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Abstract

Purpose: Early detection of pancreatic ductal adenocar-

cinoma (PDAC) remains elusive. Precursor lesions of

PDAC, specifically intraductal papillary mucinous neo-

plasms (IPMNs), represent a bona fide pathway to invasive

neoplasia, although the molecular correlates of progression

remain to be fully elucidated. Single-cell transcriptomics

provides a unique avenue for dissecting both the epithelial

and microenvironmental heterogeneities that accompany

multistep progression from noninvasive IPMNs to PDAC.

Experimental Design: Single-cell RNA sequencing was

performed through droplet-based sequencing on 5,403

cells from 2 low-grade IPMNs (LGD-IPMNs), 2 high-grade

IPMNs (HGD-IPMN), and 2 PDACs (all surgically

resected).

Results: Analysis of single-cell transcriptomes revealed

heterogeneous alterations within the epithelium and the

tumor microenvironment during the progression of nonin-

vasive dysplasia to invasive cancer. Although HGD-IPMNs

expressed many core signaling pathways described in PDAC,

LGD-IPMNs harbored subsets of single cells with a transcrip-

tomic profile that overlapped with invasive cancer. Notably, a

proinflammatory immune component was readily seen in

low-grade IPMNs, composed of cytotoxic T cells, activated

T-helper cells, and dendritic cells, which was progressively

depleted during neoplastic progression, accompanied by infil-

tration of myeloid-derived suppressor cells. Finally, stromal

myofibroblast populations were heterogeneous and acquired

a previously described tumor-promoting and immune-evad-

ing phenotype during invasive carcinogenesis.

Conclusions: This study demonstrates the ability to per-

form high-resolution profiling of the transcriptomic changes

that occur during multistep progression of cystic PDAC pre-

cursors to cancer. Notably, single-cell analysis provides an

unparalleled insight into both the epithelial and microenvi-

ronmental heterogeneities that accompany early cancer path-

ogenesis and might be a useful substrate to identify targets for

cancer interception.

See related commentary by Hernandez-Barco et al., p. 2027

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third lead-

ing cause of cancer-related deaths in the United States, and

most patients present with unresectable disease due to the

lack of effective early-detection strategies (1). This reiterates

the critical need for understanding the pathogenesis of early

neoplasia with the goal of developing biomarkers and molec-

ular targets for cancer interception. The most common cystic

neoplasm that is a bona fide precursor to PDAC is intraductal

papillary mucinous neoplasms (IPMNs), which comprise

roughly 40% to 50% of resected lesions that are initially

diagnosed as asymptomatic pancreatic cysts (2). Although most

IPMNs harbor low-grade dysplasia (LGD), it is imperative to
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distinguish IPMNs that have progressed to high-grade dysplasia

(HGD), or harbor an outright invasive component (PDAC). To

guide clinicians with identifying IPMNs harboring HGD or

PDAC, several radiologic "high risk" or "worrisome features"

(so-called Sendai and Fukuoka criteria) have been proposed

(3). Although the rate of overdiagnosis and overtreatment has

been significantly reduced, these criteria still lack optimal

sensitivity and specificity (4). Although patients with nonin-

vasive IPMNs have an excellent prognosis upon surgical resec-

tion, once an IPMN develops an invasive component, the

probability of long-term survival drops significantly (5).

Although we have now elucidated the signature driver muta-

tions (KRAS and GNAS) that distinguish IPMNs from other

pancreatic cysts, these do not reliably distinguish between

indolent versus aggressive IPMNs (6, 7). In fact, the overall

state of knowledge remains rudimentary, especially with regard

to molecular metrics that can identify "aggressive" precancer-

ous lesions that are likely to progress to carcinoma and require

intervention from those that are "indolent" and will naturally

regress or remain stable. Thus, much remains to be elucidated

in terms of biomarkers of IPMN progression and the underlying

molecular features of dysplastic cells that predicate to invasive

neoplasia.

The application of single-cell DNA and RNA sequencing to

cancers has provided unprecedented insights into tumor and

microenvironmental heterogeneity present in established cancers.

However, the extrapolation of these technologies to the compen-

diumofprecursor lesions has been scarce. In the specific context of

the pancreas, prior studies have established the transcriptional

profiles of normal cell types, such as islet cells, using single-cell

approaches (8–10). In this study, we perform the first reported

single-cell transcriptomic profiling of cystic precursor lesions

of PDAC spanning histologic grades of dysplastic epithelium.

