unique transcripts, in order to avoid in-
flated counts due to PCR amplification during library
preparation. The mean UMI/cell for each sample varied from
9213 to 17 310, and the mean number of genes detected per cell
varied from 2244 to 3555 genes. The mean number of genes per
cell detected for each sample was consistent across the tripli-
cate groups with the Frozen triplicates having the highest num-
bers due to the higher reads/cell.

We excluded outlier cells (with gene count and/or UMI count
>2.5 SDs or <�2.5 SDs from the median value) as these are
likely to represent poor quality cells or cells that are in fact a
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mix of two or more cells (Supplementary Table S1). However,
we chose not to use indicators of ER stress, such as high expres-
sion of mitochondrial genes [21], as a criterion for exclusion, as
we considered that metrics of cellular stress might be informa-
tive for the comparison of cell preservation methods. ER stress
in pancreatic beta cell has been linked to cell proliferation and
to the high demands for insulin synthesis [22, 23], and mito-
chondrial gene expression in islet beta cells occurs during cellu-
lar oxidative phosphorylation to trigger insulin secretion
(reviewed in Ref. [24]). Although the contribution of technical
artifacts is unclear, mouse islet scRNA-seq data are enriched for
genes in mitochondrial dysfunction pathways [25] and exhibit
beta-cell heterogeneity with respect to expression of ER stress
markers [26]. Thus, we included cells regardless of mitochon-
drial gene expression levels. Ultimately, we performed down-
stream analyses on a total of 18 841 islet cells, averaging 1570
cells per sample (Table 1 and Supplementary Table S2). Median
mitochondrial gene expression in each of the 12 samples ranged
from 1.1% to 3.0% with the lowest levels in the Fixed group (me-
dian �1.5%; Supplementary Figure S1), consistent with previous
reports comparing Fresh and Fixed datasets [8, 9].

Concordance of biological replicates and quality of
scRNA-seq data

To assess the consistency and quality of the scRNA-seq data,
we examined the (i) correlation of the average expression of a
given gene across all cells within a sample to that of its repli-
cates and (ii) clustering of matching replicate cell types by the
multidimensionality reduction technique, tSNE.

We addressed the first measure by computing the average
expression of a given gene across all cells in a sample to gener-
ate “synthetic bulk” values for that gene. We then used syn-
thetic bulk values of each gene to perform pairwise correlation
between the replicate samples. The average expression
(synthetic bulk) profiles are highly correlated across the Fresh
triplicate samples (r� 0.988; Figure 2A) as is the case with tripli-
cate samples from each of the other three treatment groups
(r� 0.951; Supplementary Figure S2).

Second, unsupervised clustering of cells confirmed the pres-
ence of multiple cell types in pancreatic islets. Combining

results from triplicate samples generated several clusters in the
tSNE analysis, with cells from each replicate dispersed within
all clusters, suggesting high concordance among replicates
(Fresh triplicates—Figure 2B; data not shown for other treat-
ment groups). Furthermore, we were readily able to identify
known islet cell types in the unsupervised clusters; enriched
“major marker” genes, namely GCG (alpha cells), INS (beta cells),
SST (delta cells), GHRL (epsilon cells), PPY (gamma cells), PRSS1
(acinar cells), KRT19 (ductal cells), and COL1A1 (stellate cells),
were generally each expressed in a single unique cluster (Fresh
triplicates—Figure 2C). These observations attest to both the
consistency and integrity of our scRNA-seq data to recapitulate
cell type gene expression patterns and enable cell type-specific
clustering.

Cell type classifications

For a more systematic determination of the identity of cells iso-
lated from the pancreatic islets, we classified each endocrine or
exocrine cell type based on the level of expression of their re-
spective enriched “major marker” gene i.e. GCG, INS, SST, PPY,
GHRL, PRSS1, and KRT19. We also included several other markers
to identify associated cell types: COL1A1 (stellate), VWF (endo-
thelial), and SDS (macrophage). Since these major marker genes
are not expressed in a single cell type as a precise on–off switch,
but rather exhibit a bimodal distribution (Fresh triplicates endo-
crine cells—Figure 3A), we used GMMs to establish expression
threshold values for each major marker. Only cells expressing a
major marker gene in the “upper mode” of the distribution were
classified as belonging to its respective cell type. Overlaying
these cell type classifications onto tSNE clusters highlighted the
identities of each cluster (Fresh triplicates—Figure 3B). Cells not
expressing any of the major markers at threshold or above
levels were classified as “unknown.” Cells with more than one
major marker genes at or exceeding their threshold values may
represent multiple cell encapsulations during capture and thus
classified as “mixed” cells. To note, this method of classifying
mixed cells does not account for instances where the mixed
cells are of the same type.

