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Human pancreatic islets consist of multiple endocrine

cell types. To facilitate the detection of rare cellular

states and uncover population heterogeneity, we per-

formed single-cell RNA sequencing (RNA-seq) on islets

from multiple deceased organ donors, including chil-

dren, healthy adults, and individuals with type 1 or type 2

diabetes. We developed a robust computational biol-

ogy framework for cell type annotation. Using this

framework, we show that a- and b-cells from children

exhibit less well-defined gene signatures than those

in adults. Remarkably, a- and b-cells from donors with

type 2 diabetes have expression profiles with features

seen in children, indicating a partial dedifferentiation

process. We also examined a naturally proliferating

a-cell from a healthy adult, for which pathway analysis

indicated activation of the cell cycle and repression of

checkpoint control pathways. Importantly, this replicat-

ing a-cell exhibited activated Sonic hedgehog signaling,

a pathway not previously known to contribute to human

a-cell proliferation. Our study highlights the power of

single-cell RNA-seq and provides a stepping stone for

future explorations of cellular heterogeneity in pancreatic

endocrine cells.

The endocrine pancreas plays a critical role in the control of

blood glucose homeostasis. The endocrine cells are orga-

nized into the islets of Langerhans, approximately spherical

groups of 500–1,000 cells, which together constitute only

1–2% of total pancreas mass. Pancreatic endocrine cells are

characterized by their most abundant hormone, namely

insulin (INS; b-cells), glucagon (GCG; a-cells), somatostatin
(SST; d-cells), pancreatic polypeptide (PPY; PP cells), and

ghrelin (GHRL; e-cells). The proportion of the assorted

endocrine cell types and their arrangement within the islets

varies widely among different mammalian species (1). For

instance, whereas rodent islets are comprised of up to 90%

insulin-producing b-cells in a distinct islet core, human

islets display intermingled endocrine cells, with only ;54%

b-cells (2). Recently, diabetes researchers have renewed their
focus on endocrine cellular heterogeneity (3). It is well ac-

cepted that not all b-cells are identical, especially in condi-

tions of metabolic stress, such as obesity or type 2 diabetes

(3–6). Moreover, it has been reported that in certain condi-

tions of type 2 diabetes, a subset of pancreatic cells malfunc-

tion by reduction of glucose-stimulated insulin secretion or

through dedifferentiation (7–9).

Individual cellular changes are diluted and therefore
missed when analyzed at the level of the whole islet, or

even when using sorted cell populations in bulk. More-

over, single-cell measurements can uncover unanticipated

subpopulations, rare cellular states, or novel transcrip-

tional mechanisms (10,11). Thus, methods to probe ex-

pression changes at the single-cell level are highly desirable

(12–14). RNA sequencing (RNA-seq) can now be performed

at the single-cell scale and, when applied in this manner,
is an effective methodology for the analysis of gene ex-

pression variation among a population of apparently near-

identical cells.

Here, we use single-cell RNA-seq to determine the

transcriptomes of human pancreatic endocrine cells in four

distinct developmental and physiological states: early child-

hood, normal adulthood, type 1 diabetes, and type 2 diabetes

(see Fig. 1A for workflow and Table 1 for donor informa-
tion). We discover that the transcriptional states of a- and
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Figure 1—A microfluidics system combined with a computational pipeline results in efficient capture of single cells from human pancreatic

islets and accurate annotation of their specific cell types. A: Schematic of experimental workflow. B: Cell type annotation pipeline. Results

for one b-cell are displayed as an example. For details, see RESEARCH DESIGN AND METHODS. C: Abacus plot displaying the read counts per

million (cpm) of key markers, including GCG (red), INS (blue), SST (orange), GHRL (green), PPY (pink), PRSS1 (brown), and KRT19 (black) in

all annotated cells. Each vertical line in the abacus represents one cell. The most highly expressed marker in each cell is denoted by

