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Abstract

In this paper, a two-stage scheme is proposed to deal with the difficult problem of acoustic echo cancellation (AEC) in

single-channel scenario in the presence of noise. In order to overcome the major challenge of getting a separate

reference signal in adaptive filter-based AEC problem, the delayed version of the echo and noise suppressed signal is

proposed to use as reference. A modified objective function is thereby derived for a gradient-based adaptive filter

algorithm, and proof of its convergence to the optimumWiener-Hopf solution is established. The output of the AEC

block is fed to an acoustic noise cancellation (ANC) block where a spectral subtraction-based algorithm with an

adaptive spectral floor estimation is employed. In order to obtain fast but smooth convergence with maximum

possible echo and noise suppression, a set of updating constraints is proposed based on various speech

characteristics (e.g., energy and correlation) of reference and current frames considering whether they are voiced,

unvoiced, or pause. Extensive experimentation is carried out on several echo and noise corrupted natural utterances

taken from the TIMIT database, and it is found that the proposed scheme can significantly reduce the effect of both

echo and noise in terms of objective and subjective quality measures.

Keywords: Adaptive filter; Convergence analysis; Echo cancellation; Least mean squares algorithm; Noise reduction;

Spectral subtraction; Single-channel communication

1 Introduction
The phenomenon of acoustic echo occurs when the out-

put speech signal from a loudspeaker gets reflected from

different surfaces, like ceilings, walls, and floors and then

fed back to the microphone. In its worst case, acoustic

echo can cause howling of a significant portion of sound

energy [1,2]. In real life applications, such as a lecture

in a large conference hall or in the public address sys-

tem of a trade fair, the presence of acoustic echo along

with the environmental noise is a very common phe-

nomenon, which degrades the speech quality even leading

to complete loss of intelligibility.

In order to deal with the problem of acoustic echo

cancellation (AEC), conventionally echo suppressors, ear-

phones, and directional microphones have been used,
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which generally place restrictions on the talkers’ move-

ment [2]. As an alternate of such hardware-based solu-

tions, adaptive filter algorithms are widely being applied

where apart from the input channel, a separate echo-

free reference channel is required [3-13]. Among dif-

ferent adaptive filter algorithms, the least mean squares

(LMS) algorithm and its different variants are very pop-

ular for their satisfactory performances and less com-

putational burden [4,10,12-14]. Besides these algorithms,

the recursive least squares (RLS) algorithm is well-known

for its fast convergence at the expense of computa-

tional complexity [13]. The adaptive filter algorithms

have also been used for acoustic noise cancellation

(ANC) [15].

There are some methods that deal with both acoustic

echo and noise cancellation (AENC) [16-18]. The echo

canceller used in [16] utilizes a sub-band noise cancel-

lation scheme. In [17], echo cancellation is done by an

adaptive LMS filter while a linear prediction error fil-
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ter removes the residual echo and noise. In [18], a single

Wiener filter is employed to simultaneously suppress the

echo and noise. It is to be mentioned that all these AENC

methods employ more than one microphone, while the

solutions using single microphone are favorable in most of

the real-life applications.

In this paper, an AENC scheme is proposed which

can efficiently deal with the single-channel scenario.

First, unlike conventional LMS algorithm, considering

the delayed version of the previously echo- and noise-

suppressed signal as reference, a gradient-based adaptive

LMS algorithm is developed for single channel AEC. Pre-

liminary results obtained by using this idea is reported

in [19]. However, in the current paper, analytical proof

of convergence towards the optimum Wiener-Hopf solu-

tion is presented. Next, a single-channel ANC algorithm

based on spectral subtraction with an adaptive spectral

floor estimation is developed, which reduces not only the

effect of noise but also some residual echo. Finally, ana-

lyzing different speech characteristics of the reference and

current frames, multiconditional updating constraints are

proposed in order to obtain precise control on conver-

gence characteristics. For performance evaluation, exten-

sive experimentation is conducted on several real-life echo

and noise corrupted speech signals at different acoustic

environments.

2 Problem formulation
In order to formulate the problem of single-channel

AENC, for a better understanding, first, a dual channel

AENC scheme is presented in Figure 1 (according to [17]).

Here, s1(n) and s2(n) are speech signals corresponding to

near-end and far-end speakers, while v1(n) and v2(n) are

additive noises, respectively. The noise corrupted far-end

signal (s2(n) + v2(n)) is played through a loudspeaker at

the near-end acoustic room environment and the echo

signal x2(n) is generated. Thus, the input y1(n) to the

near-end microphone is given by

y1(n) = s1(n) + v1(n) + x2(n). (1)

The task of the adaptive filter-based AEC block placed

at the near-end is to produce an estimate x̂2(n) of the echo

x2(n) by minimizing the error

e1(n) = y1(n) − x̂2(n). (2)

Two major issues in dual channel system are (i) avail-

ability of a separate reference signal required for the

adaptive filter, for example, here the delayed version of

(s2(n) + v2(n)) and (ii) different speakers for input and

echo signals. Moreover, use of the double talk detector

(DTD) helps in controlling the update process. Unfortu-

nately, these features are absent in single-channel scenario

as shown in Figure 2. Instead of two speakers, in this case,

the microphone receives the input s(n) corrupted by noise

v(n) and echo generated from the same speaker.

