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Abstract 

Objective: Conventional, multi-channel scalp electroencephalography (EEG) allows the identification 

of the attended speaker in concurrent-listening (“cocktail party”) scenarios. This implies that EEG might 

provide valuable information to complement hearing aids with some form of EEG and to install a level 

of neuro-feedback. 

Approach: To investigate whether a listener’s attentional focus can be detected from single-channel 

hearing-aid-compatible EEG configurations, we recorded EEG from three electrodes inside the ear canal 

(“in-Ear-EEG”) and additionally from 64 electrodes on the scalp. In two different, concurrent listening 

tasks, participants (n = 7) were fitted with individualized in-Ear-EEG pieces and were either asked to 

attend to one of two dichotically-presented, concurrent tone streams or to one of two diotically-

presented, concurrent audiobooks. A forward encoding model was trained to predict the EEG response 

at single EEG channels. 

Main results: Each individual participants’ attentional focus could be detected from single-channel EEG 

response recorded from short-distance configurations consisting only of a single in-Ear-EEG electrode 

and an adjacent scalp-EEG electrode. The differences in neural responses to attended and ignored stimuli 

were consistent in morphology (i.e., polarity and latency of components) across subjects. 

Significance: In sum, our findings show that the EEG response from a single-channel, hearing-aid-

compatible configuration provides valuable information to identify a listener’s focus of attention. 

 

1. Introduction 

In multi-talker situations, hearing-aid users find it difficult to comprehend the attended conversational 

partner against background noise (i.e. cocktail party problem, Cherry 1953). Part of this problem might 

be due to the fact that the hearing aid is lacking the explicit information which sound source the listener 

wants to listen to. The investigation of neural speech-tracking (for a methods review, see Wöstmann et 

al (2016)) using Electroencephalography (EEG) and identification of the attended speaker in multi-

talker scenarios from multi-channel scalp-EEG (Mirkovic et al 2015, O’Sullivan et al 2015) has 

demonstrated that EEG could feasibly inform future hearing aid algorithms about a listener’s focus of 

attention. Information about the focus of attention would allow hearing aids for example to adapt noise 

suppression algorithms or to align directional microphones to the attended sound source (Mirkovic et al 

2016, Van Eyndhoven et al 2016). 

The implementation of EEG into comparably small hearing aids allows the attachment of only few 

electrodes at restricted positions inside the ear canal (Mikkelsen et al 2015, Bleichner et al 2015) or 
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around the ear (Mirkovic et al 2016, Debener et al 2015). Since EEG responses quantify the potential 

difference between a signal electrode and a reference potential, at least two electrodes are required to 

measure the EEG. The position and distance as well as the orientation of the two electrodes mainly 

determines, in how far relevant and irrelevant electrophysiological and external sources will be captured, 

respectively. Due to the limited number of channels in such a hearing-aid-compatible configuration, 

established offline methods of EEG-signal enhancement such as independent component analysis 

relying on covariance of multiple, whole scalp covering electrodes (Makeig et al 2004) are not 

applicable. 

An established method to extract auditory evoked potentials (AEP) is based on multiple time-locked 

presentations of identical stimuli and the subsequent averaging of the measured EEG time-domain signal 

(Rockstroh et al 1982). Using this method, it has been shown that the AEP can be extracted from the 

potential difference between in-Ear-EEG electrodes and adjacent scalp-EEG electrodes (Fiedler et al 

2016, Mikkelsen et al 2015, Bleichner et al 2015). For the presentation of continuous, non-repeating 

speech, averaging across multiple trials is not applicable (for review see Wöstmann et al 2016). Thus, a 

method to estimate a response evoked by continuous speech is needed. Importantly, the quasi-rhythmic 

fluctuations of the speech signal’s broad-band temporal envelope have recently been reconstructed 

successfully from Magnetoencephalography (MEG) (Ding and Simon 2012) and EEG (O’Sullivan et al 

2015, Mirkovic et al 2015) using linear models. Despite some remaining ambiguities as to the signal 

features that do get actually encoded in the neuro-cortical signal (see e.g. Ding and Simon 2014), a main 

finding here is that the attended-speaker signal attains a dominant representation in the measured neural 

signal. 

In sum, recent scalp-EEG research has established the feasibility to infer on a listener’s attentional focus 

from EEG very generally. In this present study, however, the overriding goal is to examine single-

channel in-Ear-EEG configurations that possibly could be part of a hearing aid. To this end, we focus 

our analyses on single-channel electrode configurations consisting of an in-Ear-EEG and a scalp-EEG 

electrode close to the ear only, to allow future smooth integration with extant hearing-aid systems 

(Lunner and Gustafsson 2014). We employ estimation of a forward (i.e., encoding) model since we 

focused on the encoding of onsets in the broad-band temporal envelope and the prediction of the to-be-

expected EEG-signal at single EEG channels. Furthermore, we avoided any methods of artefact rejection 

such as independent component analysis or trial rejection. This approach allows us to presume that the 

same results could have been achieved by solitarily recording the respective channel by attaching only 

two electrodes. 

The resulting data from two challenging, cocktail-party-like listening paradigms demonstrate that, on 

the single-participant level, we are able to accurately infer a listener’s attentional focus from a single-

channel EEG setup consisting of electrodes in and around the ear. 
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2. Methods 

 

2.1 Participants 

Eight subjects were enrolled in the study (aged 23, 25, 28, 29, 39, 41, 43 and 49; 4 males). Each 

participant was provided with individually fitted ear molds. Each ear mold was equipped with three in-

Ear-EEG electrodes (Fiedler et al 2016). 