increased color opacity and size in relation to other markers. Within each sample, cells are ordered by GCG and thereafter INS levels. An

example of expression of these markers in one cell is shown at the right of the abacus plot. In this example, the most highly expressed

marker is GCG (red). All the other markers have a lower number of reads and are represented by corresponding colored dots. D: Overview

of cell annotation frequencies. QC, quality control; T1D, type 1 diabetes; T2D, type 2 diabetes.
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b-cells are not fixed in early childhood but instead become

more precisely defined as humans age. Furthermore, we find

that in the diabetic state, a- and b-cells display a more

immature gene signature, indicating a dedifferentiation pro-

cess. Using this powerful technology, we find a high degree

of gene expression variability within a given endocrine cell

type and uncover Sonic hedgehog signaling as a mitogenic
pathway potentially activated in replicating human a-cells.

RESEARCH DESIGN AND METHODS

Human Islet Sample Acquisition and Preparation

Human islets were acquired through the Diabetes Research

Center of the University of Pennsylvania (National Insti-

tutes of Health DK-19525) and the Integrated Islet

Distribution Program (IIDP; http://iidp.coh.org/). Prior to

cell capture, islets were cultured in Prodo islet media (PIMS

Standard) with 5% human albumin serum and a glucose

concentration of 5.8 mmol/L. Islets were dissociated into
single cells as described previously (15). Two integrated flu-

idic circuit chips, 5–10 and 10–17 mm in size (1006040 and

1006041; Fluidigm), were used for cell capture of each islet

sample. The SMART-seq method was used for first-strand

cDNA synthesis and PCR amplification (634833; Clontech).

For two control adult donors (AAJF122 and ABAF490) (refer

to Table 1 for details), ArrayControl spike-in (AM1780;

Thermo Fisher Scientific) was applied during cell capture.
Resulting cDNAs were pooled into a 96-well plate, and the

Nextera XT DNA library preparation kit (FC-131-1096; Illu-

mina) was used for RNA-seq library preparation according to

the Fluidigm protocol (100-7168). Bulk b-cell RNA-seq data

were obtained from a previous publication (16), with the

addition of two samples from children.

Sequencing

All libraries were sequenced on the Illumina HiSeq

2500 with 100-bp single-end reads. Median read depth

was 2.2 million per cell. Read alignment and gene expres-

sion quantification was performed using RNA-seq unified

mapper (RUM) (17). Cells with,500,000 uniquely aligned

reads were excluded from downstream analysis. A total

of 82% of sequenced cells passed initial technical quality

control. All sequencing data are available in the Gene

Expression Omnibus (GEO) repository (accession number

GSE83139; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE83139).

Cell Type Calling

In light of a recent finding that the 10–17-mm C1 chip can

capture a significant number of cell doublets (Fluidigm

white paper), we developed a five-step pipeline to distin-

guish single cells from doublets and to annotate cell types.

First, we crudely classified cells into different cell types
based on marker genes that have well-established cell

type–restricted expression. These markers include the major

hormone genes (GCG, INS, SST, GHRL, and PPY), genes that

encode acinar cell–specific digestive enzymes (PRSS1 and

PNLIP), and genes associated with ductal cells (i.e., KRT19,

SPP1, and HNF1B). The expression levels of each gene

were fitted by normal mixture modeling of high, low, and

(or) intermediate components using the mclust R package
(cran.r-project.org/web/packages/mclust) and rendered in

a “violin plot.” Cells were assigned to a cell type only

when they expressed specific markers in the mixture mod-

el’s high expression level component and had no conflict

with other markers (Fig. 1B, violin test). Second, we derived

gene expression signatures for different cell types by com-

paring the transcriptome of each cell type to the rest of the

cells in the same endocrine or exocrine category (Fig. 1B,
derivation of gene signature). Third, to further refine cell

type classification, previously derived gene signatures were

used to calculate the correlation of each cell to its corre-

sponding cell type–specific signature. As expected, pure cells

clustered together and showed strong correlation with only

one of the signatures (Fig. 1B, correlation test). Fourth, all

cells that passed these two tests were collected and their

gene expression patterns rederived (Fig. 1B, refined gene

Table 1—Donor information

Donor ID Age Sex Ethnicity

BMI

(kg/m2)