In the presence of noise v(n), the sole microphone input

signal in single-channel scenario is given by

y(n) = s(n) + v(n) + xs(n) + xv(n), (3)

where xs(n) and xv(n) denote the echo of the input speech

and noise, respectively. The echo signals can be expressed

as

xs(n) = a
T
n s(n − k0), (4)

xv(n) = a
T
n v(n − k0), (5)

where s(n−k0) =[ s(n−k0−1), s(n−k0−2), . . . , s(n−k0−

p)]T and v(n−k0) =[ v(n−k0−1), v(n−k0−2), . . . , v(n−

k0 − p)]T with k0 being a predefined flat delay and an =

[ an(1), an(2), . . . , an(p)]
T consists of the coefficients cor-

responding to the acoustic room transfer function A(z).

The order p and coefficient values of A(z) depend on the

room characteristics. It is to be noted that in this case,

there is no scope of obtaining a separate echo-free ref-

erence or a separate noise-only reference, which makes

the single-channel AENC problem extremely difficult to

handle.

Figure 1 Adaptive filter-based echo and noise cancellation in dual channel communication system.
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Figure 2 Single-channel acoustic echo generation in noisy room

environment.

3 Proposed single-channel AENC scheme
3.1 Proposed two-stage setup

In Figure 3a, a simple block diagram showing two stages of

the proposed AENC scheme is presented and in Figure 3b,

more detail of the adaptive filter-based AEC algorithm

involved in the first stage is shown. Similar to Figure 2,

the input to the microphone y(n) can be described by (3).

For the case of single-channel AEC, for example, while

delivering a lecture in a large conference hall, the micro-

phone in front of the speaker receives input speech s(n)

corrupted by v(n). Once this noise-corrupted speech is

transmitted through loudspeaker, echo signal is generated

and thus the microphone after some initial time delay will

receive noise-corrupted speech and echo of previously

uttered speech. The task of AEC is to cancel the echo

part from this input by using adaptive filter algorithm. In

order to obtain adaptively an estimate x̂s(n) + x̂v(n) of the

echo signal, we propose to utilize delayed versions of the

previously echo-suppressed samples of the noisy speech

as reference signal [19]. A symbol hat on the variable is

used to indicate estimated value. The error signal e(n) thus

obtained is given by

e(n) = y(n)−[ x̂s(n) + x̂v(n)] . (6)

The estimate of the echo signal can be expressed as

x̂s(n) + x̂v(n) = ŵ
T
n [ ŝ(n − k0) + v̂(n − k0)] , (7)

where ŵn =[ ŵn(1), ŵn(2) . . . ŵn(p)]
T is the estimated

coefficient vector. The task of the adaptive filter is to

obtain an optimum ŵn by minimizing the error in (6) i.e.,

e(n) = s(n) + {(v(n) + δs(n)) + δv(n)}, (8)

where δs(n) = xs(n) − x̂s(n) and δv(n) = xv(n) − x̂v(n) are

the residual echo of the speech and noise portions of the

input signal, respectively, and it is assumed that these sig-

nals exhibit the properties of white Gaussian noise. Next,

e(n) is passed through a spectral subtraction-based single-

channel ANC block which produces output s̃(n) ≈ s(n) +

�(n) that closely resembles s(n) provided that the residual

echo-noise portion �(n) becomes very small.

It is to be noted that the task of noise reduction, unlike

the proposed AENC scheme, may be carried out prior

Figure 3 Block diagram of proposed single-channel AENC scheme. (a) Two stages and (b) details of proposed adaptive filter-based AEC

algorithm.
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to the AEC block. However, because of possible nonlin-

earities introduced by the prior noise reduction block,

no proper reference would be available for the single-

channel AEC block [17]. Hence, the arrangement shown

in Figure 3a is adopted, in which the noise reduction block

also serves as a post-processor for attenuating the residual

echo.

3.2 Development of proposed gradient-based

single-channel LMS AEC scheme

A delayed version of the adaptive filter output e(n) is pro-

posed to use as the reference signal, and from (8), filter

output e(n) can be written as

e(n) = ŝ(n) + v̂(n), (9)

where ŝ(n) = s(n) + δs(n) and v̂(n) = v(n) + δv(n). The

objective function of the adaptive filter involvesminimiza-

tion of the mean square estimation of the error function

and using (6) it can be written as

E{e2(n)} = E{(s(n) + v(n))2} + E{(xs(n) + xv(n)

− x̂s(n) − x̂v(n))2} + 2E{(s(n) + v(n))

× (xs(n) + xv(n) − x̂s(n) − x̂v(n))}, (10)

where E{.} denotes the expectation operator. In (10), it is

intended to use the basic definition of cross-correlation

operation, for example, the cross-correlation function

between s(n) and v(n) is defined as

rsv(m) = E{s(n)v(n − m)}, (11)

wherem denotes the lag. Using (4), (5), (7), and the above

definition, the last term of (10) can be expressed as

2E{[ (s(n) + v(n))(xs(n) + xv(n) − x̂s(n) − x̂v(n))] }

= 2

k=p∑

k=1

{(an(k) − ŵn(k))(rss(k0 + k) + rsv(k0 + k)