Five of the subjects were native Danish speakers, while two were French and one was a German native 

speaker. All reported normal hearing and no histories of neurological disorders. Participants gave 

informed consent. Procedures were in accordance with the Declaration of Helsinki and approved by the 

local ethics committee of the University of Leipzig Medical faculty. All subjects participated in the 

oddball task, while only the five native Danish speakers participated in the audiobooks task (aged 29, 

39, 41, 43 and 49, 3 males). For both tasks, the recording from one of the Danish subjects had to be 

discarded due to invalid in-Ear-EEG data, as the device did not remain in place during recordings.  

Note that the comparably low number of subjects is due to the fact that the in-Ear-EEG devices are in a 

prototype stadium and can’t be manufactured in high quantities. However, all results presented are based 

on rigorous levels of statistical significance in the single subject. 

 

2.2 Stimuli and Tasks 

We implemented two experimental paradigms in order to investigate whether neural responses for two 

concurrent auditory streams can be extracted from in-Ear-EEG and whether such responses can predict 

which out of two streams is being attended. 

First, we implemented a non-speech, two-stream, dichotic tone paradigm, in close analogy to Lakatos 

et al (2012), hereafter called oddball task. Two dichotically presented (i.e., left vs right ear) concurrent 

streams of 100-ms tones (with a sawtooth carrier waveform) were presented for one minute. On each 

trial, the two streams differed in tone repetition rate (1.4 vs. 1.8 Hz) and pitch (410 vs. 610 Hz). 10–15 

% of the tones occurred as oddballs (1/4 tone pitch deviation) in both streams. Participants were asked 

to either attend to the stream presented on the left or right ear and to press a button with their right hand 

as soon as they heard an oddball in the attended stream. In total, 40 trials of one minute length were 

presented (figure 1A). All stimulus manipulations, repetition rate (1.4 vs 1.8 Hz), pitch (410 vs 610 Hz), 

and attention (left vs right) were counterbalanced across trials. 
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The second paradigm was a two-stream, continuous-speech paradigm, hereafter called audiobooks task. 

Emulating typical challenging listening scenarios, we presented a mixture of two concurrent audiobooks 

to both ears (i.e., diotic presentation without any spatial cues; figure 1A). The stimuli were two different 

Danish works of fiction spoken by a female (F. Marryatt, Children of the forest) and a male speaker (E. 

A. Poe, A Descent into the Maelström), with matched long-term root-mean-squared (rms) sound 

intensity. Each exemplar of one-minute mixtures was presented twice in succession. Counterbalanced 

across trials, subjects were asked to either attend to the male voice first and second to the female voice 

or vice versa. In total, 60 trials of such one-minute mixtures were presented. 

 

2.3 EEG-Data Acquisition and Preprocessing 

Sixty-four–channel scalp-EEG was recorded alongside in-Ear-EEG using a BioSemi ActiveTwo 

amplifier (Biosemi, Netherlands). In-Ear-EEG electrodes were connected to the auxiliary inputs of the 

ActiveTwo amplifier via pre-amplifiers identical to the ones used for scalp-EEG electrodes. EEG data 

were recorded with a sampling rate fs = 2048 Hz. Please find more details about the recording procedure 

in Fiedler et al (2016). 

 

Figure 1: Design and Onset envelope extraction. A) Exemplary stimulus waveforms show the 

spatial separation of target (green) and distractor (grey) stimuli in both tasks. In the oddball task, two 

streams of 100-ms tones differing in repetition rate and pitch were presented. Subjects were asked to 

attend to the left or the right stream and press a button as soon as they heard an oddball (pitch 

deviation) in the attended stream. In the audiobooks task, two Danish audiobooks spoken by a female 

and male speaker were presented. The identical mixture of both speakers was presented on both ears 

(diotic). Subjects were asked to attend either the female or the male voice. B) In the oddball task, the 

broad-band temporal envelope was captured from the stimulus-waveforms directly. In order to 

capture the broad-band temporal envelope from the audiobooks, an auditory time-frequency 

representation was summed up across its spectral sub-bands. C) The onset envelope was obtained by 

computing the first derivative of the broad-band temporal envelope and subsequently zeroing values 

smaller than zero (half-wave rectification). 
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Data were preprocessed using both the fieldtrip toolbox (Oostenveld et al 2011) for Matlab (MathWorks, 

Inc.) and custom-written code. The continuous EEG data recorded during the oddball task were 

highpass-filtered at fc = 1 Hz and lowpass-filtered at fc = 15 Hz. The continuous EEG data recorded 

during the audiobooks task were highpass-filtered at fc = 2 Hz and lowpass-filtered at fc = 8 Hz according 

to O’Sullivan et al (2015). In order to compensate phase shifts, data were filtered both forward and 

backward using Hamming-window FIR filters with orders N = 3fs/fc. Subsequently, all data were 

downsampled to 125 Hz to match the sampling rate of the onset envelopes (see below). 

After an initial inspection of the event-related potential (ERP) between in-Ear-EEG electrodes and Cz, 

we encountered the issue of not all in-Ear-EEG electrodes keeping proper conductance across the whole 

experiment. Thus, for each ear canal, only the electrode showing minimal standard deviation across 

trials in the ERP summed up between 0 and 500 ms relative to tone-onsets was selected for further 

analysis. 

In order to evaluate the potential difference between in-Ear-EEG electrodes and scalp-EEG electrodes, 

we created two datasets for each participant, one with all scalp-channels referenced to the priorly 

selected left in-Ear-EEG electrode and the other with all scalp-EEG channels referenced to the selected 

right in-Ear-EEG electrode. 