Specifically, we demonstrate our ability to generate transcripto-

mic libraries from >5,400 single cells from surgically resected

pancreatic tissues, including 2 IPMNs with LGD, 2 IPMNs with

HGD, and 2 PDAC lesions utilizing a droplet-based single-cell

RNA-seq methodology (11). Our results demonstrate that epi-

thelial and stromal heterogeneity is evident even within

precursor lesions during multistep carcinogenesis and reflect

the progressive co-option of the microenvironment toward a

tumor-promoting milieu.

Materials and Methods

Cell line and fresh tissue material from surgically resected

IPMNs and PDAC

A total of 6 patients were recruited at MD Anderson Cancer

Center (MDACC) and University of Pittsburgh Medical Center

(UPMC) through informedwritten consent following institution-

al review board (IRB) approval at both institutions (PA15-0014,

Lab08-0098, Lab05-0080, and Lab00-396). This study was con-

ducted in accordance with Good Clinical Practices concerning

medical research in humans per the Declaration of Helsinki. Two

PDACs and 1 HGD-IPMN were profiled from MDACC and 2

LGD-IPMNs and 1 HGD-IPMN were profiled from UPMC. A

previously established pancreatic tumoroid line (MP81) was also

profiled (12). Tumoroid line source was validated through

STR DNA fingerprinting and confirmed to be mycoplasma-free.

Histologic subtypes of IPMN included in this study were gastric

(1 LGD-IPMN), intestinal (1 LGD-IPMN), and pancreatobiliary

(2 HGD-IPMNs). Tumor cellularity was determined by patho-

logic review of tissue and compared with yield of cell phenotypes

from single-cell RNA-seq.

Preparation of fresh tissue material and dissociation into

single cells

Pancreatic tissue was delivered to the laboratory on ice after

surgical resection in DMEM, high-glucose, GlutaMAX Supple-

ment, HEPES (Thermo Fisher, 10564011) in 1% bovine serum

albumin (ThermoFisher, B14) in a 15-mL conical tube. Tissuewas

then transferred to a 35- � 12-mm Petri Dish (Thermo Fisher,

#150318), and minced with sterile surgical scalpel to 0.5- to

1.0-mm fragments in approximately 1 mL of the media.

Tissue digestion was performed with Liberase TH Research

Grade (Sigma-Aldrich, 5401135001) alone for IPMN samples,

or with both Liberase TH Research Grade and Accutase solution

for PDAC tissues (Sigma-Aldrich, A6964). For warm digestion

with Liberase THResearchGrade, pancreatic tissue fragmentswere

incubated to a final concentration of 10mg/mL and placed on an

incubated orbital shaker at 37�C, 225 RPM for 20 minutes and

gently pipetted every 10 minutes. At the end of the digestion

period, the fragments (tissue slurry) were gently pipetted and

washed to maximize the release of single cells. The tissue slurry

was passed through a 100-mm cell strainer followed by a 35-mm

cell strainer. The single-cell suspension was transferred to a new

15-mL conical tube and centrifuged for 5 minutes at 400 RCF at

4�C. The supernatant was discarded, and the cell pellet was

resuspended in 400 mL of PBS for downstream cell viability

analysis and cell counting.

For warm digestion of PDAC tissues, we followed the identical

procedure above as the IPMNs, followed by a second digestion

period using sterile-filtered Accutase solution, and placed on a

shaker at 37�C, 225 RPM for 30 minutes, with gentle pipetting

every 10 minutes.

ddSEQ SureCell library preparation

Single-cell transcriptomic amplification and library prep was

performed using the SureCell WTA 30 Library Prep Kit for the

ddSEQ System following the manufacturer's recommendations

(Illumina, cat. #20014279). Samples were processed across 6

sequential ddSEQ runs. Briefly, single cells were individually

partitioned into subnanoliter droplets. Single cells were then

lysed and barcoded inside individual droplets, with subsequent

Translational Relevance

Previous studies on pancreatic cancer precursor lesions have

identified commonly mutated oncogenes and tumor suppres-

sors (e.g., KRAS, GNAS, and TP53). On the other hand, little is

known about the transcriptomic heterogeneity within both

cancer and stromal cells that contribute to invasive disease,

particularly at the level of single cells. As efforts toward a

precancer atlas of epithelial cancers develop, the ability to

perform high-resolution tumor profiling through single-cell

transcriptomic studies such as these will allow us to better

understand the molecular underpinnings contributing to pre-

neoplastic progression. This is especially relevant for discovery

of clinically relevant biomarkers of early-stage disease, as well

as potential targets for cancer interception.