Cultured

(days) State

Cells captured

a b d PP Duct Acinar Dropped

AAJF122 52 years Male Asian 29.1 6 Control 21 1 1 1 8 0 24

ABAF490 39 years Female White 45.2 4 Control 11 30 1 1 1 0 30

ACAP236 21 years Male White 39 2 Control 47 17 2 2 3 1 20

ACGI428 23 years Male NA 25 10 Type 1 diabetes 1 6 0 0 66 1 17

HP-15041 57 years Male African

American

23.98 4 Type 2 diabetes 52 5 1 3 0 1 13

HP-15085 37 years Female White 39.3 4 Type 2 diabetes 38 16 2 7 7 2 17

HP-15085:

cultured 37 years Female White 39.3 12 Type 2 diabetes 10 17 1 2 4 0 14

ICRH76 2 years Male White 13.6 2 Child 9 4 1 2 2 1 21

ICRH80 19 months Female White 18 3 Child 1 15 0 0 5 0 51

NA, not available.
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signature). Fifth, we hypothesized that any cell doublets
could be explained by a linear combination of two “pure”

profiles. Accordingly, the new signatures from pure cell

populations were used to construct in silico mixed profiles,

including all the possible combinations between different

cell types. To eliminate likely doublets from further analysis,

all cells were examined based on the likelihood that their

profiles could be explained by an artificial in silico mixture

(Fig. 1B, composition estimate). They were also inspected
based on their correlation to different pure signatures (2)

(Fig. 1B, correlation test). The approach outlined above is

similar in concept to that used in a single-cell RNA-seq

study of human islets published recently (18). However,

our analysis addresses the potential issue of doublets

with any combination of cell types whether they are ductal,

acinar, delta, etc., and not just between a- and b-cells.

To assess background contamination levels, we sequenced
25 wells that lacked any cells by microscopic inspection after

cell capture. The ratios of all transcripts versus RNA spike-ins

for all sequenced wells, together with the ratio of spike-ins

versus transcripts of interest (e.g., GCG) of empty wells, were

modeled by mclust (cran.r-project.org/web/packages/mclust)

(Supplementary Fig. 5A and B). Based on this estimate,

the predicted contamination level for transcripts of inter-

est (e.g., GCG) was calculated (Supplementary Fig. 5C) us-
ing the following equation: predicted proportion of reads

from GCG contamination = [(reads from all transcripts/reads

from RNA spike-ins)non-empty wells 3 (reads from RNA spike-

ins/reads from GCG)empty wells]
21.

Downstream Analysis

EdgeR and DESeq2 were used with default settings for
differential expression analysis (19,20). Pathway analyses

were performed with Gene Set Enrichment Analysis (GSEA;

http://software.broadinstitute.org/gsea/index.jsp), Ingenuity

Pathway Analysis (IPA; http://www.ingenuity.com/), and

the Database for Annotation, Visualization, and Integrated

Discovery (DAVID; https://david.ncifcrf.gov/) (21,22).

Heatmaps were generated by the “aheatmap” function

from the NMR R package (http://renozao.github.io/NMF),
or by the “heatmap2” function from gplots R package

(https://cran.r-project.org/web/packages/gplots/), with Pearson

correlation as the distance function.

RESULTS

Single-Cell RNA-seq Analysis of Human Islets

We performed single-cell RNA-seq of islets from eight

deceased organ donors, of whom there were three adults
without diabetes, one subject with type 1 diabetes, two

subjects with type 2 diabetes, and two children (Table 1).

