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Abstract
Speech enables easy human-to-human communication as well as human-to-machine interaction. However, the quality of 
speech degrades due to background noise in the environment, such as drone noise embedded in speech during search and 
rescue operations. Similarly, helicopter noise, airplane noise, and station noise reduce the quality of speech. Speech enhance-
ment algorithms reduce background noise, resulting in a crystal clear and noise-free conversation. For many applications, it 
is also necessary to process these noisy speech signals at the edge node level. Thus, we propose implicit Wiener filter-based 
algorithm for speech enhancement using edge computing system. In the proposed algorithm, a first order recursive equation 
is used to estimate the noise. The performance of the proposed algorithm is evaluated for two speech utterances, one uttered 
by a male speaker and the other by a female speaker. Both utterances are degraded by different types of non-stationary noises 
such as exhibition, station, drone, helicopter, airplane, and white Gaussian stationary noise with different signal-to-noise 
ratios. Further, we compare the performance of the proposed speech enhancement algorithm with the conventional spectral 
subtraction algorithm. Performance evaluations using objective speech quality measures demonstrate that the proposed speech 
enhancement algorithm outperforms the spectral subtraction algorithm in estimating the clean speech from the noisy speech. 
Finally, we implement the proposed speech enhancement algorithm, in addition to the spectral subtraction algorithm, on the 
Raspberry Pi 4 Model B, which is a low power edge computing device.

Keywords  Edge computing · Non-stationary noise · Raspberry Pi · Spectral subtraction · Speech analysis · Stationary 
noise · Wiener filtering

1  Introduction

Speech is the vocalized form of human communication. 
It is also one of the preferred methods of communication 
between humans and machines in a variety of speech pro-
cessing applications, including speech recognition (Schultz 
et al., 2021), speech coding (Kleijn et al., 2018), and speech 
quality estimation of disordered tracheoesophageal speech 
of patients (Ali et al., 2020). When the input speech signal 
is in its original (clean) form, these applications perform 

admirably. However, due to the presence of background 
noise in the surroundings, the input speech signal suffers due 
to the presence of noises such as stationary noise (fan, white 
noise) and non-stationary noise (exhibition, station, drone, 
helicopter, airplane), among others. As a result, in order to 
achieve better performance, it is necessary to improve the 
speech before injecting it into any specific speech process-
ing applications.

Speech enhancement algorithms improve the speech 
quality that is degraded by additive noise such as exhibition 
noise, drone noise, etc., as shown in Fig. 1. Speech iden-
tification (Sheft et al., 2008), speech recognition system 
(Moore et al., 2017), unmanned aerial vehicle (UAV)-based 
search and rescue system (Deleforge et al., 2019) are among 
the speech enhancement applications. Speech enhancement 
improves the quality and intelligibility of noisy speech sig-
nals (Das et al., 2020). It can be used as a pre-processing 
block as well as a filter to remove background noise, as in 
the cellular phone (Ogunfunmi et al., 2015). Further, the 
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spectral characteristics of the noise, as well as the number 
of available microphones, have an impact on the speech 
enhancement algorithms. A single microphone or channel, in 
general, is considered for mobile applications due to its cost 
and size (Loizou, 2013). Moreover, noise in the real-world 
can be stationary or non-stationary, with varying spectral 
properties. A speech enhancement algorithm is said to be 
effective when the noise in a noisy speech signal is esti-
mated accurately without introducing perceptible distortion. 
An inaccurate noise estimation can distort the speech signal 
and musical noise (Loizou, 2013).