Single-Cell RNA Sequencing of Pancreatic Cancer
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first-strand synthesis. Individual droplets containing barcoded

sample cells were disintegrated, purified, and subjected to second

strand cDNA synthesis. Purified amplified cDNAwas subsequent-

ly quantified on a 2200 TapeStation System (Agilent) in order to

validate quality of amplification by quantifying the area under the

curve in regions between 200- and 5,000-bp range on a D5000

high-sensitivity screentape (Supplementary Fig. S5A). Successful

reactions (>2 ng yield) were then fragmented and amplified using

Nextera technology for low input cDNA material. Double-sided

size selection and library purification was performed utilizing

purification beads per the manufacturer's protocol to remove

short library fragments. Final library quality and concentration

was measured by TapeStation (Supplementary Fig. S5B) as the

area under the curve. Libraries were sequenced on across 6

Illumina NextSeq 500 runs.

Single-cell clustering and transcriptomic analyses

Resulting FastQ files were run through the single-cell RNA-seq

app on BaseSpace. Briefly, reads were aligned against a reference

genome using Spliced Transcripts Alignment to a Reference

(STAR), followed by barcode tagging and BAM indexing (13).

Count files are generated using gene unique molecular identifier

(UMI) counter and with cells passing quality filter based on cells

above background and passing knee filter.

To perform the T-SNE clustering and additional downstream

analysis, the UMI count files were compiled into sparse matrices

and subsequently filtered based on the criteria that each cell must

express a minimum of 300 genes and be composed of less than

15% mitochondrial genes. Following filtering, the data are log

normalized, scaled, and centered. The output is then analyzed by

principal component analysis (PCA). After identifying the num-

ber of dimensions to use, the result is clustered in a shared nearest-

neighbor algorithm and T-SNE before plotting. The resulting

T-SNE plots were colored according to specific features to visually

present expression of genes in various clusters. These annotated

matrices were also used to find differentially expressed genes

between subpopulations. Heat maps organized by annotated

clusters were generated by plotting the top 20 differentially

expressed genes associating with each cluster. Functions for anal-

ysis were provided through the recommended workflow in the

SEURAT package (11).

The correlation matrices were created based on the filtered list

of cells used in the T-SNE. Matrices were formed through the

function "cor" from the stats package. The Pearson correlation

coefficients were then plotted in ComplexHeatmap (14). Cells are

ordered through hierarchical clustering. For cell-cycle analysis, we

defined a cell-cycle characteristic coefficient as the average of the

log2(TPM þ 1) across genes for a cell from the gene ontology set

(version 6.2 MSigDB) related to the G1, S, G2, and M phases,

respectively (15, 16). These coefficients were then plotted in

ComplexHeatmap (13) and hierarchically clustered by cells. All

T-SNE and heat maps were run in R v3.4.2.

Results

Concordance of single-cell RNA sequencing to bulk-cell lines

Prior to tissue profiling, we investigated the concordance of

bulk and single-cell RNA-seq profiles from a PDAC tumoroid line

(MP81) using the droplet-based sequencing technology. Single-

cell and bulk-cell RNA libraries were made using Nextera library

preparation chemistry. Single-cell RNA-seq was performed at 670

million reads, resulting in 30.4% of the reads mapping to the

coding sequence (CDS) regions, and 37.7% mapping to UTR

regions with 91,032 reads, 10,800 UMI counts, and a median of

3,293 unique genes detected per cell passing filter. Correlations in

gene-expression levels between 2,022 single cells and bulk cell

suspension were excellent (rs > 0.9), with total coverage gene

counts of 17,507 and 15,185 for single cells and bulk cells,

respectively (Supplementary Fig. S1A). We also verified the con-

cordance of gene counts across 2 independent replicates of single-

cell library preparation from the same cell line sample. This

revealed a high correlation in gene-expression levels (rs > 0.9)

with almost identical levels of gene coverage (14,994 and 14,488;

Supplementary Fig. S1B).