 

2.4 Extraction of Onset Envelopes 

Several approaches to extraction of the broad-band temporal envelope from a speech signal have been 

proposed (Biesmans et al 2016, Thwaites et al 2016). In case of the oddball task, the envelope was 

extracted by a direct calculation of the absolute values of the Hilbert-transform. In case of broad-band 

speech signals, the Hilbert transform is only a rough approximation and it has been shown that an 

intermediate step of extraction and subsequent summation of frequency sub-band envelopes increases 

the accuracy of detecting the attended speaker (Biesmans et al 2016). Thus, for the audiobooks task, we 

extracted the sub-band envelopes using NSL Toolbox (Ru 2001) for Matlab (Mathworks, Inc.), which 

resulted in a representation containing the envelopes of 128 frequency bands of uniform width on the 

logarithmic scale with center frequencies logarithmically spaced between 0.1 and 4 kHz (24 bands per 

octave). In order to obtain the broad-band temporal envelope, sub-band envelopes were summed up 

across frequency (figure 1B). 

Furthermore, it has been proposed to transform the broad-band temporal envelope in order to extract 

salient increases of signal power (Hertrich et al 2012, Hambrook and Tata 2014). This method is based 

on the assumption that earliest time points of sensation that could evoke responses are tone or syllable 

onsets, respectively. It can be calculated by zeroing negative values (halfwave rectification) of the first 
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derivative of the broad-band temporal envelope and results in a pulse-train-like series of peaks. Most 

salient peaks occur both at tone or syllable onsets (Fig 1C). This time-series will be called onset 

envelope. Recently, we have shown that the cross-correlation of the onset envelope and the EEG-signal 

results in estimations of the neural response similar to conventional ERPs obtained by multi-trial 

averaging (Fiedler et al 2016). 

 

2.5 Training EEG response models 

A schematic illustration of the approach to identification of the attended speaker is provided in figure 2. 

In order to evaluate the performance in identification of the attended speaker at every single EEG 

channel, we first trained a model for each individual participant. The model is a linear mapping of the 

onset envelope onto the measured EEG signal.  

We used a well-established form of regularized regression (i.e., ridge regression; Hoerl and Kennard 

1970) to train our model, as ridge regression has been shown to be applicable for predicting 

neurophysiological signals on the base of stimulus features (forward encoding model) (Santoro et al 

2014, Lalor et al 2009) as well as reconstructing stimulus features from EEG signals (backward 

decoding model; O’Sullivan et al 2015, Mirkovic et al 2015). A Matlab-toolbox (mTRF Toolbox) is 

provided by Lalor (https://sourceforge.net/projects/aespa). As established above, the EEG signal should 

be independently predicted for every single EEG channel, which is, due to the implementation, inherent 

of forward modelling (Crosse et al 2016). 

In detail, a single-channel encoding model g is the linear mapping of the onset envelope s onto the EEG 

signal r, which can be expressed as a convolution operation 

𝑟(𝑡) = 𝑠 ∗ 𝑔 =  ∑[𝑠(𝑡 −  𝜏) · 𝑔(𝜏)]𝜏  

                      

(1) 

where t for t = 1,2,…,L is the sample index of both of the onset envelopes and the EEG signal with 

length L and  for min, min+1,…, max is the investigated sample-wise time lag between s and r. We 

investigated time lags (between the envelope and the EEG signal) ranging from –100 to 550 ms. In our 

design, we expect a difference in morphology of the response functions gatt and gign (figure 2B), which 

are models of the responses to the attended and the ignored stimulus onset envelopes satt and sign (figure 

2A). Moreover, we assume that the responses ratt and rign sum up and some noise n interferes (Zion 

Golumbic et al., 2013). Accordingly, we can express the measured EEG signal rEEG (figure 2C): 
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𝑟EEG(𝑡) =  ∑[𝑠att(𝑡 −  𝜏) · 𝑔att(𝜏)]𝜏 +  ∑[𝑠ign(𝑡 −  𝜏) · 𝑔ign(𝜏)]𝜏 + 𝑛(𝑡)                 
=  𝑟att(𝑡) + 𝑟ign(𝑡) + 𝑛(𝑡) 

 

(2) 

Since our goal was to estimate a response model including gatt and gign that minimizes the mean-squared 

error of the subsequent predicted EEG response 𝑟̂EEG, it can be obtained by the standard matrix operation 

in regularized regression, 𝐺 = (𝑆𝑇𝑆 + 𝜆𝑚𝐼)−1𝑆𝑇𝑅, (3) 

where S is an L-by-2Т-matrix with its columns containing onset envelopes of both the attended satt and 

ignored sign stimulus onset envelopes and their time-lagged replications. R is a column vector of length 

L containing the measured single channel EEG signal rEEG. The relative regularization parameter  is 

first multiplied with m, the mean of the diagonal elements of STS (Biesmans et al 2016). Second, it is 

multiplied with the identity matrix I and added to the covariance-matrix STS. This regularization term 

mI prevents overfitting (Crosse et al 2016), which appeared as high frequent artifacts in the to be 

estimated response models. The resulting matrix G contains the time-lag-wise response weightings gatt 

and gign for both the attended and ignored stimulus onset envelopes. 

