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Chapter 1

Single-channel audio source separation with

NMF: divergences, constraints and algorithms

Cédric Févotte1, Emmanuel Vincent2, and Alexey Ozerov3

Abstract

Spectral decomposition by nonnegative matrix factorisation (NMF) has become

state-of-the-art practice in many audio signal processing tasks, such as source sep-

aration, enhancement or transcription. This chapter reviews the fundamentals of

NMF-based audio decomposition, in unsupervised and informed settings. We for-

mulate NMF as an optimisation problem and discuss the choice of the measure of

fit. We present the standard majorisation-minimisation strategy to address optimisa-

tion for NMF with common β -divergence, a family of measures of fit that takes

the quadratic cost, the generalised Kullback-Leibler divergence and the Itakura-

Saito divergence as special cases. We discuss the reconstruction of time-domain

components from the spectral factorisation and present common variants of NMF-

based spectral decomposition: supervised and informed settings, regularised ver-

sions, temporal models.

1.1 Introduction

Data is often available in matrix form V, where columns vn are data samples and

rows are features. Processing such data often entails finding a factorisation of the

matrix V into two unknown matrices W and H such that

V≈ V̂
def
= WH. (1.1)

In the approximation (1.1), W acts a dictionary of recurring patterns, which is char-

acteristic of the data, and every column hn of H contains the decomposition or ac-
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2 Cédric Févotte1, Emmanuel Vincent2, and Alexey Ozerov3

tivation coefficients that approximate every vn onto the dictionary. In the following

we will refer to W as the dictionary and to H as the activation matrix. The data ma-

trix V is of dimensions F×N and the common dimension of W and H is denoted K,

often referred to as the rank of the factorisation (which might differ from the actual

mathematical rank of V).

In the literature, the problem of obtaining the factorisation (1.1) can appear under

other domain-specific names such as dictionary learning, low-rank approximation,

factor analysis or latent semantic analysis. Many forms of factorisation (1.1) have

been considered. The most notorious and ancient one is Principal Component Anal-

ysis (PCA) [1] which simply minimises the quadratic cost between V and its approx-

imate WH, where all matrices are treated as real-valued. Independent Component

Analysis (ICA) [2] is a major variant of PCA in which the rows of H are constrained

to be mutually independent. Sparse coding [3] and many recent dictionary learning

[4] approaches impose some form of sparsity of the activation matrix. , the main

topic of this chapter, is dedicated to nonnegative data and imposes nonnegativity of

the factors W and H.

Early work on NMF has appeared in applied algebra (under various names) and

more notably in chemometrics [5], but it fully came to maturation with the seminal

paper of Lee and Seung, published in Nature in 1999 [6]. Like PCA, NMF consists

of minimising an error of fit between V and its approximate WH, but subject to

nonnegativity of the values of W and H. The nonnegativity of W ensures the inter-

pretability of dictionary, in the sense that the extracted patterns wk (the columns of

W) remain nonnegative, like the data samples. The nonnegativity of H ensures that

WH is nonnegative, like V, but is also shown to induce a part-based representation,

in stark contrast with plain PCA that leads to more global or holistic representa-

tions (where every pattern attempts to generalise as much as possible the whole

dataset). Because subtractive combinations are forbidden, the approximate Whn to

every sample vn can only be formed from building blocks, and thus the estimated

patterns tend to be parts of data.

Following the work of Lee and Seung, NMF became an increasingly popular data

analysis tool and has been used in many fields. In particular, it has led to important

breakthroughs in text retrieval (based on the decomposition of a bag-of-words rep-

resentation [7]), collaborative filtering (completion of missing ratings in users ×
items matrices [8]) or spectral unmixing. In the latter case, NMF is for example

used in chemical spectroscopy [5], remote sensing (for unmixing of hyperspectral

electromagnetic data) [9] and most notably audio signal processing [10]. The sem-

inal work of Smaragdis et al. [10] has initiated an important thread of NMF-based

contributions in music transcription, source separation, speech enhancement, etc.

The common principle of all these works is the nonnegative decomposition of the

spectrogram of the observed signal onto a dictionary of elementary spectral com-

ponents, representative of building sound units (notes, chords, percussive sounds,

or more complex adaptive structures). This general architecture is detailed in Sec-

tion 1.2. It describes in particular popular NMF models and means of obtaining

the factorisation, by optimisation of a cost function. Then it describes how to re-

construct elementary sound components from the nonnegative factorisation of the
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spectrogram. This blind decomposition might fail to return adequate and useful re-

sults when dealing with complex multi-source signals and the system needs to be

“guided” with prior information. Such advanced decompositions for source separa-

tion will be covered in Section 1.3. Section 1.4 concludes.

1.2 Signal decomposition by NMF

The general principle of NMF-based audio spectral analysis is depicted in Fig. 1.1.