+ rvs(k0 + k) + rvv(k0 + k)) − rsδs(k0 + k)

− rsδv(k0 + k) − rvδs(k0 + k) − rvδv(k0 + k)}. (12)

Here, rss(k0 + k) corresponds to the (k0 + k)th lag of

the cross-correlation between s(n) and its previous sam-

ples s(n − k0 − k), and rsv(k0 + k) corresponds to the

(k0 + k)th lag of the cross-correlation between s(n) and

v(n − k0 − k). In a similar way, rvs(k0 + k), rvv(k0 + k),

rsδs(k0+k), rsδv(k0+k), rvδs(k0+k), and rvδv(k0+k) can be

defined. It is well known that the value of cross-correlation

decreases rapidly with the increasing lags when two sig-

nals are uncorrelated. In ideal case, the cross-correlation

function between two random noise signals would be

nonzero only at the zero lag. Since v(n) is assumed to be

white Gaussian noise and, generally, the value of k0 is very

large, in (12), the effect of the terms rsv(k0+k), rvs(k0+k),

and rvv(k0 + k) can be neglected. Moreover, because of

noise-like characteristics of δs(n) and δv(n), in (12), one

can neglect rsδv(k0 + k), rvδs(k0 + k), and rvδv(k0 + k) too.

Hence, it can easily be comprehended that optimal fil-

ter performance occurs when rss(n) is minimum, i.e., the

least possible correlation between s(n− k0 − k) and s(n) is

desired. As a result, (10) reduces to

E{e2(n)} = E{(s(n) + v(n))2}

+E{[ xs(n) + xv(n) − x̂s(n) − x̂v(n)]2 }

+ 2

k=p∑

k=1

(an(k) − ŵn(k))rss(k0 + k). (13)

Here, the magnitude of rss(k0 + k) strongly depends on

speech characteristics and the amount of flat delay k0. For

a reasonably large k0, the effect of rss(k0 + k) in 13 can be

neglected, and minimization of (13) results in

∂E{e2(n)}

∂ŵT
n

= 0

E[{xs(n)+xv(n)−x̂s(n)−x̂v(n)}{̂s(n − k0)+v̂(n−k0)}]=0.

(14)

Hence, we obtain

E{(xs(n) + xv(n))(̂s(n − k0) + v̂(n − k0))}

= ŵ
T
n E[ {̂s(n − k0) + v̂(n − k0)}{̂s(n − k0) + v̂(n − k0)}] .

(15)

The above equation is similar to Wiener-Hopf equation

and its solution can be written as

ŵ
T
n = R(s+v)(s+v)(n − k0)

−1
r(xs+xv)(s+v)(n − k0), (16)

where r(xs+xv)(s+v)(n − k0) consists of different lags of

cross-correlation between the echo signal xs(n) + xv(n)

and the noisy input signal s(n) + v(n), while R(s+v)(s+v)

is the auto-correlation matrix of s(n) + v(n). There is

no doubt that ŵn is the most optimum solution possible.

Hence, it is shown that even for a single-channel noise cor-

rupted AEC problem, the most optimum solution ŵn can

be achieved under the assumptions stated earlier.

For iterative estimation of optimal filter coefficients, the

adaptive LMS algorithm is very popular. It is fast and

efficient, and it does not require any correlation measure-

ments or matrix inversion [13]. The update equation of

the LMS adaptive algorithm is generally expressed as

ŵ
T
n+1 = ŵ

T
n − μ∇ξ(n), (17)

where μ is the step factor controlling the stability and rate

of convergence, ξ(n) is the cost function, and ∇ is the gra-

dient operator. The LMS algorithm simply approximates

the mean square error by the square of the instantaneous
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error, i.e., ξ(n) = e2(n), and therefore, from (6) and (7) ,

the gradient of ξ(n) can be expressed as

∇ξ(n) =
∂ξ(n)

∂ŵT
n

= −2e(n)(̂s(n − k0) + v̂(n − k0)).

Thus, the update equation for the proposed single-

channel LMS adaptive scheme can be written as

ŵ
T
n+1 = ŵ

T
n + 2μe(n)(̂s(n − k0) + v̂(n − k0)). (18)

3.3 Convergence analysis of the proposed AEC scheme

Considering expectation operation on both sides of the

update Eq. 18, one can obtain

ŵ
T
n+1 = ŵ

T
n + 2μE{e(n)(̂s(n − k0) + v̂(n − k0))}. (19)

Here, an underline beneath ŵn is introduced to rep-

resent the expected value E{ŵn}. For the kth unknown

weight vector (where k = 1, 2, . . . , p), using (6) and

neglecting the effect of rss(n) that has already been dis-

cussed in the previous subsection, the last term of (19) can

be written as

2μE{e(n)(̂s(n − k0) + v̂(n − k0))}

= 2μE{[ xs(n) + xv(n) − x̂s(n) − x̂v(n)]×( ŝ ( n − k0 )

+ v̂ ( n − k0 ) ) }. (20)

Based on the assumptions on cross-correlation terms

stated in the previous subsection, one can obtain

E{e(n)( ŝ (n−k0) + v̂(n − k0))} = r(xs+xv)(s+v)(n−k0)

−R(s+v)(s+v)(n−k0)ŵ
T
n .