We dissociated human islets into single-cell suspensions

and loaded the cell mixture onto Fluidigm C1 chips with-

out preselection for particular cell types (Fig. 1A). The

mean diameter of human pancreatic endocrine cells is

9 mm, with a range from 6 to 13 mm (data not shown).

In an effort to reduce size-related sampling bias, for each

donor sample, we captured cells on both the 5–10- and
10–17-mm chips. Amplified cDNAs were then indexed,

pooled, and further processed to construct RNA-seq librar-

ies (Fig. 1A). A total of 635 cells were sequenced and

passed our initial sequencing quality control (Fig. 1D and

Table 1).

Islets are often received after different culturing times.

Since in vitro culture conditions may alter islet cell function

(23–25), we assessed whether culture duration influences
gene expression by comparing islet transcriptomes from a

single donor with type 2 diabetes at two different time points:

after 4 days in culture and after a total of 12 days in culture.

Remarkably, RNA expression levels between cultured and

fresh cells displayed good correlations (Spearman correlation

coefficient 0.863 for a-cells and 0.857 for b-cells) (Supple-

mentary Fig. 1). Whereas other groups have reported de-

creased expression of differentiation and maturity markers
such as ARX, MAFA, and NEUROD1 with increased culture

time (25), we observed either no change or an increase in

these markers either in a- or b-cells (Supplementary Figs.

2 and 3). It is possible that the current culture conditions

are improved over those used in previous studies. Further-

more, our expression profiles are based on pure a- and

b-cells, whereas the previous study used laser capture micro-

dissected bulk tissues (25). We thus conclude that differ-
ences in culture time between different donor samples

have only a minimal impact on our downstream analysis.

Cell Type Annotation

We developed a computational pipeline for cell type

annotation and for the removal of potential cell doublets

(see RESEARCH DESIGN ANDMETHODS) (Fig. 1B). In brief, we first

separated our sequenced cells into different cell types based
on key marker gene expressions. Subsequently, we derived

cell type–specific gene signatures for pure a-, b-, d-, PP,

ductal, and acinar cells from our samples and calculated an

in silico mix of profiles for each potential combination of

cell types (Fig. 1B). Next, we calculated the distance of the

expression profile of each cell to all of the mixture profiles,

as well as the correlation of the cell to different signatures

(Fig. 1B). We successfully assigned a specific cell type to
430 cells. For a general sample overview, we plotted the

marker gene expressions in each of the successfully anno-

tated cells in an abacus plot (Fig. 1C). In total, we an-

notated 190 a-cells, 111 b-cells, 9 d-cells, 18 PP-cells,

96 ductal cells, and 6 acinar cells. Due to ambiguous pro-

files, 205 cells were initially excluded from analysis (Fig.

1D and Table 1). A high proportion of ductal cells were

obtained from the donor with type 1 diabetes, unsurpris-
ingly since islet purity was low for this donor. Interestingly,

whereas all donor samples contained some cells with un-

determined annotation, most cells with an undetermined

phenotype were from juvenile donors. Notably, these cells

tended to have a conflicted endocrine/exocrine nature. This

result could potentially be explained either by the phenom-

enon that islet samples from children are highly embedded

in the surrounding exocrine and stromal tissue (26,27) or

diabetes.diabetesjournals.org Wang and Associates 3031
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by less-defined gene expression patterns in children (28,29).
In contrast, most of the undetermined cells from the do-

nors with type 2 diabetes demonstrated a mixture of endo-

crine cell signatures, mainly a- versus b-cells.

Validation of Cell Type Analysis

To evaluate the cell type classification strategy, we first

plotted the aggregated single b-cell gene expression values

against RNA-seq data from sorted bulk b-populations for

both adult and child samples (Fig. 2A and B). We observed

remarkably good agreement between the two methodolo-

gies, with a Spearman correlation of .0.80. The most
abundant transcripts are INS and INS-IGF2 (Fig. 2A and B).