It shows how NMF has the capability of unmixing superimposed spectral compo-

nents. This is in contrast for example with the Gaussian Mixture Model (GMM), a

clustering model that is not designed to handle composite data. In the GMM, each

data sample can only be in one among several states. As such, the occurrence of

mixed frames in the data represented in Fig. 1.1 (3rd to 5th samples) would count as

one state, along the two other states corresponding to pure spectra (red and green).

The nonnegativity of H encourages so-called part-based representations. Because

subtractive combinations of dictionary elements are forbidden, the dictionary W

tends to contain elementary building units. This is a welcome property for analysis

tasks such as music transcription or source separation. In contrast, a method such

as PCA would instead produce an orthogonal dictionary with a more holistic value,

that compresses more efficiently the entire dataset. The difference between PCA,

NMF and vector quantisation is remarkably illustrated in [6] with comparative ex-

periments using a set of face images. It is shown that where PCA returns eigenfaces

(sort of template faces), NMF can efficiently capture parts of faces (noise, eyes,

etc.). Figure 1.2 displays the result of NMF applied to the spectrogram of a short

piano sequence; see [10, 11] for further illustration on small-scale examples.

1.2.1 NMF by optimisation

The factorisation (1.1) is usually sought after through the minimisation problem

min
W,H

D(V|WH) subject to W≥ 0,H≥ 0 (1.2)

where the notation A ≥ 0 expresses nonnegativity of the entries of matrix A (and

not semidefinite positiveness), and where D(V|WH) is a separable such that

D(V|WH) =
F

∑
f=1

N

∑
n=1

d([V] f n|[WH] f n) (1.3)

where d(x|y) is a scalar cost function. What we intend by “” is a positive function

of y ∈ R+ given x ∈ R+, with a single minimum for x = y.
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≈

time

original temporal signal x(t)

spectrogram V W H

frequency

transform

Fig. 1.1 NMF-based audio spectral analysis. A short-time frequency transform, such as the magni-

tude or power short-time Fourier transform, is applied to the original time-domain signal x(t). The

resulting nonnegative matrix is factorised into the nonnegative matrices W and H. In this schematic

example, the red and green elementary spectra are unmixed and extracted into the dictionary ma-

trix W. The activation matrix H returns the mixing proportions of each time-frame (a column of

W).

The quadratic cost function dQ(x|y) =
1
2
(x−y)2 is a popular choice when dealing

with real numbers. It underlies an additive Gaussian noise model and enjoys con-

venient mathematical properties for estimation and optimisation problems. For that

same reason, it is a less natural choice for nonnegative data because it may generate

negative values. Many other choices have been considered in the NMF literature, in

particular under the influence of Cichocki et al. Two popular families of NMF cost

functions are the α-divergence [12] and the β -divergence [13, 14, 15], themselves

connected to the wider families of Csiszár or Bregman divergences, see, e.g., [13]

and [16] in the context of NMF. The β -divergence in particular has enjoyed a certain

success in audio signal processing. It can be defined as [17, 18]

dβ (x|y)
def
=











1
β (β−1)

(

xβ +(β −1)yβ −β xyβ−1
)

, β ∈ R\{0,1}

x log x
y
− x+ y = dKL(x|y), β = 1

x
y
− log x

y
−1 = dIS(x|y), β = 0

(1.4)

The limit cases β = 0 and β = 1 correspond to the Itakura-Saito (IS) and generalised

Kullback-Leibler (KL) divergences, respectively. The case β = 2 corresponds to

the quadratic cost dQ(x|y). The β -divergence forms a continuous family of cost

functions that smoothly interpolates between the latter three well-known cases. As

noted in [11, 15], a noteworthy property of the β -divergence is its behaviour w.r.t.

the scale of the data, as the following equation holds for any value of β :

dβ (λ x|λ y) = λ β dβ (x|y). (1.5)
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V̂

≈

×

W H

|X|2

=

=

Fig. 1.2 NMF applied to the spectrogram of a short piano sequence composed of four notes. (Data

used from [11]).

As noted in [11], this implies that factorisations obtained with β > 0 (such as

with the quadratic cost or the KL divergence) will rely more heavily on large data

values and less precision is to be expected in the estimation of the low-power

components, and conversely factorisations obtained with β < 0 will rely more

heavily on small data values. The IS divergence (β = 0) is scale-invariant, i.e.,

dIS(λ x|λ y) = dIS(x|y), and is the only one in the family of β -divergences to pos-

sess this property. Factorisations with small positive values of β are relevant to

decomposition of audio spectra, which typically exhibit exponential power decrease

along frequency f and also usually comprise low-power transient components such

as note attacks together with higher power components such as tonal parts of sus-

tained notes. For example, [11] presents the results of the decomposition of a piano

power spectrogram with IS-NMF and shows that components corresponding to very

low residual noise and hammer hits on the strings are extracted with great accuracy,

while these components are either ignored or severely degraded when using Eu-

clidean or KL divergences. Similarly, the value β = 0.5 is advocated by [19, 20]
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and has been shown to give optimal results in music transcription based on NMF of

the magnitude spectrogram by [21].