After an initial inspection of the response models, we decided to choose Please note that the 

greater  is chosen, the more the term (STS + λmI) converges to a multiple of the identity matrix, and 

the influence of covariance vanishes. This would lead to the same results as cross-correlation, which 

was also shown to be feasible for extracting neural responses (Kong et al 2014, Fiedler et al 2016), but 

doesn’t account for potential confounds caused by auto-correlation in the unregularized signal. Here we 

couldn’t observe a consistent benefit of regularization, because classification accuracy didn’t decrease 

by further increasing  However, in order to be consistent with the literature, we applied regression as 

stated above.  

In line with former studies (O’Sullivan et al 2015, Mirkovic et al 2015), we decided to apply leave-one-

out cross-validation. According to Biesmans et al (2016) we trained the prediction models by 

concatenating both the stimuli and EEG signal of all but the to-be-tested trial, before feeding it into (3). 

Thus, we obtained a prediction model for every single trial. 
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Figure 2: Identification of the attended speaker from single-channel EEG exemplary for 

audiobooks task. Training: After extraction of the onset-envelope (A) and preprocessing of the EEG 

signal (C), a linear forward model (B) is estimated for each trial and each speaker by concatenated 

stimulus and EEG signal of all other trials. Testing: The convolution of the onset envelopes of speaker 

A and B (D) with the trained prediction models (E) predicts to be expected EEG signals 𝑟̂A and 𝑟̂B with 

the labels ‘Attend A’ and ‘Attend B’, respectively (F). G) If the predicted EEG signal labeled true (i.e., 

corresponds to the trial instruction) yields higher Pearson-correlation coefficient with the measured 

EEG-signal than the predicted EEG signal labeled false (i.e., is contrary to trial instruction), the 

classification is correct. 

 

2.6 Testing EEG response models: Identification of the attended stream 

In order to classify which of the streams a listener attended to, the former trial-wise trained models gatt 

and gign (figure 2B) were assembled to become two contrary prediction models (figure 2E). According 

to (1), the sum of the convolution of the onset envelopes sA and sB (figure 2D) and each response model 

(figure 2E) predicts an EEG signal, respectively. For both scenarios with the labels Attend A and Attend 

B, EEG signals 𝑟̂A and 𝑟̂B (figure 2F) were predicted: 

𝑟̂A(𝑡) = ∑[𝑠A(𝑡 −  𝜏) · 𝑔att(𝜏)]𝜏 + ∑[𝑠B(𝑡 −  𝜏) · 𝑔ign(𝜏)]𝜏  
(5a) 
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 𝑟̂B(𝑡) = ∑[𝑠A(𝑡 −  𝜏) · 𝑔ign(𝜏)]𝜏 + ∑[𝑠B(𝑡 −  𝜏) · 𝑔att(𝜏)]𝜏  
(5b) 

This operation can be expressed by matrix multiplication of the onset envelope matrix S and the response 

model matrix G: 𝑅̂ = 𝑆𝐺, (6) 

where 𝑅̂ is a column vector containing the predicted EEG signal 𝑟̂𝐴 or 𝑟̂𝐵, respectively. 

In order to estimate which of the predicted EEG signals (𝑟̂A vs 𝑟̂B) is most likely representing the trial 

instruction (attend A vs attend B), we calculated the Pearson-correlation coefficient of the predicted 

EEG signals (𝑟̂A and 𝑟̂B)  and the measured EEG signal rEEG, respectively (L = 7500 samples, figure 2G). 

The predicted EEG signal that matched the to-be-attended stream (A vs B) was labeled true, the other 

one was labeled false. The classification was considered correct if the predicted EEG signal labeled true 

yielded greater (i.e., more positive) correlation than the EEG signal labeled false. 

 

2.7 Goodness of fit 

As a measure for the goodness of fit, we will refer to the correlation coefficient obtained from Pearson-

correlation of the true prediction and the measured EEG signal. The greater this coefficient, the more of 

the measured EEG signal’s variability would be explained by the response model. Due to the fact that a 

convolution is a weighted sum and here the weights are the response models with positive or negative 

weights at certain time lags, the predicted EEG signals should have the same polarity as the measured 

EEG signal. Hence, the inspection of the correlation-coefficient’s magnitude (or square) wouldn’t be 

appropriate. Thus, a greater (i.e. more positive) correlation-coefficient indicates the true prediction. 

 

2.8 Classification accuracy 

By classification accuracy we will refer to the percentage of trials in which the predicted EEG signal 

labeled true yields higher correlation with the measured EEG-signal than the predicted EEG signal 

labeled false. For statistical analyses, both the correlation coefficients resulting from Pearson-correlation 

of the true and the false prediction with the measured EEG signal, respectively, were fisher-z-

transformed and called ztrue and zfalse. Considering the number of trials and the binary nature of the 

decision between two alternatives Attend A or Attend B, a single-subject chance level was defined at a 

level of significance α = 0.05 based on a binominal distribution (O’Sullivan et al 2015, Mirkovic et al 
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2016). This resulted in thresholds of 65% for the oddball task (40 trials) and 61.67% for the audiobooks 

task (60 trials).  

 

3. Results 

The main goal of this study was to identify the attended stimulus stream based on responses at single-

channel EEG configurations consisting of one in-Ear- and one scalp-EEG electrode. To this end, we 

trained forward encoding models in order to predict EEG signals containing the predicted responses to 

both the attended and the ignored stimulus stream. Two alternative EEG signals representing the 

scenarios Attend A and Attend B were predicted. The prediction corresponding to the to-be-attended 

stream was called true and the other one false. Goodness of fit was quantified by Pearson-correlation 

coefficient of the true predicted and the measured EEG signal. For further statistical analyses, this 

coefficient was Fisher-z-transformed and called ztrue, whereas its counterpart zfalse was equivalently 

computed by correlation of the false prediction and the measured EEG signal. Our approach to 

classification relies on the assumption that the true prediction better fits the measured EEG signal and 

thus leads to more positive correlation coefficients than the false prediction. Based on that, the 

percentage of correctly classified trials will be referred to as classification accuracy. All plots but the 

topographic maps are showing data from the exemplary configuration of FT7 referenced to the left in-

Ear-EEG channel. 