(21)

Using (21), the update Eq. 19 can be written as

ŵ
T
n+1 = ŵ

T
n − 2μR(s+v)(s+v)(n − k0)ŵ

T
n

+ 2μr(xs+xv)(s+v)(n − k0). (22)

Evaluating the homogeneous and particular solutions of

(22), the total solution can be obtained as (see Appendix)

ŵU
n+1(k) = Ck(1 − 2μλ(k))n +

1

λ(k)
rU(n − k0 − k), (23)

where λ(k) is the kth diagonal element of the eigen-

value matrix obtained by eigenvalue decomposition of

R(s+v)(s+v)(n − k0) and rU(n − k0 − k) is the kth ele-

ment of UT
r(xs+xv)(s+v)(n − k0) = r

U
(xs+xv)(s+v)(n − k0)

with the matrix U consisting of eigenvectors correspond-

ing to eigenvalues. Since in the iterative update procedure,

the homogeneous part (1 − 2μλ(k))n diminishes with

iterations, (23) in a matrix form can be expressed as

ŵ
T = U�−1

U
T
r(xs+xv)(s+v)(n − k0)

= R
−1
(s+v)(s+v)(n − k0)r(xs+xv)(s+v)(n − k0). (24)

Thus, it is found that the average value of the weight vec-

tor converges to the Wiener-Hopf solution, which is the

optimum solution with increasing number of iteration.

3.4 Noise reduction in spectral domain

In the proposed AENC scheme, the operation of the ANC

block is processed frame by frame for noise reduction

based on single-channel spectral subtraction algorithm

[20-22]. According to (9), for the ith frame, the error signal

for the duration of a frame length can be written as

ei(n) = ŝi(n) + v̂i(n). (25)

Corresponding frequency domain representation is

given by

Ei(ω) = Ŝi(ω) + V̂i(ω). (26)

Themagnitude squared spectrum of ŝi(n) can be written

as

| Ŝi(ω) |2=|Ei(ω) |2−| V̂i(ω) |2−V̂i(ω)̂S∗
i (ω)−Ŝi(ω)V̂ ∗

i (ω).

(27)

It is desired to choose an estimate S̃i(ω) that will mini-

mize

Erri(ω) =|| S̃i(ω) |2 − | Ŝi(ω) |2| . (28)

Since the noise is assumed to be zero mean and uncor-

related with the signal, the expected values of the last

two terms of (27) can be neglected. Thus, (28) can be

expressed as

Erri(ω) =| S̃i(ω) |2 − | Ei(ω) |2 +E{| V̂i(ω) |2}. (29)

This expression of Erri(ω) can be minimized by choos-

ing

| S̃i(ω) |2=| Ei(ω) |2 −E{| V̂i(ω) |2}. (30)

With an estimate of noise spectrum E{| V̂i(ω) |2}, signal

spectrum S̃i(ω) can be computed as

S̃i(ω) =| S̃i(ω) | ejarg[Ei(ω)], (31)

where the phase (arg[Ei(ω)]) is generally assumed to be

the phase of the noise corrupted signal without causing

significant degradation in terms of loss of intelligibility

of the speech signal [20]. It can be seen that an estimate

of the magnitude spectrum | S̃i(ω) | of the signal can

be obtained provided an estimate of noise spectrum E{|

V̂i(ω) |2} is available, which is generally computed dur-

ing the periods when speech is known a priori not to be

present.

Final output of the AENC system is the speech frame

(̃si(n)), which consists of the original speech si(n) and a

negligible amount of noise-like signal �i(n). The signal

�i(n), although very weak, may contain some signature

of the input noise v(n), the residual echo δs(n), and the

residual noise δv(n). In order to overcome the problem of
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musical noise and to avoid the speech distortion caused by

speech subtraction, in (31), an over estimate of the noise

power spectrum can be subtracted carefully such that the

spectral floor is preserved [21]. Thus, (31) can bemodified

as

| S̃i(ω) |2 = | Êi(ω) |2 −αssE{| V̂i(ω) |2},

if | S̃i(ω) |2> βss{| V̂i(ω) |2}

= βss{| V̂i(ω) |2}, otherwise. (32)

Here, αss is the subtraction factor and βss is the spectral

floor parameter with αss ≥ 1 and 0 ≤ βss ≤ 1. The task

of noise power spectral density estimation is carried out

based on theminimum statistics noise estimator proposed

in [23] which can handle the time-varying nature of the

noise.

4 Development of adaptive update constraints
The AEC part of the proposed AENC scheme may suf-

fer from some common problems of adaptive filter-based

algorithms, such as slow convergence rate and fluctuation

around the desired estimates, especially in practical cases

where the assumption on negligibility of cross-correlation

terms (stated in the previous section) may not strictly

hold. In order to overcome such problems, some updating

constraints are proposed based on the following speech

characteristics:

(i) The level of cross-correlation

(ii) The amount of signal power

(iii) The mean square error (MSE) between consecutive

estimates of the unknown filter coefficients.