1.2.2 Composite models

NMF with the β -divergence as formulated in the previous section fails to give a

probabilistic understanding of the modelling assumptions. As a matter of fact, the

β -divergence acts as a pseudo-likelihood for the so-called Tweedie distribution, a

member of the exponential family, parametrised with respect to its mean, i.e., such

that [22]

E [V|WH] = WH. (1.6)

In particular, the values β = 0,1,2 underlie multiplicative Gamma observation noise

(v f n = [WH] f n.ε f n), Poisson noise (v f n ∼ Po([WH]n)) and Gaussian additive obser-

vation noise (v f n = [WH] f n+ε f n), respectively (see the Appendix for the definitions

of the distributions involved).

These probabilistic models characterise the magnitude or power spectrogram V

but do not explicitly characterise the composite structure of sound that is gener-

ally looked after in NMF-based decomposition. As such, the Gaussian Composite

Model (GCM) was introduced in [11] to remedy this limitation. Denoting by x f n the

complex-valued coefficients of the short-time Fourier transform (STFT), the GCM

is defined by

x f n = ∑
k

ck, f n, (1.7)

ck, f n ∼ Nc(0,w f khkn), (1.8)

where Nc(µ,λ ) refers to the circular complex-valued normal distribution defined

in the Appendix. The composite structure of sound (i.e., the superimposition of

elementary components) is made explicit by (1.7). Then, (1.8) states that the kth

elementary component ck, f n is the expression of the kth the spectral template wk

amplitude-modulated in time by the activation coefficient hkn. The latent compo-

nents may also be marginalised from the model to yield more simply

x f n ∼ Nc(0, [WH] f n). (1.9)

With the uniform phase assumption that defines the circular complex-valued normal

distribution, (1.9) itself reduces to

v f n = [WH].ε f n, (1.10)

where v f n = |x f n|
2 (the power spectrogram) and ε f n has an exponential distribution

with expectation 1 (i.e., using the notations defined in the Appendix, ε f n ∼G(1,1)).
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As such, the GCM is tightly connected to the multiplicative Gamma noise model,

and we may easily find that

− log p(X|WH) = DIS(|X|
2|WH)+ cst. (1.11)

(1.11) shows that factorising the power spectrogram V = |X|2 with the IS diver-

gence is equivalent to performing maximum likelihood estimation of W and H in

the GCM model defined by (1.7) and (1.8). Given estimates of W and H (using for

example the algorithm presented in the following section), reconstruction of the la-

tent components ck, f n can be done with any estimator. For example, the Minimum

Mean Squares Error (MMSE) estimator is given by the so-called Wiener filter

ĉk, f n = E
[

ck, f n|W,H
]

=
w f khkn

[WH] f n

x f n (1.12)

By construction, the component estimates satisfy x f n = ∑k ĉk, f n. The estimated

component STFTs Ĉk = {ck, f n} f n can then be inverse-transformed (using a stan-

dard overlap-add procedure) to yield time-domain estimates ĉk(t) such that x(t) =

∑k ĉk(t).
Besides the GCM, other composite interpretations of known NMF models have

been proposed in the literature [23]. For example, the Poisson-NMF model

v f n ∼ Po([WH] f n) (1.13)

is equivalent to

x f n = ∑
k

ck, f n, (1.14)

ck, f n ∼ Po(w f khkn). (1.15)

It turns out the MMSE estimator of the latent components is again given by (1.12).

It is easily shown that

− log p(V|WH) = DKL(V|WH)+ cst (1.16)

so that maximum-likelihood estimation of W and H in model (1.17) is equivalent

to NMF with the generalised KL divergence [24, 25, 11]. A closely related model is

PLSA [7] / PLCA [26] which writes

vn ∼M(∑
f

v f n,Whn), (1.17)

where M(L,p) refers to the multinomial distribution defined in the Appendix and the

columns of W and H are constrained to sum to 1. PLSA/PLCA can also be shown

to be equivalent to a generative model that involves multinomial latent components.

PLCA is equivalent to NMF with a weighted KL divergence, such that
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− log p(V|WH) = ∑
n

‖vn‖1DKL

(

vn

‖vn‖1
|Whn

)

. (1.18)

Poisson-NMF and PLCA are also popular models for audio spectrogram decom-

position. This is because the KL divergence (used with the magnitude spectrogram

V = |X|) has been experimentally proven to be also a reasonable measure of fit for

audio spectral factorisation [27, 28]. However, from a probabilistic generative point

of view, the Poisson-NMF and PLCA models are unreasonable because they gen-

erate integer values that do not comply with the real-valued nature of spectrograms

(as a matter of fact, Poisson-NMF and PLSA/PLCA have been originally designed

for count data [7, 24]).