As expected, very low-abundance genes are only de-

tected by bulk cell expression analysis. These genes are

often missed in single-cell RNA-seq experiments due to

stochastic sampling during the cDNA amplification process.

Interestingly, some of the discordant genes between bulk

and single-cell RNA-seq are non–b-cell hormone markers,

likely reflecting the limited purity of FACS-sorted human
islet cells (Fig. 2A and B, labeled dots). This result demon-

strates the advantage of single-cell RNA-seq for gene ex-

pression analyses of human islet cell populations, since

we can retrospectively confirm cell type, thereby ensuring

sample purity and eliminating gene expression signals from

contaminating cells present in bulk cell fractions.

We subsequently performed hierarchal clustering and

constructed a heatmap using cell type markers, important
transcription factors, and signaling pathway indicators (Fig.

2C). We confirmed that well-established cell type markers

were highly expressed, as expected, in their assigned cell

types. For example, b-cells had high levels of PDX1, IAPP,

PCSK1, MAFA, and IGF2, whereas a-cells had high expres-

sion of IRX2 and ARX. Both cell types have comparable

levels of FOXA2, NKX2-2, NEUROD1, and MAFB, although

cell-to-cell heterogeneity is also apparent. We further ex-
amined expression of key marker genes in all endocrine cell

types plus ductal and acinar cells and found that all cells

classified within a given cell type expressed high levels of

their expected marker gene and low levels of all others (Fig.

2D–I and Supplementary Fig. 4). For example, b-cells

expressed high levels of INS and low levels of acinar and

ductal markers, whereas duct cells showed high transcript

levels for KRT19 but only marginal signals for hormone
genes (Fig. 2D–I and Supplementary Fig. 4). Furthermore,

our data show a high degree of similarity to recently pub-

lished single-cell transcriptomic data of 60 pancreatic islet

cells from control adult donors (18). For example, ARX is

expressed highly in both a- and PP cells, whereas ETV1 is

highly enriched in PP and d-cells (Supplementary Fig. 4).

Together, these observations demonstrate the high accu-

racy of our cell type annotation methodology.

Assessment of Background Contamination Levels

Some of the assigned cells demonstrate mRNA expression

of markers not normally associated with that cell type.

For example, low levels of GCG expression were also noted

in non–a-cells (Fig. 1C, faint, small red dots). Since we
rigorously excluded cells that could represent doublets, we

next examined whether the secondary markers could be a

result of RNA contamination originating from lysed cells

prior to capture. To this end, we sequenced cDNA from

25 empty wells and modeled the relationship between the

number of all mapped transcripts, reads from spike-in

RNA, and reads from GCG transcripts to predict the level

of GCG mRNA expression arising from contamination
(see RESEARCH DESIGN AND METHODS and Supplementary Fig. 5).

Based on this analysis, we concluded that the low levels

of GCG found across all cell types most likely resulted

from contamination.

Gene Expression Profiles of a- and b-Cells From

Donors With Type 2 Diabetes Show Features of

Juvenile Gene Activation

Next, we derived a-cell and b-cell gene signatures from

adult donors without diabetes. By design, when these genes

(indicated as black bars in Fig. 3A and B) are projected back

on the rank-ordered differentially expressed genes between

these two cell types, a-cell signature genes cluster on

the a-cell side (Fig. 3A), and b-cell signatures genes are

expressed only in b-cells (Fig. 3B). When we then analyzed

the expression pattern of these adult signature genes in
a- and b-cells from young children, many of them were no

longer expressed in the expected cell type–specific fashion

(Fig. 3C and D). Multiple a-cell signature genes were in fact

preferentially expressed in juvenile b-cells (Fig. 3C). This

inappropriate gene activation profile is even more pro-

nounced for a-cells of young children; a very large fraction

of adult b-cell genes are expressed at high levels in a-cells

(Fig. 3D). Consequently, the gene set enrichment scores for
the adult endocrine cell gene signatures are much lower in

the young a- and b-cells, indicative of an only partially

complete differentiation program in juvenile islets. The lists

of genes that are misexpressed in children are presented in

Supplementary Table 1. For lists of genes used to define

a- and b-cell signatures see Supplementary Table 2.