Preneoplastic epithelium of IPMNs demonstrates both unique

and shared transcriptomic signatures with PDAC

We subsequently applied droplet-based single-cell RNA

sequencing to study the diverse transcriptional profiles that exist

within surgically resected preneoplastic (IPMN) and invasive

(PDAC) pancreatic lesions (Supplementary Figs. S1C and S1D,

S2 and Supplementary Table S1). Cumulatively, among all of the

tissue samples, 5,403 single cells were sequenced. Cells with low

expression of genes (<300 genes) and high percentage of mito-

chondrial genes expressed (>10%) were digitally filtered out,

resulting in 3,343 single cells used for the subsequent analysis.

Scatter plots of number of UMIs compared with number of genes

and abundance of mitochondrial transcripts revealed consistent

read depth across single cells between lesions and absence of

apoptosis induced transcript batch effects (Supplementary Fig.

S1C). The mean number of genes and UMIs detected per cell was

1,101 and 3,194, respectively. After identifying the top variable

genes, we performed PCA and determined which principal com-

ponents (Supplementary Fig. S1D) to use for unsupervised clus-

tering using t-distribution stochastic neighbor embedding (t-SNE;

ref. 17), which was implemented using the SEURAT package (Fig.

1A; ref. 11). This analysis identified 10 distinct subpopulations

("clusters") composed of unique stromal and epithelial compo-

nents classified defined by characteristic gene-expression patterns

(Fig. 1B and C; Supplementary Table S2; Supplementary Fig. S3).

We first identified the neoplastic single-cell "clusters" through

previously defined signature transcripts for pancreatic epithelial

lesions, including KRT19 andMUC1, which were present among

all samples types (IPMNs and PDAC) irrespective of grade if

dysplasia or invasion (refs. 18, 19; Fig. 2A). We subsequently

sought to correlate the histologic grading of the designated

"clusters" with known biomarkers of dysplastic progression to

cancer. This revealed high expression of transcripts such as CEA-

CAM6within subpopulations ofHGD-IPMNand PDAC samples,

which confirmed previously published data on this marker in

bulk RNA analysis and IHC of intact tissues (20, 21). Conversely,

we observed high expression of MUC5AC, which encodes for an

apomucin mostly seen in LGD and downregulated during histo-

logic progression, within the LGD-IPMNs compared with the

other sample types (18).

In an effort to identify "cluster-defining" signatures, we profiled

the top 25 differentially expressed genes within each of the 10

distinct single-cell "cluster" (Fig. 2B; Supplementary Table S3).

Annotation of the resulting transcripts revealed aberrant expres-

sion of multiple cancer-related genes even within the LGD-IPMN

cells designated as "clusters" LG.Ep1, 2, and 3 (Fig. 1B). These

include overexpression of transcripts such as TFF3 and REG4

Bernard et al.
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Figure 1.

tSNE plots of all 3,343 cells from 6 lesions included in this study, (A) annotated by different tissue samples, (B) annotated by unique cell types

characterized by gene expression (ductal epithelium ¼ Ep). C, Feature plots demonstrating expression of specified genes among clusters on the tSNE.

D, Clustered heat map of cell-cycle characteristic coefficients per cell within the subpopulations indicated by the header demonstrating a greater

proliferative state of PDAC-derived cells.

Single-Cell RNA Sequencing of Pancreatic Cancer
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Figure 2.

A, Violin plots of gene expression across lesion types confirm expression of characteristic PDAC and cystic preneoplasia-related markers.

B, Heat map of the top 20 differentially expressed genes used to identify cell phenotypes across each of the 10 discrete clusters indicated by the header.

C, Sankey diagram demonstrating epithelial cells profiled from LGD-IPMNs, HGD-IPMNS, and PDAC tissue and where they reside within annotated

tSNE clusters. D, Correlation heat map of Pearson correlation coefficients of hierarchically clustered individual cells across all lesions, identified by

originating lesion type and tSNE cluster.
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that have been previously described as upregulated during

cancer progression (22, 23). On the contrary, the LGD-IPMN

clusters demonstrated persistent expression of putative tumor

suppressor genes (TSG) such as RAP1GAP that have been shown

to suppress tumor invasion andmetastases across various cancers

(including RAS-mutant neoplasms; refs. 24), while HGD-IPMNs

(HG.Ep) revealed downregulation of the aforementioned TSGs,

concomitant with higher expression of oncogenic transcripts

previously associated with progression to PDAC such as S100P

and S100A10, among others (25–27).