1.2.3 Majorisation-minimisation

The very large majority of NMF algorithms resort to block-coordinate descent to

address problem (1.2). This means the variables W and H are updated in turn until

a stationary point of C(W,H) = D(V|WH) is reached. Because C(W,H) is jointly

non-convex in W and H, the stationary point may be not a global minimum (and

possibly not even a local minimum). As such, initialisation is an important issue in

NMF and running the algorithm from different starting points is usually advised. It is

also easy to see that the updates of W and H are essentially the same by transposition

(V ≈WH⇔ VT ≈ HT WT ). As such we may restrict our study to the update of H

given W:

min
W,H

C(H)
def
= D(V|WH) subject to H≥ 0 (1.19)

For the divergences considered in Section 1.2.1, a standard approach to the con-

ditional updates of W and H is . Generally speaking, MM consists in optimising

iteratively an easier-to-minimise tight upper bound of the original objective func-

tion C(H) [29].

Denote by H̃ the estimate of H at current iteration. The first step of MM consists

in building an upper bound G(H|H̃) of C(H) which is tight for H = H̃, i.e., C(H)≤
G(H|H̃) for all H and C(H̃) = G(H̃|H̃). The second step consists in minimising

the bound w.r.t. H, producing a valid descent algorithm. Indeed, at iteration i+ 1,

it holds by construction that C(H(i+1))≤ G(H(i+1)|H(i))≤ G(H(i)|H(i)) =C(H(i)).
The bound G(H|H̃) is often referred to as auxiliary function. The principle of MM

is illustrated in Fig. 1.3.

The question now boils down to whether the construction of such an upper bound,

which is amenable to optimisation, is possible. Fortunately, the answer is yes for

many divergences, and in particular for the β -divergence discussed in Section 1.2.1.

The trick is to decompose C(H) into the sum of a convex part and a concave part

and to upper-bound each part separately (the concave part is actually inexistent for

1 ≤ β ≤ 2 where the β -divergence is convex w.r.t. its second argument). The con-
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h
(*)

h
(3)

h
(2)

h
(1)

h
(0)

Fig. 1.3 An illustration of the MM principle on a unidimensional problem. Given a current esti-

mate of W, the blue curve acts as the objective function C(H) = D(V|WH) to be minimised with

respect to H. The MM approach relies on the iterative minimisation of tight upper bounds (dashed

red curves). The algorithm is initialised at H(0), at which the first upper bound is minimised during

the first iteration to yield H(1), and so on until convergence. (Reproduced from [30])

vex part is majorised using Jensen’s inequality (the definition of convexity) and the

concave part is majorised using the tangent inequality. The two separate bounds are

summed and the resulting (convex) auxiliary function turns out to have a closed-

form minimiser. For illustration, we address the case of NMF with the Itakura-Saito

divergence. The more general β -divergence case is addressed in details in [15].

A special case: NMF with the Itakura-Saito divergence

Choosing the IS divergence as the measure of fit and addressing the update of H,

our goal is to minimise the objective function given by

C(H) = ∑
f n

(

v f n

[WH] f n

− log
v f n

[WH] f n

−1

)

(1.20)

= ∑
f n

(

v f n

[WH] f n

+ log[WH] f n

)

+ cst (1.21)

where cst is a term which is constant w.r.t. H. As such, C(H) can be written

as the sum of a convex term
⌣

C(H) = ∑ f n
v f n

[WH] f n
and a concave term

⌢

C(H) =

∑ f n log[WH] f n. By convexity of f (x) = 1/x for x ≥ 0 and Jensen’s inequality it

holds that

f (∑
k

λkxk)≤∑
k

λk f (xk) (1.22)

for any xk,λk ≥ 0 such that ∑k λk = 1. As such, it holds that
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⌣

C(H) = ∑
f n

v f n

∑k

w f khkn

λ f kn
λ f kn

≤∑
f n

v f n ∑
k

λ 2
f kn

w f khkn

, (1.23)

for any λ f kn ≥ 0 such that ∑k λ f kn = 1. Choosing

λ f kn =
w f kh̃kn

[WH̃] f n

(1.24)

and denoting by
⌣

G(H|H̃) the right-hand side of (1.23), it can be easily checked that
⌣

G(H|H̃) is an auxiliary function for
⌣

C(H).
Now, by concavity of

⌢

C(H) and the tangent inequality applied at H = H̃, we may

write

⌢

C(H)≤
⌢

C(H̃)+∑
kn

[∇
⌢

C(H̃)]kn(hkn− h̃kn) (1.25)

Using the chain rule, the gradient term is found to be

[∇
⌢

C(H̃)]kn = ∑
f

w f k

[WH̃] f n

. (1.26)

By construction, the right hand side of (1.25) defines an auxiliary function
⌢

G(H|H̃)
of

⌢

C(H). Assembling
⌣

G(H|H̃) and
⌢

G(H|H̃) defines an auxiliary function G(H|H̃)
of C(H). The auxiliary function G(H|H̃) is convex by construction. Computing and

cancelling its gradient leads to

hkn = h̃kn

(

∑ f w f kv f n[WH̃]−2

∑ f w f k[WH̃]−1
.