Through extensive experimentation on different speech

frames, it is found that the negligibility of the cross-

correlation terms rss(n), rsδv(n), rvδs(n), and rvδv(n) (as

described after (12)) strongly depends on the voicing char-

acteristics of speech frames and the input noise. Because

of inherent periodicity of the voiced speech frame, the

degree of cross-correlation between two voiced speech

frames of a person becomes higher in comparison to that

between two unvoiced speech frames which are random

in nature. Regarding signal power, the ratio of power of

a voiced speech frame and an unvoiced speech frame is

found to be higher in comparison to that of the two voiced

speech frames. As white Gaussian noise is considered, the

degree of cross-correlation between the speech and noise

is found to be negligible and the noise powers in two dif-

ferent frames may not differ significantly. As a result, the

effect of input noise is found to be negligible on the power

ratio.

For a flat delay of k0 samples, the initial k0 samples of the

utterance s(n) + v(n) can be treated as a reference signal

(echo-free signal) responsible for the generation of echo

signal that corrupts the current samples at or after k0 sam-

ples. Considering a window of M samples with M ≪ K0,

power of the reference signal (̂s(n − k0) + v̂(n − k0)) can

be computed as

Pref(n) =
1

M

M
2 −1∑

i=−M
2

[ ŝ(n − k0 + i) + v̂(n − k0 + i)]2 . (33)

For a window of lastM samples of the echo-suppressed

speech signal ŝ(n), the average power Psup(n) can be

computed as

Psup(n) =
1

M

M−1∑

j=0

[ ŝ(n − j) + v̂(n − j)]2 . (34)

The ratio of Pref(n) and Psup(n) is denoted as the power

ratio Prs(n) and considered as one of the control charac-

teristics.

Another important characteristic criterion is the cor-

relation coefficient Crs(n) between a frame of the noisy

reference signal (̂s(n− k0) + v̂(n− k0)) and a frame of the

current noisy signal (̂s(n) + v̂(n)). For a frame length ofM

samples, correlation coefficient Crs(n) is defined as

Crs(n) =
1

σ̂s(n−k0+i)+̂v(n−k0+i)σ̂s(n−j)+̂v(n−j)

×{cov(( ŝ (n − k0 + i) + v̂(n − k0 + i))

× ( ŝ (n − j) + v̂(n − j)))} (35)

where −M/2 ≤ i ≤ M/2 − 1 and 0 ≤ j ≤ (M − 1).

Finally, the parameter estimation accuracy is also

considered for the purpose of analyzing the conver-

gence property. In this regard, the mean square error

MSEideal(n) between the values of estimated coefficients

ŵn and those of true coefficients an is computed as

MSEideal(n) =
1

p

p∑

k=1

[ ŵn(k) − an(k)]
2 . (36)

In Figure 4, considering a real-life speech utterance of

250 ms corrupted by echo and noise, behavior of the con-

trol parameters obtained by using (33), (34), (35), and (36)

is shown. The speech utterance (/iy/ − /ix/) contains

a voiced phoneme followed by another voiced phoneme

[24]. Here k0 = 1, 000, M = 100, Nf = 1002, sampling

frequency 16 kHz and SNR = 15 db is used.

In a similar fashion, in Figure 5, a speech utterance con-

sisting of a voiced phoneme /ih/ followed by an unvoiced

phoneme /sh/ and, in Figure 6, a voiced phoneme /ih/

followed by pause are considered. It is observed that the

characteristic parameters vary depending on the nature

of reference and current frames. When the current frame
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Figure 4 Characteristics of controlling factors - a voiced phoneme followed by another voiced frame.

is a pause or weakly unvoiced, the power ratio becomes

higher in comparison to the case when the current frame

is a voiced one. On the contrary, the correlation coeffi-

cient becomes smaller when measured between a voiced

and an unvoiced frame, but it becomes quite larger when

measured between two voiced frames. It is also found that

the presence of voiced frame as a reference strongly gov-

erns the rate of convergence and the estimation error of

the proposed LMS algorithm. In Figure 4, because of all

through presence of the voiced frame as the reference as

well as the current frame, it is found that the convergence

performance is not very satisfactory and the estimation

error is relatively higher. On the other hand, in Figure 6, it

is observed that when the current frame is pause, even in

the presence of voiced reference frame, a very fast conver-

gence is obtained with a little estimation error. In Figure 5,

as the current frame is unvoiced instead of pause, a com-

paratively slower convergence is observed with higher

estimation error.

Next, in Figures 7, 8, 9, the reference frame is consid-

ered unvoiced, and in Figures 10, 11, 12, it is considered

pause. When the reference frame is considered unvoiced

because of the existence of a little correlation between

the current and reference frames, the convergence per-

formance of the proposed LMS algorithm is found quite

satisfactory irrespective of the power of the reference

Figure 5 Characteristics of controlling factors - a voiced phoneme followed by an unvoiced phoneme.
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Figure 6 Characteristics of controlling factors - a voiced phoneme followed by pause frame.

signal (strong unvoiced or weakly unvoiced). In the case

when the current frame is pause, no matter whether the

reference frame is voiced or unvoiced, a fast conver-

gence with high estimation accuracy is achieved using

the proposed LMS algorithm. The reasons behind are (i)

negligible cross-correlation between reference frame and

current frame and (ii) a comparatively higher power ratio.