We then investigated whether biological differences could be

observed through gene ontology and pathway analyses (IPA:

Ingenuity Pathways Analysis) of differentially expressed genes

between neoplastic epithelial clusters (Fig. 1B). Several aberrant

canonical pathways were identified during the transition from

LGD toHGD-IPMNs that are related to previously published core

signaling pathways in PDAC, including integrin signaling, signal-

ing by small GTPases, Wnt/B-catenin signaling, axonal guidance

signaling, apoptosis, and G1–S phase regulation (Supplementary

Table S4; refs. 28, 29). When comparing the PDAC and LGD

lesions, aberrant expression of the same pathways was observed,

with the additional deregulation ofDNAdamage response, TGF-B

signaling, and SAPK/JNK signaling. Other aberrant canonical

pathways identified during transition from LGD to HGD and

PDAC lesions include metabolism related pathways such as

oxidative phosphorylation and mitochondrial dysfunction, as

well as mTOR signaling (Supplementary Table S5).

Cell-cycle analysis of epithelial cells across lesion types

revealed higher proliferative states (G2–M and S phase) in cells

derived from PDAC compared with LGD and HGD lesions (Fig.

1D). Generally, there was a significant proportion of LGD cells

with low expression of cell-cycle genes likely representing cells

within low proliferative states (G0 phase). On the other hand,

there is a small population of cells derived from LGD lesions

(LG.Ep3) with high expression of proliferation-related genes,

which may represent a more aggressive subpopulation within

this lesional type. This may suggest that even within lesions

histologically identified as low grade, there exist rare popula-

tions of cells with varying degrees of putative malignant poten-

tial. Further, it is important to note that even "adenocarcino-

ma"-designated clusters contained cells originating from LGD-

IPMNs with associated expression of PDAC core signaling

pathways and deregulation of TSGs (Fig. 2C). In our particular

data set, 1.2% of epithelial cells from LGD-IPMNs were found

in adenocarcinoma-related clusters. Additionally, up to 8.9% of

cells from LGD-IPMNs tended to cluster with HGD-IPMNs with

their respective changes in gene-expression pathways. This

suggests that even within IPMNs with otherwise LGD histology,

there are cells that phenocopy the transcriptomic features of

invasive neoplasia (Supplementary Fig. S2). The expression

profiles of such low frequency cells within LGD-IPMNs would

likely be missed during bulk RNA sequencing, and further

underscores the utility of the single-cell sequencing approach

in elucidating the epithelial heterogeneity that exists even

within early precursor lesions of PDAC.

Analysis of the cell-to-cell correlations for gene-expression of

the 3,343 cells demonstrated relatively higher intratumoral coher-

ence among cells from LGD and HGD lesions compared with

those fromPDAC (Fig. 2D), a not surprising finding suggesting an

increase in intratumoral epithelial heterogeneity during the pro-

gression from IPMNs to PDAC (30). Interlesion correlation was

better observed in cells derived from stromal components includ-

ing myeloid and lymphocytic populations, whereby a significant

number of populations showed similarities across tissue types

(Fig. 1A–C). This suggests the presence of common cancer-

associated immune components among lesion types. On the

other hand, even though these stromal components tended

to cluster with one another (Fig. 1B), correlation heat maps

suggested the presence of multiple unique subtypes within the

stroma and nonrandom variations during histologic progression

to cancer (Supplementary Fig. S4 and results below).

Virtual microdissection of stromal and immune heterogeneity

during IPMN progression

In an effort to better identify unique subpopulations of

stromal components across lesion types, we opted to perform

single-cell digital microdissection of only stromal cells and

exclude epithelial components. This resulted in the identifica-

tion of 7 unique clusters with varying degrees of enrichment

across lesions types (Fig. 3A and B). Differential expression of

the top 20 genes across clusters allowed us to identify distinct

immune and myofibrolast-derived phenotypes within each

lesional subtype (Fig. 3C and D).

A high proportion of cytotoxic T cells (measured by CD8, and

presence of granzyme- and perforin-related transcripts) were

observed in LGD-IPMNs comparedwithHGD-IPMNs and PDAC.

In proportion to other immune subtypes, CD4 T cells also appear

to be more highly enriched in LGD-IPMN compared with others

and present with generalized activation as defined by expression

of CD69. We also detected the presence of rare B-cell populations

(expressing CD20 and CD19) that are present in both HGD-

IPMNs and in LGD-IPMNs, but are completely absent in PDACs.