Spectral subtraction (SS) is a traditional and widely used 
speech enhancement algorithm for improving the speech 
signal which is degraded by the additive background noise 
(Boll, 1979; Loizou, 2013). The algorithm employs a for-
ward and inverse Fourier transform of the input noisy speech 
signal. However, the algorithm suffers with the problem of 
“musical noise” (Loizou, 2013) present in the enhanced 
speech signals. A multi-band spectral subtraction algorithm 
for improving the fan-noise-degraded speech has been pro-
posed in Saldanha and Shruthi (2016). However, the pres-
ence of non-stationary noise degrades the performance 
of this algorithm. In Yan et al. (2020), an iterative graph 
spectral subtraction algorithm to suppress the noise using 
graph spectral subtraction (GSS) has been proposed. The 
GSS leverages the differences in the spectrum of speech 
graphs and noise graph signals. However, this algorithm is 
explored only with the stationary noise, such as, white, and 
pink noise, and the non-stationary noise, such as, babble 
noise. They have not considered the aerial environmental 
noise to investigate the suitability of the algorithm.

Wiener filtering (WF) follows a conceptually similar 
approach for speech enhancement. A Wiener filter-based 
speech enhancement algorithm for additive white Gauss-
ian noise (AWGN) and colored noise has been presented 
in Abd El-Fattah et al. (2014). The filter transfer function 
in Abd El-Fattah et al. (2014) is based on speech signal 
statistics; namely, the local mean and local variance. This 
algorithm, on the other hand, is implemented in the time 

domain. In the frequency domain, a speech enhancement 
algorithm that combines voiced speech probability with 
wavelet decomposition has been proposed in Bhowmick 
and Chandra (2017). This algorithm, however, is incapable 
of optimizing the multi-taper spectrum, resulting in poor 
speech signal denoising. Similarly, a combination of Wiener 
filter and Karhunen–Loeve transform (KLT) for enhancing 
the degraded speech has been introduced in Srinivasarao and 
Ghanekar (2020). A time-frequency mask-based parametric 
Wiener filter in Chiea et al. (2019) considers the trade-off 
between speech distortion and noise reduction for designing 
and minimizing the cost function in order to obtain optimal 
solution for noise suppression. However, these methods do 
not provide the degree of flexibility that allows the engineer 
to control the estimate of noise power spectral density (PSD) 
to suppress the musical noise components.

To make the spectral estimation smooth in order to reduce 
the musical noise during speech enhancement, Hu and 
Loizou (2004) employed low-variance spectral estimators 
based on wavelet thresholding the multi-taper spectrum of 
speech sample. Speech-shaped noise and car noise are inves-
tigated for the suitability of the algorithm. However, in Hu 
and Loizou (2004), the effect of aerial environmental noises 
which are having different spectral characteristics have not 
been analysed. In Charoenruengkit and Erdöl (2010), the 
effect of spectral estimate variance on the quality of speech 
enhancement system has been analysed. Reducing the vari-
ance of the spectral estimator improves the speech enhance-
ment system. In Charoenruengkit and Erdöl (2010), babble, 
car, jet airplane, and white noise are considered. However, 
the aerial environment noises have not been considered. 
Spectral subtraction algorithm and SNR-dependent noise 
estimation approach have been considered in Islam et al. 
(2018) for speech enhancement. The magnitude and phase of 
the noisy speech spectrum are modified in order to enhance 
the speech. Moreover, babble and street noise are consid-
ered, however, the aerial environment noises have not been 
considered. The effect of musical noise on speech enhance-
ment is also missing in Islam et al. (2018). In Kanehara 

Fig. 1   Single channel speech 
enhancement system
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et al. (2012), three different estimators to mathematically 
investigate the amount of musical noise generated during 
speech enhancement are investigated. A practical example is 
shown for the white and babble noise, but not for the aerial 
environment noises. Moreover, none of the above algorithms 
provide degree of flexibility to estimate the noise which is 
the major parameter in speech processing.

To this end, a single-channel speech enhancement algo-
rithm based on implicit Wiener filter (IWF) with recursive 
noise estimation technique is proposed (Jaiswal & Romero, 
2021), which provides degree of flexibility to the engineer 
to estimate the noise for speech enhancement. The algorithm 
is implemented in frequency domain, only for the speech 
degraded by non-stationary noise. However, the speech 
degraded by stationary noise is not considered in Jaiswal 
and Romero (2021). It also does not take into account the 
noisy environments created by the aerial environments such 
as UAV noise, helicopter noise, and airplane noise. In addi-
tion, it lacks embedded hardware implementation using low-
cost edge computing node, Raspberry Pi. Motivated by this, 
in this work, we propose and extend the implicit Wiener 
filter-based speech enhancement algorithm that provides the 
degree of flexibility to suppress the noise to enhance the 
speech. The key contributions of this paper are as follows:

–	 The proposed implicit Wiener filter-based speech 
enhancement algorithm is analysed in the presence of 
stationary noise such as the AWGN noise and real-world 
non-stationary noisy environments such as exhibition and 
station.