) 1
2

(1.27)

Because the new update is found by multiplying the previous update with a correct-

ing factor, the induced algorithm is coined “multiplicative”. Because the correcting

factor is nonnegative, nonnegativity of the updates is ensured along the iterations,

given positive initialisations. [15] proves that dropping the exponent 1
2

in (1.27)

produces an accelerated descent algorithm. The update (1.27) can then be written in

algorithmic form using matrix operations as

H←H◦
WT ((WH)◦[−2] ◦V)

WT (WH)◦[−1]
(1.28)

where the notation ◦ denotes MATLAB-like entry-wise multiplication/exponentia-

tion and the fraction bar denotes entry-wise division. By exchangeability of W and

H by transposition, the update rule for W is simply given by

W←W◦
((WH)◦[−2] ◦V)HT

(WH)◦[−1] HT
(1.29)
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The two updates (1.28) and (1.29) are applied in turn until a convergence criterion

is met. The two updates have linear complexity per iteration, are free of tuning

parameters and are very easily implemented.

As detailed in [15], these derivations can easily be extended to the more general

case of NMF with the β -divergence. The resulting updates generalise (1.28) and

(1.29) and can be written as

H←H◦
WT ((WH)◦[β−2] ◦V)

WT (WH)◦[β−1]
(1.30)

W←W◦
((WH)◦[β−2] ◦V)HT

(WH)◦[β−1] HT
(1.31)

1.3 Advanced decompositions for source separation

In the previous sections, we described the elementary principles of signal decom-

position by NMF. The direct application of these principles leads to so-called un-

supervised NMF, where both the dictionary and the activation coefficients are es-

timated from the signal to be separated. This approach yields interesting and use-

ful results on toy data. For real audio signals, however, each sound source rarely

consists of a single NMF component. For instance, a music source typically in-

volves several notes with different pitches, while a speech source involves several

phonemes. Various techniques have been proposed to classify or to cluster individ-

ual NMF components into sources [31, 32]. Nevertheless, several issues remain: the

learned components may overfit the test signal, several sources may share similar

dictionary elements, and the elegance of NMF is lost. These issues have called for

more advanced treatments incorporating prior information about the properties of

audio sources in general and/or in a specific signal [33].

1.3.1 Pre-specified dictionaries

1.3.1.1 Supervised NMF

So-called is the simplest such treatment. It assumes that each source is characterised

by a fixed source-specific dictionary and only the activation coefficients must be

estimated from the signal to be separated [34]. Let us assume that the sources are

indexed by j ∈ {1, . . . ,J} and denote by W j and H j the dictionary and the activation

matrix associated with source j. The mixture spectrogram V can then be expressed

as in (1.1) where
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W =
(

W1 · · · WJ

)

(1.32)

H =







H1

...

HJ






(1.33)

result from the concatenation of the source-specific dictionaries and activation ma-

trices. Given the dictionaries W1, . . . , WJ of all sources, the activation matrices

H1, . . . , HJ can be estimated by applying, for instance, the optimisation procedure

described in Section 1.2. The standard multiplicative update with the β -divergence

can be equivalently rewritten in terms of each H j as

H j←H j ◦
WT

j ((WH)◦[β−2] ◦V)

WT
j (WH)◦[β−1]

. (1.34)

Note that, because W is here fixed, in the case when the cost function is strictly con-

vex (1≤ β ≤ 2), the resulting update is guaranteed to converge to a global minimum.

Eventually, the complex-valued spectrogram S j of each source can be estimated by

Wiener filtering as

S j =
W jH j

WH
◦X. (1.35)

This is equivalent to extracting the signal corresponding to all NMF components

in Section 1.2.2 and summing the extracted signals associated with each source. A

variant of supervised NMF called assumes that a pre-specified dictionary is available

for a subset of sources only and that the remaining sources are jointly represented by

an additional dictionary which is estimated from the signal to be separated together

with the activation matrices of all sources [35].

In order to apply supervised or semi-supervised NMF, one must design source-

specific dictionaries in the first place. This is achieved by learning each dictionary

from isolated sounds (e.g., individual notes) or continuous recordings from the de-

sired source. The amount of training data is typically assumed to be large, so that

large dictionaries containing hundreds or thousands of components can be trained.

Three families of nonnegative dictionary learning methods can be found in the lit-

erature, which operate by applying NMF or selecting exemplars from the training

signals, respectively.