 

3.1 Response functions reveal consistent attention-related differences 

Applying ridge regression to obtain a forward models is known to return response functions comparable 

to ERPs (Lalor et al 2009, Fiedler et al 2016). Beyond that, ridge regression can be applied on data 

measured during the presentation of continuous stimuli such as speech. According to (5), the 

aforementioned difference between the correlation coefficients ztrue and zfalse (see below) has to arise 

from differences between the response functions of the attended and ignored stimuli. 

An inspection of the grand average response functions averaged across subjects in the dichotic oddball 

task (figure 3A) indicated that we extracted components equivalent to a P50-N100-P200 complex. The 

response functions (figure 3A) suggest an enhanced N100-equivalent component in responses to 

attended tones, which can be confirmed by the consistent differences of the responses to attended and 

ignored tones (figure 3C). All subjects show a negative deflection in responses to attended tones at 

around 160 ms, while all but one of the subjects show a positive deflection in responses to attended 

tones at around 380 ms. The topographies of the differences at time lag of maximal deflections show a 

bilateral pattern.  
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In the audiobooks task, a clear P50-N100-P200-equivalent complex could be found in the responses to 

the attended speaker (figure 3B). The responses to the ignored speaker show only weak magnitudes and 

suggest a suppression of the responses to the ignored speaker. Compared to the oddball task, this is 

leading to a greater difference between the responses to the attended and the ignored speaker (figure 

3D). Again, the differences of the single subject’s response functions show a consistent pattern with a 

common negative deflection at a time lag of 130 ms and a later positive deflection at around 250 ms 

(figure 3D). The topographies of the components at 130 ms and 260 ms both have fronto-central patterns, 

spreading out towards temporal regions. 

In both tasks, we have found response functions that show consistent patterns across subjects. In 

particular the deflections between responses to attended and ignored stimuli are prerequisites for a single 

channel classification approach (see above). Most interesting, these deflections could even be recorded 

at scalp-EEG electrodes located close to its in-Ear-EEG reference electrode. 

 

Figure 3: Response functions. 

Response functions shown here 

were obtained from potential 

difference between left in-Ear-

EEG and FT7 electrode. A) Grand 

average response functions to both 

attended and ignored tones in the 

oddball task. B) Grand average 

response functions to both 

attended and ignored speaker in the 

audiobooks task. C) and D) show 

single subject data of difference 

between response functions in the 

oddball task and in the audiobooks 

task, respectively. Topographies 

show grand average weightings at 

time lags of maximal difference 

between the response functions 

(i.e., attended–ignored). 

 

 

3.2 Goodness of fit as a basis for identifying the attended stream 

Goodness of fit was defined as correlation coefficient resulting from the Pearson-correlation of the 

measured EEG signal and the predicted EEG signal that consists of the responses to the to-be-attended 

and to-be-ignored stream (i.e., true prediction).  

Generally, the average goodness of fit with values in a range of 0.02–0.15 (oddballs: mean = 0.12, range 

0.08–0.15; audiobooks: mean = 0.04, range: 0.02–0.06) seems weak. In order to statistically evaluate if 
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the correlations of the predicted and the measured EEG signals provide valuable information for 

classification, we investigated the distribution of the Fisher-z-transformed Pearson-correlation 

coefficients ztrue and zfalse. Figure 4A & B show the distribution of the correlation coefficients in both 

tasks, where every single dot represents a single trial performed by a (colour-coded) single subject. The 

correlation of the true prediction and the measured EEG signal (ztrue) tends to be greater than its 

counterpart zfalse in the majority of the trials (figure 4A & B). The difference ztrue — zfalse was found to 

be significantly above zero for each subject (one-sample t-test, oddballs: six subjects p < 0.001, one 

subject p < 0.01, figure 4C; audiobooks: two subjects p < 0.001, one subject p < 0.01, one subject p < 

0.05, figure 4D), suggesting it to be a valuable basis for deciding which of the streams is attended. 

In order to evaluate which electrode configuration provides best inference on identification of the 

attended speaker, we inspected the grand average topographies (figure 4C & D) of the single subject t-

values obtained from the distribution of the difference between ztrue and zfalse (see above). Strongest 

effects were found at in-Ear-EEG configurations incorporating fronto-central scalp-EEG channels. 

Interestingly, in both tasks highest t-values were observed for configurations consisting of scalp-EEG 

electrodes (i.e. FT7, FT8, T7, T8) close to the ear that the reference in-Ear-EEG electrode was placed 

in. 

Generally, the analysis of goodness of fit gave insight how a set of two electrodes consisting of one 

electrode in the ear canal and another at the scalp close to the ear should be oriented in order to explain 

attention related variance in the EEG signal caused by auditory stimulation. 
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Figure 4: Goodness of fit and 
classification accuracy. Single 

subject data shown here were 

obtained from potential 

difference between left in-Ear-

EEG and FT7 electrode. 