Presence of tumor-infiltrating B cells has recently been described

in PanIN lesions with an immunosuppressive role during the

initiating stages of PDAC multistep progression and may, in fact,

have a similar role in the context of IPMNsbased on thesefindings

(10, 31, 32).

Notably, we observed a significantly enriched proportion of

myeloid-derived suppressor cells (MDSCs), within the stromal

component of PDAC, representing 51% (277/544) of single

stromal cells profiled, compared with 2.3% (3/131) and 3.5%

(10/281) within LGD-IPMNs and HGD-IPMNs, respectively.

These MDSCs resemble the protumorigenic polymorphonucle-

ar MDSCs (PMN-MDSCs) phenotype based on expression of

CD11b (ITGAM), S100A9, CCL3, and APOE, which has been

previously described to be prevalent during cancer progression

(33). Among myeloid-derived populations, we also observed

cDC2-type dendritic cells (DC), characterized by expression of

CD1C, THBD, and FCER1A (34). These cells have been shown

to have T-cell stimulatory potential and are critical mediators of

cross-presentation of tumor antigens mediated through the

high-affinity IgE receptor FceRI (FCER1A; ref. 35). This proin-

flammatory subpopulation appears in greater proportions

among LGD and HGD-IPMNs, suggesting a more prevalent

predication for antitumor immune response within preneo-

plastic lesions.

Heterogeneous fibroblast populations across histologic sub-

types were also identified, potentially representing distinct stro-

mal functions during tumorigenesis. For example, the fibroblast

subtype known as "inflammatory" CAF (iCAF) is characterized by

expression of VIM, FAP, COL3A1, DES, IL6, and CXCL12 and

reduced expression of a-SMA (ACTA2; refs. 36, 37). This

Single-Cell RNA Sequencing of Pancreatic Cancer
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subpopulation has been shown to be involved in immunosup-

pression, growth factor secretion, and promotion of protumori-

genic mechanisms facilitating invasion and metastasis (36),

which might correlate with its exclusive representation in

PDAC-derived clusters, representing 10.5% (58/544) of single

stromal cells profiled, and absence within noninvasive IPMNs. A

separate compartment of CAFs, described as myofibroblasts

("myCAFs"), with increased alpha-SMA expression and reduced

Figure 3.

A, tSNE plot of all stromal cells that were virtually microdissection from entire lesions. Different colors represent annotation of unique cell phenotypes. B, Proportion

of cell phenotypesenriched ineach lesion(PDAC,HG IPMN, andLG IPMN); colors refer touniquecell types inA.C,Heatmapof the top20differentially expressedgenesused

to identify cell phenotypes across clusters. D, Feature plots demonstrating expression of specific genes among clusters to identify respective cell types.
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expression of CXCL12 and DES, was also identified. These

myCAFs have been implicated in distinct functions from iCAFs,

including secretion of autocrine stromal and endothelial growth

factors (36). This population is rare in LGD-IPMNs, but is highly

represented in HGD-IPMNs, suggesting that activation of fibro-

blasts to the myCAF phenotype tends to occur even within

noninvasive dysplastic lesions (Fig. 4).

Discussion

Histologically well-established precancerous lesions precede

the onset of PDAC by years, if not decades. With an increasing

use of diagnostic cross-sectional imaging, incidence of precan-

cerous lesions in the form of pancreatic cysts is rising even in

clinically healthy individuals (38–40). In general, approxi-

mately 2.4% of the general population undergoing MRI present

with a cystic pancreatic lesion with individuals over 70 years

having an incidence of up to 10% (41). To guide clinicians,

several radiologic guidelines have been reported and progres-

sively updated (3, 42, 43). In general, large, symptomatic main

duct IPMNs with enhancing mural nodules show the highest

probability of malignant transformation; frequency of invasive

IPMNs is 43.1% (range, 11%–81%) and should be surgically

treated (3). Yet several other case series of resected IPMNs

report a wide range of IPMN-related pancreatic adenocarcino-

ma (6%–81%; refs. 44–46). A balance between diagnosis of

potentially invasive IPMNs and harmful overtreatment of

patients is thus crucial in our approach stratification of cystic

lesions. In the current study, we describe an approach at

profiling the molecular events that occur during pancreatic

Figure 4.