Early dictionary learning methods were based on applying NMF to the training

signals [34, 36]. Denoting by V j the spectrogram resulting from the concatenation

of all training signals for source j, this data can be factorised as

V j ≈W jH j. (1.36)

The activation matrix H j is discarded, while the dictionary W j is kept and used to-

gether with the dictionaries for the other sources for separation. This method suffers

from one major limitation: unless regularisation such as sparsity is enforced (see
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Section 1.3.2), the number of dictionary elements must be smaller than the num-

ber of frequency bins. As a consequence, each dictionary element encodes widely

different source spectra and it may not account well for the source characteristics.

For instance, it has been shown that small dictionaries tend to represent the spectral

envelope of the sources but to discard pitch characteristics, which are essential for

separation. In order to address this issue, it was recently proposed to construct the

dictionary from exemplars, i.e., spectra (columns) selected from the full training set

V j. The number of dictionary elements then becomes unlimited and each element

represents a single spectrum at a time, so that all characteristics of the desired source

are preserved. If the training set is not too large, W j = V j itself might be used as the

dictionary [37]. Alternatively, the dictionary may be constructed by selecting [38]

or clustering [39] the columns of V j. The selection can be random or exploit prior

information about, e.g., the phoneme or the note corresponding to each frame.

1.3.1.2 Convolutive NMF

In [36, 40, 41], the concept of nonnegative dictionary learning was extended to

spectrogram patches. The original NMF model in (1.1) can be rewritten in each

time frame n as

vn ≈Whn =
K

∑
k=1

wkhkn. (1.37)

After replacing each single-frame spectrum wk by a spectrogram patch consisting

of L consecutive frames

Wk =
(

wk,0 · · · wk,L−1

)

, (1.38)

this model can be extended into

vn ≈
K

∑
k=1

L−1

∑
l=0

wk,lhk,n−l . (1.39)

This model assumes that all frames of a given patch are weighted by the same ac-

tivation coefficient: wk,0 is weighted by hkn in time frame n, wk,1 by the same hkn

in time frame n+ 1, wk,2 by the same hkn in time frame n+ 2, and so on. The full

spectrogram V is therefore approximated as a weighted sum of the patches Wk.

The set of patches Wk can be partitioned into source-specific dictionaries of

patches, which can be learned using NMF, exemplar selection, or exemplar clus-

tering similarly to above [36, 38, 39]. The patch length L is typically on the order of

100 to 300 ms. Fig. 1.4 illustrates a subset of exemplars learned on speech.
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Fig. 1.4 Example convolutive NMF dictionary elements (Wk) learned by random selection of

200 ms exemplars over 500 utterances from a given speaker. Notice how each component repre-

sents the spectrogram of a speech phoneme in context.

1.3.1.3 Factoring fine structure and envelope

While supervised NMF makes it possible to account for the characteristics of real

audio sources, it is rather constrained and may lead to poor separation when the

training and test data exhibit some mismatches. This led to the idea of fixing the

source characteristics which remain valid in any circumstances and estimating the

other characteristics from the signal to be separated.

is a first step in this direction. The underlying idea is to decompose each dictio-

nary element wk in (1.37) as the sum of narrowband spectral patterns bkm weighted

by spectral envelope coefficients ekm:

wk =
Mk

∑
m=1

bkmekm. (1.40)

The narrowband patterns bkm represent the fine structure of the spectrum and they

can be fixed as either smooth or harmonic spectra. In the former case, the patterns

can be fixed as smooth narrowband spectra in order to represent a transient or noisy

signal with a locally smooth spectrum. In the latter case, each dictionary index k

is associated with a given pitch (fundamental frequency) and the corresponding

patterns involve a few successive harmonic partials (i.e., spectral peaks at integer

multiples of the given fundamental frequency). This model illustrated in Fig. 1.5 is

suitable for voiced speech sounds (e.g., vowels) and pitched musical sounds (e.g.,

violin). The spectral envelope coefficients ekm are not fixed, but estimated from the

signal to be separated. In other words, this model does not constrain the dictionary

elements to match perfectly the training data, but only to follow a certain fine struc-

ture.
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Fig. 1.5 Example narrowband harmonic patterns bkm and resulting dictionary element wk.

An alternative approach is to factor each dictionary element wk into the prod-

uct of an excitation spectrum and a filter [42]. This so-called excitation-filter model

adheres with the production phenomena of speech and most musical instruments,

where an excitation signal is filtered by the vocal tract or the body of the instrument.

The latest evolution in this direction is the multilevel NMF framework of [43], em-

bodied in the Flexible Audio Source Separation Toolbox (FASST)1. This framework

represents the observed spectrogram as the product of up to eight matrices, which

represent the fine structure or the envelope of the excitation or the filter on the time

axis or the frequency axis. It makes it possible to incorporate specific knowledge or

constraints in a flexible way and it was shown to outperform conventional NMF in

[43].

These extensions of NMF are sometimes grouped under the banner of nonnega-

tive tensor factorisation (NTF), a generalisation of NMF to multi-dimensional arrays

[44]. Due to the linearity of the models, the NTF parameters can be estimated using

multiplicative updates similar to the ones for NMF.