We determined the accuracy of the single major marker
classifications by examining the coexpression profiles of

Table 1: Donor 1 treatment sample groups and data metrics

Sample Cells captured # Reads Mean reads/cell Mean UMI/cell Mean genes/cell Cells after QC

1_Fresh 2264 391 388 035 172 874 11 884 2436 2171
2_Fresh 2183 341 262 069 156 327 11 974 2437 2097
3_Fresh 2309 428 796 247 185 706 11 793 2501 2214
Fresh average 2252 387 148 784 171 636 11 884 2458 2160
4_FreshON 1090 192 562 591 176 662 10 070 2383 1043
5_FreshON 1274 171 226 910 134 401 9882 2303 1236
6_FreshON 2056 235 322 213 114 456 9213 2247 1985
FreshON average 1473 199 703 905 141 840 9722 2311 1421
7_Fixed 322 60 472 739 187 803 9289 2244 313
8_Fixed 1778 289 568 463 162 861 13 069 2563 1721
9_Fixed 1412 361 658 801 256 132 13 856 2648 1356
Fixed average 1171 237 233 334 202 265 12 071 2485 1130
10_Frozen 882 260 483 384 295 332 17 310 3555 863
11_Frozen 2042 484 046 291 237 045 16 366 3432 1993
12_Frozen 1909 405 087 485 212 198 15 091 3240 1849
Frozen average 1611 383 205 720 248 192 16 256 3409 1568
All Samples 19 521 3 621 875 228 18 841

Single-cell transcriptomics from human pancreatic islets | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

ethods/article/4/1/bpz019/5678780 by guest on 21 August 2022

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpz019#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpz019#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpz019#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpz019#supplementary-data


multiple genes known to be enriched in each cell type. The gene
expression patterns for the Fresh triplicate samples with multi-
ple known cell type genes previously reported in islet scRNA-
seq datasets [25–30] confirmed our cell classifications
(Figure 3C). Furthermore, putative mixed cell types show high
gene expression patterns corresponding to more than one type
of cell.

As expected, the major types are the beta and alpha cells,
making up on average 39.2% and 34.6% of the Fresh triplicate
samples, respectively (Table 2). The delta cells are the next most
abundant population at 6–7%, with the remainder of the other

cell types individually contributing <4% each. This composition
of endocrine cells is within the range expected for human pan-
creatic islets, which has been observed to vary considerably be-
tween pancreata and also between islets within the same
pancreas [31–33]. The proportion of mixed cells across the Fresh
triplicates (average of 8.4%) is higher than seen previously with
cell lines [34] especially since our value does not account for
mixed cells of the same type. Most likely this is due to incom-
plete dissociation of cell aggregates and/or increased capture of
single cells with genetic debris from damaged cells. A less likely
factor is the presence of multihormonal-secreting endocrine
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Figure 2: Fresh triplicate samples are highly correlated, and cell type-enriched marker genes are highly expressed in a single unique cluster. (A) Pairwise Pearson linear

correlation of “synthetic” bulk expression values (generated as described in “Material and methods” section) for Fresh triplicate samples. Input values for these analy-

ses were the natural log-normalized UMI counts, In(CP10K), for 16 338 genes. (B) Unsupervised clustering and tSNE mapping (RunTSNE). While different cell type clus-

ters are apparent, the three different Fresh samples give results that are completely interdigitated, suggesting a very high degree of similarity. (C) Revealing the basis of

the clusters: each tSNE plot is highlighted by the location of cells showing high expression of major marker genes (increasing expression with darker shade of blue).