Schematic representation of evolving molecular and phenotypic signatures during preneoplastic progression of pancreatic cancer.
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carcinogenesis in the context of these cystic precursors (IPMNs)

with the goal of understanding the heterogeneity of epithelial

and stromal components that might delineate lesions with an

aggressive potential. We do this through high-resolution single-

cell RNA sequencing of LGD-IPMNs, HGD-IPMNs, and PDACs,

which allows us to specifically profile aberrant pathways across

multiple cell types. Interestingly, progression from LGD and

HGD lesions to invasive PDAC revealed shifts in distinct cell

populations encompassing both epithelial and stromal/

immune compartments.

Among epithelial populations, we detected expression of tran-

scripts of gastric lineage that have been previously described

during IPMN progression and have been correlated with better

prognosis, such asMUC5AC, as differentially overexpressed inour

LGD lesions (47). Although oncogenic transcripts are also

expressed at the LGDstage, there appears tobe retained expression

of tumor suppressor–related pathways, which may help counter-

act further dysplastic progression of these lesions. Within HGD

lesions, differential expression of these tumor suppressor path-

ways is no longer detected, and we begin to find previously

described classic core signaling pathways in PDAC (29, 48).

As a stroma-rich cancer, multiple studies have shown how the

diverse tumormicroenvironment (TME) plays a crucial role in the

development, progression, and immune evasion that exemplifies

the biology of PDAC (49, 50). As previously shown byMoffit and

colleagues, "virtual microdissection" of stromal genes revealed an

"activated" subpopulation of stroma characterized by overexpres-

sion of inflammatory pathways (51). Although these findings are

further validated within our own study, Moffit and colleagues

were not able to distinguish specific contributions of immune and

myofibroblast components to this signature. By dissecting specific

cell types at the single-cell level, we further delineate this signature

to describe the dichotomy of "myCAF" versus "iCAF" fibroblast

populations during multistep progression, with the former cells

observed (albeit rarely) even in LGD-IPMNs and the latter cells

only identified in PDAC samples. Within our analysis, besides

expression of many typical CAF markers (FAP, THY1, and DES),

the iCAF cells also show a unique expression pattern of the C-X-C

motif chemokine ligand 12 (CXCL12; ref. 52). This chemokine

and its corresponding receptor (CXCR4) are believed to play a

crucial role in many solid cancers and are associated with

metastatic spread in breast cancer, lung cancer, and melanoma

(53–56). Accumulating evidence also points to a role in PDAC

progression, with higher expression of CXCL12 correlating with

metastasis, likely by facilitating immune evasion, and increased

levels of matrix metalloproteinases leading to cellular invasion

(57–60). Within our own study, we find similar trends in the

presence of other cellular populations that parallel the emergence

of CXCL12-expressing iCAFs, such as a decrease in cytotoxic T-cell

and increase in myeloid-suppressive proportions, creating the

notorious immune-suppressive TME well described in PDAC.

Myeloid-derived subpopulations also tend to evolve during

tumor progression. Composed of multiple clusters expressing

CD11b, ITGB2, CD13, CD18, and S100A9, a clear separation

based on their individual transcriptomes remains difficult. This

high overlap of myeloid-derived subpopulations mirrors

recent findings in breast cancer where previously proposed M1

and M2 macrophage-associated genes are frequently expressed

within the same cells between these 2 clusters (61). As Azizi and

colleagues describe, this suggests that distinct prototypicalmacro-

phages may not be prevalent within tumors and may in fact exist

within the spectrum of these 2 phenotypes. Among other mye-

loid-derived populations, we do identify PMN-MDSCs that are

known surrogates of prognosis and contribute to immune evasion

and tumor progression through neoangiogenesis, migration and

invasion, and thus metastatic spread (62, 63). Similar to the

elevated proportion of CAFs experienced in more advanced

disease, we describe a striking increase in MDSC populations

compared with preneoplastic lesions (51% of nonepithelial cell

types in PDAC, versus <5% in noninvasive IPMNs). This resem-

bles findings from Kumar and colleagues whereby CAFs are able

to actively recruit PMN-MDSCs to tumors, further supporting the

role of an "inflammatory CAF" subpopulation in promoting

immunosuppression (64). Additional work has described the

importance of immune populations during tumorigenesis in the

context of IPMNs specifically (65). Spatial characteristics as relat-

ed to epithelial and cytotoxic T cell, as well as myeloid cell and

cytotoxic T-cell proximity, have been shown to be a predictive

feature of the presence of HGD. This is believed to be caused by

immunosuppressive interactions derived from tumor cells and

myeloid cells against cytotoxic T cells, regulating tumor develop-

ment. With further data supporting the role of myeloid-derived

cytotoxic T-cell suppression, immunotherapeutic approaches tar-

geting this cross-talk may serve as a novel strategy at impeding

tumor progression (10, 66).