In Figures 10, 11, 12, it is observed that even the reference

frame is a pause or stop because of the presence of additive

white noise, the reference frame may contain significant

energy. In these cases, a reasonable estimation of the room

response can be obtained given that the noise power is

quite high. Findings in the above cases are summarized in

Table 1.

First of all, it is observed that a better convergence in

terms of iterations and estimation error is obtained when

the current frame is a pause (P) or stop and the reference

frame is either voiced (V) or unvoiced (U), namely, V-P

and U-P. This fact leads to a decision that the updating

needs to be carried out at high level of power ratio, i.e.,

Prs(n) =
Pref(n)

Psup(n)
≥ ζ , (37)

where Pref(n) and Psup(n) are defined in (33) and (34),

respectively. If the value of the lower bound ζ is chosen

too large, the updating would be postponed formost of the

instances resulting in very slow convergence. On the other

hand, a very small value of ζ may cause more frequent

Figure 7 Characteristics of controlling factors - an unvoiced frame followed by a voiced frame.
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Figure 8 Characteristics of controlling factors - an unvoiced frame followed by another unvoiced frame.

updates where possibility of wrong estimations of filter

coefficients would be higher, especially in V-P, U-P, and

P-P cases. It is to be noted that considering only a lower

bound of Prs(n) may not always be sufficient to ensure

that the reference frame possesses significant energy. For

example in Figure 13, it is shown that high value of Prs(n)

may arise (marked block in the figure) from an initial

silence frame where only a very little amount of noise is

present. In order to prevent the updating in these situa-

tions, a lower bound β on the power of the reference frame

is employed, i.e., Pref(n) ≥ β . The value of β should sur-

pass the power of speech pauses and ensure that the LMS

update is postponed even if a frame of speech containing a

partial pause is available as the reference. Hence, the first

constraint for updating the algorithm is proposed as

Condition I: Prs(n) ≥ ζ and Pref(n) ≥ β .

In some cases, it is observed that though the power

ratio is very small, quite satisfactory updating is obtained,

such as the U-V case shown in Figure 7. Another char-

acteristic observed here is lower value of correlation

coefficient Crs(n) with higher value of Pref(n). It is to be

mentioned that the proposed AEC algorithm is developed

on the assumption of negligibility of the cross correlation

between current frame and reference frame. However,

Figure 9 Characteristics of controlling factors - an unvoiced frame followed by a pause.
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Figure 10 Characteristics of controlling factors - pause followed by a voiced frame.

since both reference and current frame may belong to the

same person, in case of high degree of correlation, the

adaptive algorithm would try to suppress portion from

the echo-corrupted signal resulting in unusual degradation

= in convergence performance. Hence, introducing an up-

per bound on Crs(n), the second condition is proposed as

Condition II: Crs(n) ≤ ϒ1 and Pref ≥ β .

The presence of a certain level of noise can be uti-

lized as an advantage in pause instances where generally

the updating is not performed. Since noise is considered

uncorrelated to itself, updating at frames where only noise

is present would be quite satisfactory. In this case, the

value of Crs(n) must be very small and thus another

condition on updating is proposed as

Condition III: Crs(n) ≤ ϒ2 ≤ ϒ1.

Another important factor is the MSE of the estimations

of successive iterations, which is defined as

ecoeff(n) =

p∑

K=1

(ŵn(k) − ŵn−1(k))
2/p. (38)

Figure 11 Characteristics of controlling factors - pause followed by an unvoiced frame.
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Figure 12 Characteristics of controlling factors - pause followed by another pause.

In order to continue the updating, an upper bound on

the variation of successive estimates is set as following

condition:

Condition IV: ecoeff (n) ≤ ℵ.

Considering smaller values of ecoeff(n) allows to avoid

updating at those instances where abrupt and significant

changes occur in the estimated coefficients. In the pro-

posed method, in order to carry out the LMS update, at

least one of the above four conditions must be fulfilled.

5 Simulation results and comments
Performance of the proposed algorithm is investigated

in different echo-generating environments at various

input noise levels considering several male and female

utterances available in the TIMIT database [24]. An

acoustic room environment is simulated using an FIR

Table 1 Variation of LMS updating performance due to

various characteristics of reference and current speech

frame

Reference
speech sample

Current noise- and
echo-corrupted
speech sample

LMS update performance

Voiced Voiced Poor

Voiced Unvoiced Unsatisfactory

Voiced Pause Satisfactory/Excellent

Unvoiced Voiced Excellent

Unvoiced Unvoiced Excellent

Unvoiced Pause Excellent

Pause Voiced Poor

Pause Unvoiced Poor

Pause Pause Poor

filter of length Nf , where as per conventional approaches,

filter coefficients during the flat delay portion are assumed

to be zero. The flat delay time (k0) can be pre-calculated

based on the distance between the microphone and the

speaker [25]. Because of the implicit zeros corresponding

to the flat delay, it is evident that a few number (Nf − k0)

of unknown coefficients has to be determined. In the pro-

posed method, a smaller step size is used to obtain a

smooth convergence.