Note that the overlapping location of the small GHRL-expressing cell cluster with the SST-expressing cell cluster is an artifact of the 2D display. The clusters do not
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Figure 3: Fresh triplicate samples: cell type classification confirmed with cell type-specific clusters and coexpression patterns with multiple known cell type-specific

marker genes. (A) Each panel displays the bimodal expression of a single endocrine cell type-enriched marker gene: GCG (alpha), INS (beta), SST (delta), GHRL (epsilon),

and PPY (gamma). Each column represents one of three Fresh samples. GMMs were used to establish expression threshold for cell classification. (B) Cell type classifica-

tions are superimposed onto tSNE projected clusters (C) Heatmap of all cell types showing expression of 45 genes, each of which has been reported in the literature to

be enriched in at least one of the five endocrine cell types. The 45 genes are listed on the far right grouped together according to their respective cell type associations

i.e. alpha, beta genes, delta, epsilon, and gamma cell genes. Cells are in columns with color ribbon at top of heatmap representing level of expression.
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cells. Such subpopulations have been observed in mouse and
human islet cells, and speculatively suggested as signatures of
immature cells or dedifferentiation of mature cells into other
cell types [35–38]. But in light of the known propensity for disso-
ciation of solid tissues to lead to aggregates, we choose to be
conservative and consider these as artifacts.

Preservation treatment and cell type recovery

Next, we turned to a comparison of results between the four
different preservation methods. The proportions of the major
endocrine cells (beta, alpha, delta, and gamma cells) captured
are consistent within each treatment triplicate group except for
two instances (Fixed sample 7_Fixed and Frozen sample
10_Frozen) where reagent clogging during the single-cell cap-
ture procedure resulted in significantly lower yields for both
samples (Table 2). In contrast, the proportions of alpha, delta,
and gamma cells recovered from the Fixed triplicate samples
are significantly lower compared to those obtained from Fresh
samples (ANOVA, Tukey’s HSD post hoc test, P< 0.05), while the
proportion of beta cells in Fixed samples is significantly higher
than in Fresh samples. Similarly, the proportions of delta
cells from FreshON or delta and gamma cells from Frozen sam-
ples were also significantly less than those obtained from the
Fresh samples, suggesting cell type-specific loss after fixation
or cryopreservation.

Although not statistically significant due to the high
variance within the Fixed and Frozen triplicates, the average re-
covery of mixed cells is higher for these two groups. Methanol
fixation dehydrates cells, causing protein to denature and
precipitate, and can contribute to an increase in cells adhering
together. Contamination of single cell isolates with genetic
debris from damaged cells caused by freeze-thawing of Frozen
samples may have contributed to increased mixed cells in
this group. Thus, compared to Fresh islet samples, there is a
significant difference in the recovery of the various cell types

from the Fixed and Frozen samples, and the latter two sample
groups also have a greater proportion of mixed cells.

Preservation treatment and gene expression

To assess the effects of cell preservation treatments on gene ex-
pression, we determined the (i) pairwise-correlation between
treatment groups, (ii) cell type-specific expression patterns of
all groups using multiple known markers for each cell type, (iii)
pattern of clustering of all sample groups in tSNE plots, and (iv)
overlap of the top 100 most significantly enriched genes for
each cell type.

For pairwise correlation testing, we combined scRNA-seq
data from triplicate samples and computed average gene ex-
pression values for all cells (“synthetic bulk”) within a treatment
group. Gene expression is highly correlated across treatment
groups (r� 0.959; Figure 4A). The synthetic bulk samples are
also well correlated with a frozen bulk islet sample from the
same pancreas (r� 0.789; Figure 4A), suggesting that overall
gene expression is neither drastically affected by islet process-
ing to single cells nor by preservation treatments of single-cell
preparations.

To refine the comparison of treatment groups, we tested the
two major cell types, the beta and alpha cells, individually for
correlation between groups. Beta-cell gene expression is highly
correlated between treatment groups (r� 0.962; Figure 4B) as is
the case with alpha cells (r� 0.950; Figure 4C). Additional testing
with regard to the rank order (Spearman’s correlation) of the
most highly expressed to the lowest expressed genes confirms
the high correlation of the various group datasets (beta r� 0.975,
alpha r� 0.959; Supplementary Figure S3).