1 http://bass-db.gforge.inria.fr/fasst/
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1.3.2

1.3.2.1 Sparsity

The original NMF model and the above extensions are well suited for the separation

of music sources, which typically involve several overlapping notes. Speech sources,

however, consist of a single phoneme at a time. NMF can yield disappointing results

on mixtures of speech because it can confuse overlapping phonemes from different

speakers vs the same speaker. The latter phenomenon cannot occur due to the phys-

ical constraints of speech production, but it is possible according to the model. In

order to improve the modelling of speech sources, sparsity constraints must be set

on the activation matrix H [45].

Sparsity signifies that most activation coefficients are very small, and only a small

proportion is large. Therefore, it enforces the fact that a single dictionary element

predominates in each time frame, and the other dictionary elements are little acti-

vated. Sparsity constraints are typically implemented by adding a penalty function

to the NMF cost in Section 1.2.1. The ideal penalty function would be the l0 norm

‖H‖0, that is the number of nonzero entries in H. This norm leads to a combinato-

rial optimisation problem, though, that is difficult to solve. In practice, the l1 norm

‖H‖1 = ∑
K
k=1 ∑

N
n=1 hkn is generally used instead:

argmin
W,H

D(V|W,H)+µ‖H‖1 (1.41)

where µ > 0 is a tradeoff parameter.

The penalised cost (1.41) can be minimised w.r.t. H by adding the constant µ to

the denominator of the original multiplicative update [15]:

H←H◦
WT ((WH)◦[β−2] ◦V)

WT (WH)◦[β−1]+µ
. (1.42)

The greater µ , the sparser the solution. Regarding the dictionary W, the classical up-

date in Section 1.2.3 cannot be used anymore since W must be normalised in some

way in order to avoid scaling indeterminacy, e.g., by assuming each wk has a unit l2
norm ‖wk‖2 = 1. Rescaling W a posteriori changes the value of the penalised cost,

so that the W resulting from the classical multiplicative update is not optimal any-

more. A multiplicative update accounting for this l2 norm constraint was proposed

in [46, 47]. Alternative sparsity promoting penalties were explored in [48, 49].

1.3.2.2 Group sparsity

Group sparsity is an extension of the concept of sparsity, which enforces simulta-

neous activation of several dictionary elements. It has been used for two purposes:

to automatically group the dictionary elements corresponding to a given phoneme,

note or source, in the case when each phoneme, note or source is represented by
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multiple dictionary elements [50], and to automatically find which sources are ac-

tive among a pre-specified set of speakers or musical instruments, when the number

of sources and the identity of the active sources are unknown [51].

In the latter case, the full dictionary W can be partitioned into several source-

specific dictionaries W j as in Section 1.3.1.1. Group sparsity means that, if source

j is inactive, all entries of the corresponding activation matrix H j must be estimated

as 0. This behaviour can be enforced by using the mixed l1,2 norm as a penalty term:

argmin
W,H

D(V|W,H)+µ
J

∑
j=1

‖H j‖2 (1.43)

where the l2 norm is defined by ‖H j‖2 = (∑K
k=1 ∑

N
n=1 h2

jkn)
1/2 and µ > 0 is a tradeoff

parameter. Many variants of this penalty can be designed to favour specific activa-

tion patterns. For instance, the penalty ∑
J
j=1 ∑

N
n=1 ‖h jn‖2 favours sparsity both over

the sources and over time, but all the dictionary elements corresponding to a given

source can be activated at a given time. Alternative group sparsity promoting penal-

ties were explored, for instance in [50].

1.3.2.3 Temporal dynamics

Another family of NMF models aim to model the dynamics of the activation co-

efficients over time. The simplest such models account for the temporal smooth-

ness (a.k.a. continuity) of the activation coefficients by constraining the value of hkn

given hk,n−1 using a suitable penalty function. In [45], the following penalised cost

function was proposed:

argmin
W,H

D(V|W,H)+
K

∑
k=1

µk

N

∑
n=2

(hkn−hk,n−1)
2. (1.44)

Assuming that µk is constant, this penalised cost can be minimised w.r.t. H by the

following multiplicative update inspired from [45]:

H←H◦
WT ((WH)◦[β−2] ◦V)+2M◦ (

−→
H +
←−
H )

WT (WH)◦[β−1]+2M◦ (H+
←→
H )

(1.45)

where
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M =











µ1 · · · µ1

µ2 · · · µ2

...
. . .

...

µK · · · µK











(1.46)

−→
H =











0 h11 h12 · · · h1,N−1

0 h21 h22 · · · h2,N−1

...
...

...
. . .

...

0 hK1 hK2 · · · hK,N−1











(1.47)

←−
H =











h12 h13 · · · h1N 0

h22 h23 · · · h2N 0
...

...
. . .

...
...

hK2 hK3 · · · hKN 0











(1.48)

←→
H =











0 h12 · · · h1,N−1 0

0 h22 · · · h2,N−1 0
...