First, a subjective evaluation is carried out based on

the feedback about the quality of the echo- and noise-

suppressed signal provided by five individual listeners at

different noisy echo-generating environments. From the

overall response of the listeners in terms of mean objec-

tive score (MOS), a very satisfactory performance of the

proposed method is obtained even under severe echo-

generating conditions in noise.

Next, two objective measures, namely, echo return loss

enhancement (ERLE) and signal-to-distortion ratio (SDR)

are employed. The ERLE is defined as the ratio of the

instantaneous power of the residual echo signal ης (n) and

that of the input echo signal ηx(n) and expressed in dB

as [1]

ERLE(n) = −10 log
ης (n)

ηx(n)
. (39)

The average value of ERLE(n) over time is considered.

The input and output SDRs in dB are respectively defined

as

SDRin = 10 log
Ps

Px+v
(40)

SDRout = 10 log
Ps

P̂s+̂v−s
, (41)
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Figure 13 Example of high power ratio during initial silence frame.

where Ps is the power of original signal s(n), Px+v is the

power of microphone input, and P̂s+̂v−s(n) is the power of

distortion present in the echo-suppressed output signal.

The SDR improvement is given by

SDRI = SDRout − SDRin, (42)

which indicates the overall distortion removal.

The proposed algorithm has been tested on several dif-

ferent sentences taken from the TIMIT database. In order

to demonstrate the principle of selecting different thresh-

old values required in the proposed updating constraints,

as a typical example, a sample utterance ‘Good service

should be rewarded by big tips’ is shown in Figure 14 [24].

Voicing decisions are marked in the figure as ‘P’ for pause,

‘V’ for voiced, and ‘U’ for unvoiced. Considering white

Gaussian noise with SNR = 15 dB, Nf = 1, 002, k0 =

1, 000, and M = 100 in Figure 14b,c,d,e, Prs(n), Pref(n),

Crs(n), and MSEideal(n) are shown, respectively. Note that

Figure 14 Plots of (a) utterance s(n) and update parameters (b) Prs(n), (c) Pref (n), (d) Crs(n), and (e) MSE (without using constraint).
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Figure 15MSEs for the utterance shown in Figure 14. (a)Without conditions and (b) with conditions.

in this case, the proposed algorithm is used without the

update constraints, and thus, the MSEideal(n) exhibits

some higher values. The comments provided in Table 1

can be better visualized from different marked zones of

this figure. From extensive experimentations, it is found

that a better update requires Pref(n) to be at least twice of

Psupp(n) and a small percentage (1% to 5%) of the power of

a regular voiced frame can be chosen as the lower bound

of β for Pref(n). Analyzing Crs(n) in different speech

frames, ϒ1 in condition 2 is chosen as 0.25 to ensure that

no speech is being suppressed during the update proce-

dure by confusing it with the echo and ϒ2 is kept very

small, i.e, ϒ2 ≈ 0.1 to allow updating for cases where

there exists no correlation or extremely low correlation

Figure 16 Spectrograms of (a) original signal, (b) echo- and noise-corrupted input and (c) enhanced output.
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Figure 17 Another TIMIT utterance (a).MSEs of LMS estimations: (b) without conditions and (c) with conditions.

between the reference signal and echo-suppressed sig-

nal. The value of the threshold ℵ for ecoeff(n) in con-

dition IV is chosen to be very small (0.7 × 10−4) such

that there will be no update of the LMS algorithm

when the magnitude of ecoeff(n) is comparatively much

larger.

In Figure 15, the effect of incorporating the proposed

conditions is shown. It is vividly observed from Figure 15

that by employing the proposed conditions, the conver-

gence is improved to a greater extent. Moreover, in order

to demonstrate the performance in frequency domain,

spectrograms of the original signal, echo- and noise-

corrupted signal, and the output of the proposed AENC

block are depicted in Figure 16a,b, respectively. For con-

venience, some zones are marked on the spectrograms

where significant reduction in echo and noise can easily

be observed

In order to show the effectiveness of the proposed

conditions, the MSEideal(n) obtained in Figure 14e is

redrawn in Figure 15. In Figure 15, the effect of incorpo-

rating the conditions is shown. It is vividly observed from

Figure 15 that by employing the proposed conditions, the

convergence is improved to a greater extent. Moreover,

in order to demonstrate the performance in frequency

domain, spectrograms of the original signal, echo- and

noise-corrupted signal, and the output of the proposed

AENC block are depicted in Figure 16a,b, respectively.

For convenience, some zones are marked on the spectro-

grams where significant reduction in echo and noise can

easily be observed. For a better understanding, another

TIMIT utterance ‘She had your dark suit in greasy wash

water all year’, under similar acoustic environment as used

in Figure 14, is considered and corresponding echo- and

noise-corrupted speech signal is shown in Figure 17a.

The MSEs obtained by using the proposed method with

and without the conditions are presented in Figure 17b,c,

which clearly demonstrate the performance improvement

in the later case.