The identification of demonstrable DC populations within

LGD and HGD-IPMN microenvironment suggests a proinflam-

matory phase that is present during the noninvasive precursor

states. This is particularly true in LGD-IPMNs where a higher

proportion of cytotoxic T cells exist in comparison with other

lesion types that may be supported by cDC2 cells through cross-

presentation of tumor antigens and T-cell stimulation. Addition-

ally, the presence of these DCs in IPMNs may also provide

opportunities for cancer "immune interception," because DC-

targeted vaccines have previously shown effectiveness in the

context of anmyeloid immunosuppressive environment through

reduction of PMN-MDSCs (67).

Although single-cell RNA sequencing provides new tools for

high-resolution profiling of cell populations, it is not without its

limitations, particularly in the context of this study. Although

these methodologies are accurate in determining relative abun-

dance of transcripts, they suffer when attempting to capture lowly

expressed genes (68). This is mostly of symptom of droplet-based

approaches as currently described. Although they allow for high-

throughput sequencing of thousands of single cells from a single

sample by counting the 30 end of transcripts, sensitive detection of

low to moderately expressed mRNA transcripts is forfeited com-

pared with those methodologies providing full-length transcript

data (68–70). As we aimed to profile the complex heterogeneity

of these preneoplastic tissues within this study, we prioritized

maximizing throughput through a droplet-based approach at

the cost of observing an average of 1,101 genes per cell. Sequenc-

ing depth is another important consideration, as low read depth

would not be optimal for providing detailed transcript informa-

tion from a single cell that may contain subtle changes gene-

expression signatures. But evenwith increasing sequencing depth,

transcript dropout remains a significant limitation where poor

mRNA capture and amplification may result in up to 72% of loss

transcripts, particularly in genes expressed at low levels (68). It is

also important to note that single-cell dissociation of tissues

remains a challenging protocol, for 1 thing to maintain viability

of cells throughout the process and the other to maintain relative
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cell representation as isolation protocols often lead to selective

degradation of specific cell types. There also remains the potential

for these methodologies to alter expression states and mRNA

levels during this process. Furtherworkhas demonstrated that this

can be ameliorated through RNA-seq of single nuclei which may

result in less of a bias of cell populations (19, 71). Further

limitations within our own study include the low number of

samples profiled. This is mostly a consequence of the relative

paucity of freshly resected surgical samples from pancreatic cysts

of appropriate cellularity (low-grade cysts are particularly chal-

lenging in being paucicellular), as well as the difficulty of obtain-

ing adequate viability following single-cell dissociation in order

to create viable cDNA and sequencing libraries. This further

exacerbates the fact we could not obtain consistent histologic

subtypes in our preneoplastic lesions, which can have a direct

impact on transcriptomic heterogeneity.

In conclusion, we describe how the TMEmay evolve during the

multistep progression of IPMNs to PDAC, whereby the noninva-

sive precursor lesions begin to experience a loss of cytotoxic T cells

during dysplastic progression and begin to assimilate immune

components such as PMN-MDSCs, with immune-suppressive

properties. Additionally, we demonstrate this permissive micro-

environment is correlated with appearance of tumor-promoting

iCAF stromal cell populations that facilitate immune evasion.

Notably, single-cell analysis of IPMNs reveals, for the first time,

that even in otherwise histologically innocuous LGD-IPMNs, we

find minor populations of cells that transcriptionally phenocopy

HGD and PDAC (�9% and �1% of LGD-IPMN cells, respective-

ly). It is possible that future single-cell analyses on a larger series of

LGD-IPMNs might establish a "threshold" that portends aggres-

sive natural history even in the absence of radiologically detect-

able worrisome features. Although it is important to stress the

limited generalizations that can bemade from such a small subset

of lesions, the ability to detect these gene-expression patterns

among single cells provides a primer for uncovering how hetero-

geneous cell types contribute to tumor carcinogenesis. Leveraging

this strategy may thus facilitate elucidation of molecular biomar-

kers for disease stratification.
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