...
. . .

...
...

0 hK2 · · · hK,N−1 0











. (1.49)

The impact of µk on the resulting activation coefficients is illustrated in Fig. 1.6. The

greater µk, the smoother the coefficients. Regarding the dictionary W, once again, a

normalisation constraint is required which results in a modified update compared to

the one in Section 1.2.3. Alternative probabilistically motivated smoothness penal-

ties were proposed in [52, 53].

Building upon this idea, nonnegative continuous-state [54] and discrete-state [34,

55] dynamical models have also been investigated. The latter often limit the number

of active dictionary elements at a time and they can be seen as imposing a form of

group sparsity. These models account not only for the continuity of the activations,

if relevant, but also for typical activation patterns over time due to, e.g., the attack-

sustain-decay structure of musical notes or the sequences of phonemes composing

common words. For a survey of dynamical NMF models, see [30].

1.3.3

While the above methods incorporate general knowledge about speech and music

sources, a number of authors have investigated user-guided NMF methods that in-

corporate specific information about the sources in a given mixture signal. Existing

methods can be broadly categorised according to the nature of this information.

A first category of methods exploit information about the activation patterns of

the sources. This information is provided by the user based on listening to the origi-

nal signal or the separated signals and visualising the waveform or the spectrogram.

Given the time intervals when each source is inactive, the corresponding activation
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µk = 10

µk = 100

µk = 1000

Fig. 1.6 Activation coefficients hkn estimated for one dictionary element k in a music signal for

β = 0 and different values of the smoothness tradeoff parameter µk in (1.45).

coefficients can be fixed to 0, which improves the estimation of the dictionary and

the activation coefficients in the other time intervals [56]. In [57], a more advanced

method is proposed by which the user can tag a given time-frequency region as ac-

tive, inactive, or well-separated. The graphical user interface is shown in Fig. 1.7.

This information is then iteratively exploited in order to refine the source estimates

at each iteration. This method was shown to be effective even without using any

isolated training data.

A second category of user-guided methods rely on a (partial) transcription of the

signal, that can take the form of a fundamental frequency curve [58], a musical score

[59], or the speech transcription. This information can be used to restrict the set of

active atoms at a given time, in a similar way as group sparsity except that the set of

active atoms is known in advance.

Finally, a third category of methods rely on a reference signal for some or all of

the sources to be separated. The user can generate reference signals signal by hum-

ming the melody [60] or uttering the same sentence [61]. Reference signals can also

be obtained by looking for additional data, e.g., the soundtrack of the same film in

a different language, the multitrack cover version of a song, additional data corre-
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Fig. 1.7 Graphical user interface for user annotation. Piano is labelled as active (resp. inactive) in

the red (resp. blue) regions.

sponding to the same speaker or the same musical instrument, or repeated signals

(e.g., jingles, background music) in large audio archives [62].

Many user-guided NMF methods can be expressed under the general framework

of nonnegative matrix partial co-factorisation (NMPcF), which aims to jointly factor

several input matrices into several factor matrices, some of which are shared [63,

64]. For instance, in the case of score-guided or reference-guided separation, the

spectrogram to be separated and the score or the reference can be jointly factored

using different dictionaries but the same activation matrix.

1.4 Conclusions

In this chapter, we have shown that NMF is a powerful approach for audio source

separation. Starting from a simple unsupervised formulation, it makes it possible

to incorporate additional information about the sources in a principled optimisa-

tion framework. In comparison with deep neural network (DNN) based separation,

which has recently attracted a lot of interest, NMF-based separation remains com-

petitive in the situations when the amount of data is medium or small, or user guid-

ance is available. These two situations are hardly handled by DNNs today, due to the

need for a large amount of training data and the difficulty of retraining or adapting

the DNN at test time based on user feedback. It therefore comes as no surprise that

NMF is still the subject of much research today. Most of this research concentrates

on overcoming the fundamental limitation of NMF, namely the fact that it models
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spectro-temporal magnitude or power only, and enabling it to account for phase. For

an in-depth discussion of this and other perspectives, see [65].

On a final note, some aspects of NMF for audio signal processing are also cov-

ered in other chapters of the present book (Chapters ?, ? , ?) and in Chapters 8, 9 &

16 of [65].

Standard distributions

Poisson

Po(x|λ ) = exp(−λ )
λ x

x!
, x ∈ {0,1, . . . ,∞} (1.50)

Multinomial

M(x|N,p) =
N!

x1! . . .xK!
p

x1
1 . . . p

xK
K , xk ∈ {0, . . . ,N},∑

k

xk = N (1.51)

Circular complex normal distribution

Nc (x|µ,Σ) = |π Σ |−1 exp−(x−µ)H Σ−1 (x−µ), x ∈ C
F (1.52)

Gamma

G(x|α,β ) =
β α

Γ (α)
xα−1 exp(−β x), x≥ 0 (1.53)
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