We also assessed all samples for their expression of multiple
known cell type-specific marker genes. As was seen for the
Fresh triplicate samples (Figure 3C), all samples show cell type-
specific coexpression profiles regardless of treatment group
(Supplementary Figure S4). This further confirms that technical

Table 2: Cell type recovery (%) is consistent across triplicates but varies across treatment groups

%Cell

Sample Cells
Captured

Cells
Analyzed

a b d e c Acinar Ductal Stellate Endo Macro Mix Unknown

1_Fresh 2264 2172 34.8 38.9 6.7 0.1 1.8 1.6 2.3 1.4 0.3 0.6 10.0 1.5
2_Fresh 2183 2098 31.3 44.1 6.1 0 1.9 2.0 3.6 1.9 0.3 1.0 5.3 2.5
3_Fresh 2309 2215 37.5 35.0 7.0 0.2 2.0 1.0 2.4 2.6 0.3 0.5 9.9 1.7
Fresh average 2252 2162 34.6 39.2 6.6 0.1 1.9 1.5 2.8 2.0 0.3 0.7 8.4 1.9
4_FreshON 1090 1044 27.4 43.6 5.7 0 2.6 1.1 1.4 4.4 1.2 1.7 7.5 3.4
5_FreshON 1274 1237 22.7 49.4 5.6 0 2.8 0.8 2.3 3.7 1.6 1.4 5.7 3.9
6_FreshON 2056 1986 29.9 44.5 4.1 0.1 1.4 1.1 2.0 4.0 0.8 1.5 8.3 2.4
FreshON aveage 1473 1422 27.2 45.7 4.9 0 2.1 1.0 1.9 4.0 1.1 1.5 7.3 3.1
7_Fixed 322 314 27.7 48.1 3.8 0 0.3 0.6 3.2 1.0 0 1.3 12.7 1.3
8_Fixed 1778 1722 10.9 56.4 3.3 0.1 0 2.0 5.2 1.3 0.3 0.1 19.2 1.2
9_Fixed 1412 1357 11.9 54.7 3.4 0 0 1.5 3.1 0.6 0 0.1 23.9 0.7
Fixed average 1171 1131 12.9 55.0 3.4 0.1 0.0 1.7 4.2 1.0 0.2 0.2 20.5 1.0
10_Frozen 882 864 31.7 43.2 0.8 0 0.5 0.2 1.7 2.2 0.3 0 17.8 1.5
11_Frozen 2042 1994 32.8 38.6 0.5 0 0.5 0.5 2.2 3.5 0.4 0 20.1 1.2
12_Frozen 1909 1850 32.7 46.1 0.5 0 0.4 0.8 3.2 4.3 0.7 0 10.2 1.1
Frozen average 1611 1569 32.5 42.3 0.6 0 0.5 0.6 2.5 3.6 0.5 0 15.8 1.2
All Samples 19 521 18 853

Cells classified based on high expression of a single major marker: INS—beta, GCG—alpha, SST—delta, GHRL—epsilon, PPY—gamma, KRT19—ductal, PRSS1—acinar,

COL1A1—stellate, VWF—endothelial, and SDS—macrophage. The proportion of each cell type recovered from the Fresh triplicate samples was compared (ANOVA,

Tukey’s HSD post hoc test) to those recovered in each of the other groups. Percent recovery values highlighted in pink and bolded fonts are significantly different (P<.05)

compared to yields from the Fresh triplicates.
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Figure 4: All treatment groups—12 samples: gene expression is highly correlated across treatment groups and generally exhibits cell type-specific clustering. (A)

Pairwise Pearson linear correlation of “synthetic” bulk expression values from three replicate samples (generated as described in “Material and methods” section) be-

tween treatment-specific datasets. Input values for these analyses were the natural log of normalized UMI counts, In(CP10K), for 16 486 genes. Pairwise correlation was

also performed with one bulk sample [natural log of normalized counts, In(FPKM)] and the synthetic bulk values from the four treatment groups. (B) Pairwise Pearson

linear correlation of “synthetic” bulk expression values for beta cells between treatment-specific datasets. (C) Same as in (B) but only for alpha cells. (D) tSNE of all 12

samples identified by cell type assignments. (E) tSNE of all 12 samples identified by treatment group.
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variations introduced by the preservation treatments are rela-
tively minor compared to the biological similarities of the cell-
specific datasets.