Topographies show grand 

average data. A&B) Each dot 

represents the relation of both 

Pearson-correlations ztrue and 

zfalse in single trials of the 

oddball task. C&D) 

Distributions of the difference 

ztrue – zfalse for single subjects, 

which were tested against zero 

(t-test). Topographies show 

grand average t-values. E&F) 

Classification accuracy based 

on the difference ztrue–zfalse. 

Horizontal lines indicate 

significance above chance 

based in a binominal 

distribution. Topographic maps 

show grand average 

classification accuracy. 

Highlighted channels are 

indicating channels where at 

least n-1 subjects yield 

classification accuracies 

significantly above chance. 

 

3.3 The attended stream can be identified from single-channel configurations 

Classification accuracy was defined as the percentage of trials the predicted EEG signal labeled true 

yields a more positive Pearson-correlation coefficient with the measured EEG signal than the predicted 

EEG signal labeled false. For statistical analyses, Pearson-correlation coefficients were Fisher-z-

transformed and called ztrue and zfalse.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 14, 2017. ; https://doi.org/10.1101/094490doi: bioRxiv preprint 

https://doi.org/10.1101/094490


15 

 

The classification accuracy at FT7 referenced to the left in-Ear-EEG electrode is shown in figure 4E & 

F. Classification accuracy was found to be significantly above chance (p < 0.05) for all subjects and 

both the oddball task (mean: 77%, range 69–85%, figure 4E) and the audiobooks task (mean: 70%, range 

62–80%, figure 4F) at this exemplary electrode configuration. With regard to the application in hearing 

aids, a purely in-Ear-EEG configuration consisting of two electrodes within the same ear canal is most 

desirable. We investigated those configurations as well and provided the results in the supplements 

(figure S2). Note that these alternative configurations did not yield classification accuracy consistently 

above chance. 

Grand average topographies of classification accuracy (figure 4E & F) show patterns similar to the t-

value topographies above (figure 4C & D). Highlighted channels in figure 4E & F indicate that 

classification accuracy was found to be above chance (p < 0.05) for at least all but one of the subjects. 

Interestingly, channels close to the ear the reference in-Ear-EEG electrode was placed in showed 

classification results above chance consistently across subjects.  

Due to the low number of subjects, drawing a general conclusion on the most appropriate electrode 

configuration is not possible. However, for the present data we can state that we have found a 

configuration, showing classification results above chance for every subject consisting of only two 

electrodes, FT7 referenced to left in-Ear-EEG electrode. Single-subject topographical maps provided in 

the supplements (figure S1 A) confirm that various short-distance electrode configurations yield 

classification accuracy above chance. Based on the single-channel data of subjects who participated in 

both tasks, we found a strong dependency of classification accuracy between tasks (figure S1 B), which 

emphasizes the robustness of our findings despite our relatively low number of participants. 

 

4. Discussion 

It is a frequently stated long-term goal to fuse EEG recordings with hearing aid technology in order to 

attune the hearing aid to an attended sound source. Here, we investigated whether the attended sound 

stream out of two concurring streams can be identified from single channel EEG-recordings. Single 

channels were electrode configurations consisting of one reference in-Ear-EEG and one scalp-EEG 

electrode. We focused our analyses on a configuration consisting of a left in-Ear-EEG electrode and 

scalp-EEG electrode FT7. 

Participants performed two tasks. In both tasks, concurrent sound streams (i.e. tones and speech) were 

presented. We hypothesized single channel in-Ear-EEG data to provide valuable information to identify 

the attended stream. 
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4.1 Response functions consistently reveal listeners’ focus of attention 

In contrast to backward models, the estimation of forward models allows the comparison of the obtained 

response functions with conventional ERPs (Lalor et al 2009). An attention-related difference between 

response functions is a prerequisite for identification of the attended speaker (see Methods). 

In both tasks, we have found an enhanced N100-equivalent component in the responses to attended 

stimuli compared with ignored stimuli for each subject (figure 3A & B). This is in line with auditory 

evoked potential (AEP) studies, showing that the N100 component is enhanced if the stimulus is 

attended (e.g., Näätänen et al 1981). 

Notably, attention-related differences in the response functions could be found even in short-distance 

configurations consisting of a reference in-Ear-EEG electrode and a scalp-EEG electrode close to the 

ear, as exemplarily shown for FT7 referenced to left in-Ear-EEG electrode. In regards to hearing aid 

applications, these findings encourage the attachment of only a few electrodes in the periphery of the 

ear (Mirkovic et al 2016). 

The consistent morphology of the difference between responses to attended and to ignored stimuli 

(figure 3C & D) further suggests the training of a model based on the data of all but one subject and test 

it on the latter (i.e., generic model). Even if not as accurate, O’Sullivan et al (2015) showed that a generic 

model still allows predicting the attentional focus. With respect to its application in hearing aids, a 

generic model could provide a default set of parameter values before a listener-specific model is adapted 

over time (Mirkovic et al 2015). In the current study, the training of a robust generic model was hindered 

by the low number of subjects and should be further investigated. 

The dichotic oddball paradigm employed here also is appropriate when investigating neural responses 

to discrete and spatially separated stimuli. However, such a paradigm is removed from real-world 

listening scenarios, since two or more sound sources in natural environments are rarely separated in a 

dichotic fashion and are rarely as stationary regarding their rhythm and spectral content. 