Subsequently, we analyzed the enrichment of the non-

diabetic adult islet cell gene signatures in a- and b-cells
from individuals with type 2 diabetes. Gene sets from

donors with type 2 diabetes had intermediate enrichment

scores between those from adult control subjects and chil-

dren (Fig. 3E and F). Similarly, several of the a- or b-cell

signature genes were expressed at high levels in the inap-

propriate endocrine cell type (Fig. 3E and F). This feature is

reminiscent of the pattern seen when comparing gene sets

between child donors and adult control donors (Fig. 3C and
D). This resemblance of endocrine cells between type 2 di-

abetic samples and child samples was confirmed when we

derived a-and b-cell gene signatures from our juvenile

organ donors and compared them to the gene expression

patterns present in normal and type 2 diabetic adult

endocrine cells (Fig. 4). Again, gene expression profiles

of both a- and b-cells from donors with type 2 diabetes

exhibited features of gene activation seen in children (Fig. 4A

3032 Single-Cell Transcriptomics Diabetes Volume 65, October 2016
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Figure 2—Single-cell RNA-seq of human islets identifies pancreatic cell types and gene signatures. Single-cell expression data from

b-cells were aggregated and compared with expression profiles from sorted bulk b-cells in adult (A) and child (B) samples. Outlier genes

indicative of contaminating cells in the bulk samples are labeled. FPKM, fragments per kilobase of transcript per million. C: Heatmap

showing hierarchical clusters of a- and b-cells from different donor types with selected genes. D–I: Violin plots confirm that annotated cell

types have mutually exclusive marker gene expressions. Each dot inside the violin represents one cell. T2D, type 2 diabetes.
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and B). In b-cells, these include cell cycle and regulatory
genes such as CDKN2B, BARD1, and JUNB (Supplemen-

tary Table 1); at least one gene involved in insulin se-

cretion, PRKD1, is also upregulated in type 2 diabetic

b-cells (30). This finding suggests that endocrine cells

in patients with type 2 diabetes are not able to main-

tain a fully differentiated gene expression profile, which

is in line with recent publications reporting partial de-

differentiation of b-cells in diabetic states (8,31). The

complete list of misexpressed genes can be found in
Supplementary Table 1.

Human Proliferating a-Cells Activate the Sonic

Hedgehog Pathway

One of the a-cells analyzed from an adult donor without

diabetes was clearly proliferating, as indicated by a very

high level of Ki67 mRNA expression. We compared the

expression profile of this proliferating a-cell with quiescent

Figure 3—Child a- and b-cells exhibit a different transcriptome profile than adult a- and b-cells. Adult gene signatures for gene set

enrichment analysis were derived from control adult endocrine cells with a $10-fold difference between a- and b-cell gene expression

levels and a false discovery rate <5%. Differentially expressed genes from control adult a- and b-cells ordered by fold changes with genes

more highly expressed in a-cells on the left of the x-axis in A and genes more highly expressed in b-cells on the left of the x-axis in B. C–F:

Similar display as in A and B, except that the same nondiabetic adult gene signature was used to analyze a- and b-cells from child donors

(C and D) and donors with type 2 diabetes (E and F ). T2D, type 2 diabetes.
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a-cells from the same donor and performed pathway

analysis. We confirmed that this cell had, in fact, acti-

vated cell cycle pathways and inhibited cell cycle check-

point control (Fig. 5A). Remarkably, the Sonic hedgehog

signaling pathway was activated in the replicating a-cell

(Fig. 5A). DYRK1A and GSK3B were both repressed in
this proliferating cell, consistent with recent reports

that inhibition of both molecules induces proliferation

of human endocrine cells (32,33) (Fig. 5B). Interestingly,

both of these proteins regulate GLI transcription fac-

tors, major targets of Sonic hedgehog pathway signaling

(Fig. 5B). The ability to analyze differential expression

between a proliferating a-cell and quiescent a-cells high-

lights the power of single-cell RNA-seq to explore rare
cell populations.