Further support for the integrity of the data from all treat-
ment groups comes from the coalescing of similar cell types as
visualized by tSNE mapping with all 12 samples of the four
groups. Cell type identities are maintained for cells from all
sample groups as they formed cell type-specific clusters, align-
ing well with their cell type assignments based on expression
levels of their respective major marker gene (Figure 4D).
However, within each of the cell type clusters, samples sepa-
rated by treatment group, suggesting significant variations
between the groups (Figure 4E). We were concerned that this
might be an artifact of having a sparse gene dataset leading to a
high rate of dropout events (“zero counts”) for gene transcripts
that are not captured (reviewed in Ref. [39]), but the separation
persisted when clustering was performed with the top 5% (597)
of the most highly expressed genes.

To further assess the source of these variations, we per-
formed pairwise-differential gene expression analyses across
the four groups and identified differentially expressed
genes (Figure 5 and Supplementary Table S3A). In the Fixed vs.
Fresh comparison, 207 genes were differentially expressed
(P-adjBonfcorr< 0.05 and ratio of expression change �0.8 or �1.3)
with 181/207 downregulated in Fixed samples. Pathway analysis
(IPA) with all 207 differentially expressed genes revealed

significant enrichment of genes in the eukaryotic initiation fac-
tor (EIF2) signaling pathway (P< 10�85; Supplementary Table
S3B). We also observed this trend of downregulation for the
majority of the differentially expressed genes in Fixed samples
compared to FreshON (266/332) or Frozen (278/303;
Supplementary Table S3A). IPA analysis once again showed sig-
nificant enrichment for EIF2 signaling pathway genes in both
the comparisons of Fixed vs. FreshON (P< 10�96) and Fixed vs.
Frozen (P< 10�59; Supplementary Table S3C and S3D). The next
three most significantly enriched pathways were eIF4 and
p70S6K signaling, mTOR signaling, and oxidative phosphoryla-
tion which exhibited a similar trend of lower enrichment in
Fixed samples compared to the other three treatment groups
(ranging from P< 10�17 to P< 10�32). In contrast, pairwise com-
parisons of Fresh, FreshON, and Frozen highlighted pathways
with much lower significance (best P< 10�11) and include those
associated with SPINK1 pancreatic cancer and oxidative phos-
phorylation (Supplementary Table S3E–S3G). EIF2 is required for
the initiation of cellular translation and phosphorylation of EIF2
during the stress response reduces protein synthesis to con-
serve resources for cell recovery [40]. eIF4 and p70S6K signaling,
as well as mTOR signaling genes, are also important regulators
of protein translation and their enrichment here correlates with
that observed for EIF2 genes. Furthermore, EIF2 signaling and
oxidative phosphorylation were the top functional pathways
identified for the most abundantly expressed genes in human
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Figure 5: Volcano plots showing results of pairwise-differential gene expression across four treatment groups: genes designated to have significant differential expres-
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islet endocrine cells [25]. Our findings here support a major role
of these genes in pancreatic islets and that these compelling
differences between the Fixed compared to Fresh, FreshON, and
Frozen are likely contributing to the Fixed beta-cell cluster being
slightly more separated from the beta cells of the other three
treatments groups. A reasonable explanation is that the effect
of fixation is to downregulate multiple transcripts mediated
through EIF2 and related pathways. However, there are no
doubt other contributions to the variation in gene expression
observed across treatment groups.