In contrast, the audiobooks paradigm with two diotically presented speakers represents a challenging 

listening situation and is more akin to realistic scenarios (also with respect to a listener’s goal, that is, 

following a sound source and comprehending what is being conveyed (Obleser 2014). Since no spatial 

information is contained in the audio signal, a ‘worst case’ scenario was presented. Sound source 

separation can only be achieved based on spectral-temporal cues of the two speakers. Since each 

participant attended to either the male or to the female voice in the same number of trials, the revealed 

differences of the response function can’t be explained by spatially separated stimuli nor from speaker 

specific features. 
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In most of the cited studies on detection of auditory attention from EEG data, the speech envelope was 

used as stimulus representation (O’Sullivan et al 2015, Mirkovic et al 2015, Biesmans et al 2016). In 

contrast we used onset envelopes, that is, the halfwave-rectified first derivative of the envelope. Using 

instead the envelope led to similar detection accuracies (figure S4 A), but responses were shifted by 

approximately 50 ms such that the P50 equivalent component appeared before time lag of zero (figure 

S4 B). This is due to every onset being followed by a peak in the envelope after approximately 50 ms 

(figure S4 C). For the oddball task, the correct latencies of the components (i.e. P50, N100, P200) are 

known from previously calculated ERPs (Fiedler et al 2016). Since the latencies of the onset envelope 

responses in the audiobooks task fit the latencies of the ERP onset responses in the oddball task better 

than the envelope responses do, we conclude that onset envelopes lead to more precise estimations. 

A comparison of the response functions reveals similar latencies of components between tasks, but the 

relative suppression of the response to the ignored stream is stronger in the audiobooks task. Two 

diotically presented speakers are more likely masking each other than dichotically presented tones of 

100 ms length (and up to 614 ms pauses between tones). The suppression of the responses to the ignored 

speaker might indicate higher demand for suppression of the ignored stream and thus a higher task 

difficulty. 

Of course, the low number of individually in-Ear-fitted subjects tested here (n = 7 & n = 4) allows only 

for limited conclusions. However, the markedly consistent morphologies of the response functions and 

the individually significant detection success suggest that differential responses to attended and ignored 

auditory stimuli, even continuous speech, can be recorded from short-distance electrode configurations. 

These configurations here consisted only of one electrode in the ear canal and another close to the same 

ear, as exemplarily shown in Figure 4E & F for a left in-Ear-EEG electrode referenced to scalp-EEG 

electrode FT7. Please note that the shortest distance we could achieve was determined by the electrode 

positions of the scalp EEG. The exemplary electrode FT7 is placed at a distance of approximately 8 cm 

to the entrance of the ear canal (tragus) at an angle of 40° relative to the tragus-Cz-line. With the 

development of adhesive electrodes to be attached around the ear it was shown that responses could be 

recorded at even closer positions (Bleichner et al 2016). 

 

4.2 Goodness of fit provides basis for identification of the attended stream 

Former studies about approaches to identification of the attended speaker mainly used backward 

decoding models (O’Sullivan et al 2015, Mirkovic et al 2015, 2016, Biesmans et al 2016). Backward 

models are trained on multi-channel EEG data and used to reconstruct a single speech envelope. In 

contrast, we used forward models to predict the EEG signal in response to the stimulus, which allowed 

us to quantify the goodness of fit at every single EEG channel (see Methods).  
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The goodness of fit was quantified by Pearson’s correlation-coefficient for the predicted versus the 

measured EEG signal. In the previous backward model studies cited above, correlation-coefficients 

obtained from Pearson-correlation of the reconstructed and the original speech envelope between 0.02 

and 0.10 were reported. Here, we obtained correlation coefficients of similar magnitude, but they were 

here obtained solely on the basis of a potential difference recorded at a single EEG-channel consisting 

of left in-Ear-EEG and scalp-EEG electrode FT7. Crucially, the topographies of single-trial-derived t-

values (figure 3C & D) show that meaningful differences can be found satisfyingly at single electrodes 

close to the referenced in-Ear-EEG electrode. 

We thus conclude that short-distance electrode configurations like the exemplary configuration 

consisting of the left in-Ear-EEG reference and FT7 electrode capture information about the listener’s 

attentional focus and thus provide a basis for the identification of the attended sound source. To achieve 

this, we based our analyses on certain assumptions. First, we assumed that strongest responses can be 

found at stimulus onsets and thus extracted respective representations (see Methods). Especially for 

speech, features known to evoke responses are manifold and rarely mutually exclusive, since all are, to 

some extent, nested or derived from the broad-band temporal envelope (Ding and Simon 2014). Second, 

we applied ridge regression in order to train a model under the assumption of linearity and with the goal 

to reduce the mean squared error of the prediction. The extraction of features from speech is wedded to 

the selection of an appropriate model and both affect the contrast between responses to attended and 

ignored speech. 

Comparing several methods of extracting features of speech and going beyond the simple assumption 

of linearity as well as incorporating several loss-functions might further boost the contrast between the 

two predicted EEG signals and thus further refine the information about the attentional focus. 

 

4.3 The attended stream can be identified from single-channel configurations 

The major goal of this study was to identify the attended sound stream based on single-channel hearing 

aid-compatible EEG channel configurations. Considering that, classification accuracy is the most 

important measure to evaluate the performance of our approach of single channel classification. 