In Table 2, the performance of the proposed algorithm

with and without applying the conditions is shown in

Table 2 Performance comparison with varying room

acoustics

No condition With conditions

Nf − k0 SDRI (dB) Avg. ERLE (dB) SDR (dB) Avg. ERLE (dB)

2 4.9921 8.8496 6.9848 10.6772

4 4.9027 2.0696 5.7731 2.2787

6 8.391 4.6507 9.2744 5.0313

8 6.4551 2.4214 6.5558 2.6797

10 6.0507 2.6341 6.1730 2.854

12 6.7127 3.0277 7.0978 3.2048

14 7.8763 3.7481 8.2515 3.8909
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Table 3 Performance comparisonwith noise level variation

No condition With conditions

Input noise SDRI Avg. ERLE SDR Avg. ERLE

Level (dB) (dB) (dB) (dB) (dB)

25 7.4065 3.183 7.8189 3.2759

20 7.613 3.5382 7.9346 3.6171

15 7.8763 3.7481 8.2515 3.8909

10 8.2085 3.5999 8.386 3.6064

5 8.2434 3.0533 8.8839 3.0765

0 8.7968 2.4493 9.4557 2.542

-5 8.2259 2.0032 10.5136 2.2912

terms of the SDR improvement (dB) and ERLE (dB) for

utterance 1. In order to evaluate the performance under

different room environments, length (Nf ) and parameter

values of the room response filter are varied while keeping

the input SNR constant to 15 dB. Considering k0 = 1, 000,

Nf − k0 is varied from 2 to 14. Results shown in the table

clearly demonstrate the effectiveness of using the condi-

tions on performance measures; in all cases, higher values

of SDR and ERLE are obtained.

In Table 3, the performance of the proposed algorithm

with and without applying the conditions is evaluated

for different levels of input SNR ranging from 25 to −5

dB for the first utterance considering white Gaussian

noise and Nf = 1014. It can be seen that the proposed

method provides satisfactory performance at all SNR lev-

els. Especially, the use of proposed conditions exhibits

comparatively better performance.

6 Conclusion
The problem of echo cancellation in the presence of noise,

especially in single-channel environment, is a very chal-

lenging task, which has been efficiently tackled in this

paper. First, the single-channel AEC block is designed

based on the gradient-based adaptive LMS filter where

to overcome the problem of getting a separate reference

signal, we propose to use the delayed version of the echo-

suppressed signal. Such a unique proposal of getting the

reference signal is justified by presenting a detailed math-

ematical proof of achieving the most optimum Wiener-

Hopf solution of the estimated filter coefficients, and a

convergence analysis is carried out. Moreover, in order to

achieve fast and smooth convergence, a set of updating

constraints is proposed by analyzing the speech character-

istics of different types of speech frames, such as voiced,

unvoiced, and pause. In the ANC block, a modified single-

channel spectral subtraction method is considered for its

robust performance. It is shown that the proposed AENC

scheme with updating constraints provides a very satisfac-

tory performance in different echo-generating conditions

and various levels of SNR in terms of SDR and ERLE.

Appendix
Derivation of the solution of the LMS update
In order to obtain a homogeneous solution of the update

Eq. 22, one may consider

ŵ
T
n+1 = ŵ

T
n − 2μR(s+v)(s+v)(n − k0)ŵ

T
n . (43)

Eigenvalue decomposition of the correlation matrix

R(s+v)(s+v)(n − k0) results in

R(s+v)(s+v)(n − k0) = U�U
T , (44)

where each column of the matrix U consists of eigenvec-

tors corresponding to eigenvalues constituting the diag-

onal elements of the matrix � and U
T
U = I. Forward

multiplication by UT on both sides of (43) results in

ŵ
TU

n+1 = ŵ
TU

n − 2μ�ŵ
TU

n , (45)

where U
T
ŵ
T
n = ŵ

TU

n . The kth coefficient of the weight

vector can be expressed as

ŵU
n+1(k) = (1 − 2μλ(k))ŵU

n (k), (46)

where λ(k) is the kth diagonal element of the eigen-

value matrix obtained by eigenvalue decomposition of

R(s+v)(s+v)(n− k0). Hence, the homogeneous solution can

be obtained as

ŵh.s = Ck(1 − 2μλ(k))n, (47)

where Ck is a constant. Next, in order to obtain the partic-

ular solution for the kth coefficient, based on (22) one can

get

ŵp.s = ŵp.s − 2μλ(k)ŵp.s + 2μrU(n − k0 − k). (48)

Here, rU(n − k0 − k) is the kth element of U
T

r(xs+xv)(s+v)(n−k0) = r
U
(xs+xv)(s+v)(n−k0). For a particular

solution ŵp.s = Kpr
U(n − k0 − k), (48) can be written as

Kpr
U(n − k0 − k) = Kpr

U(n − k0 − k)

− 2μλ(k)Kpr
U(n − k0 − k)

+ 2μrU(n − k0 − k), (49)

which leads to Kp = 1
λ(k)

and the particular solution

ŵp.s =
1

λ(k)
rU(n − k0 − k). (50)
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