Lastly, within each treatment group, we identified the top
100 significantly enriched genes in each of the four endocrine
cell types (beta, alpha, delta, and gamma) and determined the
overlap of these gene lists across the four treatment groups. We
first performed differential gene expression to identify genes
enriched (P-adjBonfcorr< 0.01 and fold change �1.2) in one cell
type compared to the remainder of the islet cell types. Since we
consider Fresh samples as the “gold standard” for these analy-
ses, we compared the gene list from this group (Supplementary
Table S4) to the FreshON, Fixed and Frozen groups. Totally, 75–
78% of the top 100 enriched genes in Fresh beta cells are also
found in the top 100 beta-cell-enriched genes in the other three
treatment groups (Supplementary Figure S5). Similarly, 79–84%
of the most enriched genes in Fresh alpha cells are also present
in the top genes of other treatment groups. In contrast, the mi-
nor cell types (delta and gamma) show a trend toward reduced
overlap with the top 100 cell type-enriched genes identified
from fresh samples. More specifically, the Frozen delta and
gamma cell top gene lists include only 26% and 22% of the genes
found in the Fresh top 100, respectively. We did not detect this
lower correlation in gene expression across treatment groups
when testing all cell types together, as the higher variation of
the minor cell populations is likely masked by the more consis-
tent expression of the much larger beta and alpha populations.
These differences are not surprising in light of the biased cell
type recovery observed for the minor endocrine cell types in the
Fixed and Frozen groups.

Cell type heterogeneity

We assessed our dataset for evidence of alpha- and beta-cell
heterogeneity, findings previously suggested by several groups
[26, 28, 41–44]. Graph-based clustering followed by tSNE projec-
tions of the Fresh triplicate samples suggests two alphas (A1
and A2) and four betas (B1, B2, B3, and B4) subclusters (Figure 6).
As was seen for the across treatment groups comparison with

all cell types, pathway analysis (IPA) of differentially expressed
genes (Supplementary Table S5A) revealed highly significant
differences in enrichment for genes involved in EIF2 signaling
between the subclusters of both alpha and beta cells
(Supplementary Table S5B–S5G). Genes differentially expressed
between alpha A1 vs. A2 subclusters are enriched in pathways
related to EIF2 signaling (P< 10�124), eIF4 and p70S6K signaling
(P< 10�37), and mTOR (P< 10�35). Similarly, genes differentially
expressed between beta B1 and either the B2 or B3 subclusters
are enriched in the same pathways: EIF2 signaling (P< 10�125),
eIF4 and p70S6K signaling (P< 10�37), and mTOR (P< 10�35). The
next most significant pathway for beta subclusters is oxidative
phosphorylation, where B1 differs from B3 (P< 10�3), B4
(P< 10�9), and B2 (P< 10�11). Alpha and beta subclusters are also
present in other treatment groups and have very similar charac-
teristics, whereby subclusters differ by expression of genes
enriched in pathways as identified in the Fresh samples.

Confirmation of findings in islets from a second donor

To address the possibility of islet source-related variation, we
analyzed islets from a second donor processed in our laboratory
under the identical conditions as the “Fresh” islet samples in
the current treatment comparison dataset. Replicate samples
from this additional donor are hereafter referred to as “Fresh-
Donor 2.” Once again, the average expression (synthetic bulk)
profile for Fresh-Donor 2 is well correlated with a frozen bulk is-
let sample from the same pancreas (r� 0.822; Supplementary
Figure S6). We then confirmed the concordance of overall islet
gene expression by performing pairwise correlation testing of
the “Fresh” samples with the “Fresh-Donor 2” samples. We
combined scRNA-seq data from the replicate samples for each
donor source to generate a synthetic bulk gene expression value
for all cells from either “Fresh” or “Fresh-Donor 2.” Gene expres-
sion is highly correlated across the two donor sources (r� 0.969;
Supplementary Figure S7). Next, we performed unsupervised
clustering of cells from Fresh-Donor 2, identified two alpha and
two beta subclusters (Supplementary Figure S8) and performed
pairwise differential gene expression analysis between the re-
spective cell type subclusters (Supplementary Table S6A). IPA
analysis of the differentially expressed genes between the alpha
or beta subclusters also showed enrichment for genes in the EIF2
signaling pathway (P< 10�57), mTOR (P< 10�17), and eIF4 and
p70S6K signaling (P< 10�18; Supplementary Table S6B and S6C).