As stated above, former studies have used backward models to bring in the advantage of having multiple 

EEG signals to reconstruct one single speech envelope. In order to reduce the number of channels, 

Mirkovic et al 2015 already applied an approach of recursive channel elimination. Starting from a grid 

of 96 channels, it was shown that a stepwise exclusion of worst performing channels doesn’t affect 

classification accuracy up until approximately 25 channels were left. The best performing electrodes 

were concentrated at temporal positions close to the ear. However, the average of all electrodes served 
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as reference potential which hinders a conclusion for single channel configurations consisting of only 

two electrodes. In a recent study (Mirkovic et al 2016), it was shown that based on the data of a grid of 

ten electrodes around the ear the attended speaker could be identified with a backward model.  Here, we 

go even further and show that a montage of only two electrodes, left in-Ear-EEG electrode and scalp-

EEG-electrode FT7, is sufficient to identify the attended sound source in two experimental tasks. In 

Mirkovic et al (2016), we presume that placing a few electrodes at positions favorable for identifying 

the attended speaker is more crucial than obtaining more or less redundant EEG signals from multiple 

channels. 

With respect to the long-term goal of controlling a hearing aid in real-time, our results provide valuable 

insight. First, in a hearing aid, computational resources are limited. We thus decided not to apply any 

method of artifact rejection or other methods of signal enhancement other than band-limiting the EEG-

signal. Once a model is trained, the algorithm consists of only four convolutional operations and two 

correlations. Considering the comparably low sampling rate of 125 Hz and one-minute trials of 7500 

samples, the computational effort is comparably low.  

Nevertheless, a classification accuracy of around 70% after one minute might not yet comply with the 

requirements of a hearing-aid user. Furthermore, data were recorded in a shielded room which reduced 

environmental noise as well as subjects were asked to move as less as possible which lead to a minimum 

of muscle artifacts. Please note that an implementation of such an electrode configuration into a hearing-

aid would raise further issues not addressed here, such as how to attach an electrode outside the ear canal 

and dealing with low conductance due to hairy positions and skin resistance. One possible solution might 

be permanently or daily placed electrodes around the ear (Debener et al 2015, Mirkovic et al 2016, 

Bleichner et al 2016). Thus, for real-life applications, there are still major challenges ahead. Our findings 

however do map out a significant step towards the application of single channel in-Ear-EEG in future 

hearing aids. 

 

5. Conclusion 

The identification of attended sound sources based on neural data has become increasingly important 

for both, neuro-scientists and hearing aid developers, since it contains the potential to control a hearing 

prosthesis in a brain–computer interface fashion. One unsolved problem is the embedding of EEG 

electrodes and utilization of EEG signals in the hearing-aid periphery. 

In the current study, we have shown that in-Ear-EEG can feasibly capture information about the 

listeners’ attentional focus. Thus, with only two electrodes attached, an auditory brain-computer 

interface could constantly track a listener’s attentional focus. This information could be fed back to other 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 14, 2017. ; https://doi.org/10.1101/094490doi: bioRxiv preprint 

https://doi.org/10.1101/094490


20 

 

hearing aid algorithms in real-time (e.g., controlling for directional microphones and noise suppression) 

at low computational cost. 
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Supplements 

 

Figure S1: Single-subject 

classification accuracy. A) Single-

subject topographical maps reveal 

similarity of patterns of classification 

accuracy between oddball and 

audiobooks task. B) Scatter plot of 

classification accuracy in both tasks 

at all single channels of all subjects 

who participated in both tasks (dots 

are slightly jittered to avoid overlap). 

Dashed lines indicate significance 

thresholds. The inspection of the 

number of dots falling into the 

quadrants revealed that channels 

either performing below chance in 

both paradigms (lower left quadrant) 

or above chance in both paradigms 

(upper right quadrant) make up 71%. 

This shows that we can estimate the 

classification accuracy of the 

audiobooks task from the 

classification accuracy of the oddball 

task. This finding is also supported by 

a significant (p < 0.001) Pearson-

correlation coefficient of r = 0.5. 
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Figure S2: Comparison of single 

subjects’ classification accuracies 
at various electrode 

configurations. The left in-Ear-

EEG electrode served as reference. 

With regard to the application in 

hearing aids, the most useful 

configuration would be ipsilateral 

(i.e., same side as reference) in-

Ear. This configuration yielded 

relatively reduced classification 

accuracies in all but one subject. 

Note that the ipsilateral in-Ear 

configuration for some subjects 

still yielded a classification 

accuracy above chance. 

Furthermore, we investigated the 

contralateral in-Ear EEG electrode, 

the ipsi- and contralateral mastoid. 

At these configurations, no 

consistent classification accuracy 

was found. 

 

 

Figure S3: Exemplary in-Ear-EEG devices. 

Each device has three EEG electrodes 

attached (© 2016 IEEE. Reprinted, with 

permission, from Fiedler L, Obleser J, 

Lunner T and Graversen C 2016 Ear-EEG 

allows extraction of neural responses in 

challenging listening scenarios – a future 

technology for hearing aids? Eng. Med. Biol. 

Soc. (EMBC), 38th Annu. Int. Conf. IEEE, 

38 5697–700). To create the in-Ear EEG 

devices, a trained audiologist took 

impressions of the ear canals, which were 

used to print 3D shells of each individual ear 

canal. Three holes were drilled in the shells 

to insert the electrodes, which were 

connected by short wires to a standard 3-pin 

Hi-PRO EASYFIT plug. Electrodes were 

made from a fine silverthread with a 

diameter of 3,00 mm cut into slices of 2,00 

mm (Ravstedhus, Denmark). 
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Figure S4: A) Relation between classification accuracies obtained with envelope and onset-envelope. 

B) Responses to envelope and responses to onset envelope. C) Cross-correlation of onset-envelope 

and envelope. Blue lines indicate individual trials. Positive time lags shift the onset-envelope towards 

the future, leading to maximum similarity with the envelope at a time lag of approximately 50 ms. 
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