Deeper Analysis of Cells With Conflicted Expression

Profiles

Our original exclusion of cells with a mixed signature was

designed to eliminate any cells captured as doublets. This

rigorous exclusion could have the detrimental effect of
omitting interesting cells, such as transdifferentiating cells

and even possibly rare progenitor cells. For example, recent

publications have demonstrated the plasticity of pancreatic

endocrine cells in transition from one cell fate to an-

other under experimental or pathophysiological conditions

(8,34–36). This plasticity corresponds to the highly similar

chromatin and epigenetic state of human a- and b-cells

(16,36). We therefore re-evaluated cells that were excluded
from our analysis based on a conflicted a/b-expression

profile by comparing their gene expression pattern to

that of annotated a- and b-cells, using hierarchical cluster-

ing of both genes and cells (Fig. 6A). As seen in Fig. 6A,

many conflicted cells with a mixed a-/b-signature clus-

tered together on the heatmap in between a- and b-cells

and displayed both a- and b-cell signatures at roughly

equal strength (cells in a black box); they thus represent

true doublets. However, several of the conflicted cells did

not cluster with these doublets but rather with either a- or

b-cells (see red arrows on top of the heatmap) and thus

likely represent rare endocrine cells that were excluded on

the very stringent criteria we described above.

We also examined a-, b-, and conflicted a-/b-cells using

principle component analysis based on the same differen-

tially expressed genes (Supplementary Fig. 6A). There are

distinct three clusters of cells, corresponding to pure a- and

b-cells and the group of cells showing mixed a-/b-signature,

based on the first two principle components, PC1 and PC2.

Strikingly, both PC1 and PC2 show high correlation with

the number of transcripts sequenced (Supplementary Fig.

6A). The observation that many of the suspected admixed

cells have relatively high numbers of transcripts further

corroborates the notion that they are likely to be doublets

(Supplementary Fig. 6A). However, we again observed cells

with conflicted gene expression signatures that do not clus-

ter with the three major groups of cells, representing

potential rare cell types (Supplementary Fig. 6A).

Similarly, we performed this analysis for conflicted

b-/duct cells (Fig. 6B). This analysis demonstrates that in

addition to the conflicted cells that are clearly the results of

two cells in one well, there are other rare cells that do not

display the standard a-, b-, or duct cell signature that are

not doublets. Future research with larger sample sizes will

likely reveal interesting properties about rare cell types.

DISCUSSION

Pancreatic transcriptome studies of bulk-sorted endocrine

cell fractions have revealed important insights into cell

type–specific gene expression signatures (36,37). In our

study, we obtained RNA-seq data from well-annotated

single cells from multiple organ donors covering children,

healthy adults, and individuals with type 1 and type 2

diabetes. We developed a robust pipeline to ensure that

Figure 4—Endocrine cells from donors with type 2 diabetes and child donors have similarities in gene expression. Pediatric gene

signatures for gene set enrichment analysis were derived from juvenile endocrine cells with a $10-fold difference between child and

control adult gene expression levels and a false discovery rate<5%. A: a-Cells from donors with type 2 diabetes have an expression profile

with features of child a-cells. B: b-Cells from donors with type 2 diabetes have an expression profile with similarity to the child b-cells. T2D,

type 2 diabetes.
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each cell is correctly assigned to a specific cell type and