Thus, the presence of alpha and beta cell subclusters is re-
producible across two donors and based on the variable
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abundance of transcripts involved in stress-related responses,
including those related to insulin secretion. Such potentially
stress-related heterogeneity has also been noted in other islet
studies [26, 41, 45]. Whether these represent “natural” in vivo
stress-induced beta [45] and alpha subpopulations, or are trig-
gered by tissue processing/dissociation as has been reported for
mouse muscle stem cells [46] and human tumor tissues [47], or
both, is unclear. Lastly, differences between some of the sub-
clusters may be rather minor, and potentially exaggerated by
the limitations of tSNE mapping algorithm.

Discussion

The ability to interrogate human pancreatic islets at the single-
cell level has provided new insights into the insulin-producing
beta cell, the glucagon-producing alpha cell, and their interac-
tions with the other surrounding islet cell types to maintain glu-
cose homeostasis. We show that a variety of processing
protocols can potentially be used to dissociate islet cells for sub-
sequent scRNA-seq. Upon receipt of islets into the laboratory,
whole islets can be processed immediately or kept overnight at
37�C prior to dissociation and single-cell capture. Alternatively,
methanol fixation or cryopreservation can be employed after
dissociation but prior to capture, allowing for some flexibility
for islet processing.

There are, however, significant consequences of the specific
protocol chosen. We observed a bias in cell type recovery for
three of the five endocrine cell types for preserved samples com-
pared to Fresh samples. Specifically, we found a reduced yield of
alpha, delta, and gamma cells in fixed samples, and a reduced
level of delta and gamma cells in cryopreserved samples. This
suggests that the viability and/or recovery efficiency of different
endocrine cell types can be significantly affected by the choice of
sample preparation. Such a bias was suggested in a prior report
for the lower recovery of beta cells from fluorescence-activated
cell sorted islet cells compared to the proportion observed from
histochemical analysis of the same islets [27].

With respect to gene expression patterns of the recovered
individual cells, the separation by treatment on tSNE plots
documents the presence of a measurable effect on gene expres-
sion. But this effect is small in comparison to the biological
similarities, as cell type identity is retained for cells in all treat-
ments. The magnitude of the similarities is also supported by
the very high pairwise correlation of gene expression between
treatment groups.

To our knowledge, this is the first in depth and side-by-side
comparison of scRNA-seq data generated from different sample
preps of a single source of human pancreatic islets. The high
concordance of biological replicate samples within each treat-
ment group reaffirms that robust single-cell transcriptomic
data from solid tissues is achievable. Methanol fixation and
cryopreservation are both shown to be effective for preserving
the integrity of islet beta cells. However, there is a notable cell
type recovery bias against the cell types other than beta cells,
and gene expression changes in delta and gamma cells. Thus,
there is a need for caution when interpreting results from the
affected cell populations.

These results have important implications for future studies
of pancreatic islet transcriptomes. An important question that
these studies will hope to address is the difference in endocrine
cell abundance and expression patterns between normal and
diabetic islets. Researchers attempting to compare data across
studies will need to exercise great caution, especially if different
protocols were utilized for sample preparation. Ideally, to limit

the inclusion of experimental steps that may introduce bias, the
protocol referred to here as “Fresh” should be utilized. In cases
where analysis of Fresh samples is not practical, using the same
preservation method across experiments would be strongly ad-
vised, especially when cell abundance is being compared.

An important variable that is unmeasured in this work
relates to the variability in the quality of donated islet samples
and steps prior to receipt of the islet material in the research
laboratory. Although suppliers of islets for research have rela-
tively similar protocols for harvest and shipping, there is still
notable variability in islet center-specific protocols and timing
of delivery. Establishing standardized protocols will be critical if
comparisons between different donors are to have experimen-
tal validity [48].

The cell type-specific effects of preservation treatments ob-
served here for pancreatic islets are likely to hold true for other
solid tissues. Investigators seeking to undertake a comparison
of normal and diseased target tissues would be well advised to
conduct similar analyses of reproducibility (Supplementary
Figure S9) prior to embarking on more detailed and costly
investigations.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.

Data availability

Sequence data are available from dbGAP with the accession
phs001188.v2.p1: https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id¼phs001188.v2.p1

Code availability

No custom codes were used in this study.
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