that artifacts and cell doublets were removed. We also

demonstrate several clear advantages in analyzing data

from single cells versus the entirety of a population,

even when cells are FACS sorted prior to RNA extraction.
A particularly striking result from our study is the

discovery that the transcriptomes of both a- and b-cells

from donors with type 2 diabetes exhibit features of ex-

pression profiles of their juvenile counterparts, indicating

partial regression to an immature state, as exhibited by

upregulation of several cell cycle genes (Figs. 3 and 4 and

Supplementary Table 1). This was made possible by the

derivation of a- and b-cell signature gene lists derived

from 100% pure cells identified by single-cell technology,

which is not possible through bulk cell sequencing analy-

sis. The mechanisms driving this dedifferentiation will need

to be explored further, although the transcription factor

FOXO1 clearly plays a role in this process (8).
A second major advantage of single-cell technology is

the ability to detect rare cell populations. We were able to

discover a single proliferating a-cell, thus showcasing

the power of single-cell RNA-seq methodology (Fig. 5).

We demonstrate the presence of the expected activation

of cell cycle genes, as well as downregulation of both

DYRK1A and GSK3B in this replicating cell, both of

which contribute to endocrine cell replication (32,33) and

Figure 5—Sonic hedgehog signaling may contribute to endocrine cell replication. A: A replicating a-cell found by single-cell RNA-seq

analysis showed activation of the cell cycle and repression of checkpoint control genes and, unexpectedly, activation of the Sonic

hedgehog pathway. B: Differentially expressed genes in the Sonic hedgehog pathway are depicted with a circle with color-filled interior

(red, upregulation; green, downregulation in the replication a-cell, compared with quiescent a-cells from the same donor).
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therefore implicate a role for Sonic hedgehog signaling in

this process (Fig. 5).

Furthermore, we performed a detailed analysis of the

cells that showed a conflicted signature based on their

individual expression profiles. While many clustered to-

gether, some of these cells with a somewhat “mixed” gene
expression signature clustered within the bona fide a-, b-,

or duct cells and thus possibly represent transitional states.

Further research is required to uncover the biological sig-

nificance of these cells.

In conclusion, by applying single-cell RNA-seq tech-

nology to profile pancreatic islets from multiple hu-

man organ donors, comparing both pediatric and adult

organ donors with and without diabetes, we uncover

several previously unknown features of the human en-

docrine pancreas. First, gene expression even of the major

hormone genes is quite variable among human a- and

b-cells. Second, a- and b-cells from type 2 diabetes exhibit

transcriptome features of pediatric endocrine cells, indi-

cating a reversal to a more immature state. In light of our
recent findings that aged mouse islets have enhanced in-

sulin secretion compared with young islets, the similarity

of type 2 diabetic and young a- and b-cells may indicate

that type 2 diabetes could in part result from a failure of

compensatory mechanisms that normally occur with age

(29). To what degree these abnormalities contribute to the

etiology of diabetes will have to be established in the

future; nevertheless, the data presented here illustrate

Figure 6—Heatmaps help distinguish doublets from rare variant cells. A: Annotated a- and b-cells, together with suspected a- and

b-doublets, are clustered using genes that are >6.5-fold differentially expressed between a- and b-cells. Each column represents one

cell and each row represents one gene. Cells from different sample types are color coded and indicated by the color bar on top of the

heatmap. Cells with an ambiguous signature are depicted with a red arrow. Many ambiguous cells cluster together between a- and b-cells

and display clear evidence of a combined signature (black box). Other ambiguous cells, however, exhibit expression profiles more closely

related to either the a- or b-cell gene expression pattern and thus could represent rare transitional cells. B: Similar organization as in

A, except that annotated b-cells and duct cells, together with suspected b-cell and duct cell doublets, are clustered using genes that

are >3.2-fold differentially expressed between b-cells and duct cells. T1D, type 1 diabetes; T2D, type 2 diabetes.
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the power of a well-controlled single-cell transcriptomic
analysis.
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