–	 In addition, we consider novel aerial environmental 
noises such as drone, helicopter, and airplane to evalu-
ate the performance of proposed speech enhancement 
algorithm.

–	 The proposed speech enhancement algorithm provides 
degree of flexibility using � , which is the noise smooth-
ing parameter, and � , which is the noise adjustable 
parameter, to estimate the noise in order to enhance the 
speech accurately.

–	 Through extensive results, we compare the performance 
of the proposed speech enhancement algorithm with the 
spectral subtraction algorithm and achieve relatively 
better performance. The enhanced speech obtained with 
proposed speech enhancement algorithm shows the 
smoother spectrum.

–	 Finally, we implement the proposed speech enhancement 
algorithm on the Raspberry Pi 4 Model B hardware. This, 
in turn, shows that the proposed speech enhancement 
algorithm can be implemented on the low computational 
embedded platforms.

The rest of the paper is organized as follows. The litera-
ture survey is described in Sect. 2. A review on the spectral 

subtraction algorithm is presented in Sects. 3 and  4 pre-
sents a review on the implicit Wiener filter in frequency 
domain. Section 5 describes the noise estimation technique, 
and Sect. 6 describes the experimental dataset. The evalu-
ation methodology for the speech enhancement algorithm 
is outlined in Sect. 7. The implementation of the speech 
enhancement algorithms using edge computing system is 
described in Sect. 8. The results are presented and discussed 
in Sect. 9. Finally, Sect. 10 provides the concluding remarks 
and the scope for future work.

2 � Related work

A deep neural network (DNN)-augmented colored-noise 
Kalman filter-based speech enhancement system has been 
proposed in Yu et al. (2020) that models both clean speech 
and noise as auto-regressive process. The parameters of 
auto-regressive processes comprising of linear prediction 
coefficients and driving noise variances which are obtained 
by training multi-objective DNNs (Yu et al., 2020). It is 
important to note here that the existing DNN-based speech 
enhancement models extract only local features from the 
noisy speech in a non-causal way. Thus, in Yuan (2020), 
a time-frequency smoothing neural network has been pro-
posed. The proposed network in Yuan (2020) works on time-
frequency correlation in the improved minima controlled 
recursive averaging (MCRA)-based feature calculation using 
long short-term memory (LSTM) and convolutional neural 
network (CNN) (Shrestha and Mahmood, 2019). A genera-
tive adversarial networks (GANs) (Creswell et al., 2018) 
based speech enhancement algorithm to estimate the clean 
signal from the corrupted signal has been proposed in Pas-
cual et al. (2019). In You and Ma (2017), a modified scheme 
has been proposed that includes a smoothing adaptation to 
the frame signal-to-noise ratio (SNR) and a re-estimation 
of previous SNR in order to reduce the artifacts for speech 
enhancement. However, these DNN-based models require 
a huge amount of speech data for training. Therefore, we 
propose a speech enhancement algorithm which achieves a 
good performance with limited amount of data.

A multi-band algorithm to the spectral subtraction is pro-
posed in Kamath et al. (2002), where the speech spectrum 
is divided into multiple non-overlapping bands. Afterwards, 
spectral subtraction has been performed independently in 
each band. Finally, the modified frequency bands are recom-
bined to obtain the enhanced speech. This algorithm has 
been investigated on the colored noise alone. Further, the 
multi-band algorithm works on the fact that the noise does 
not affect the speech signal uniformly. In Asano et al. (2000), 
a speech enhancement algorithm based on the subspace 
approach has been proposed. The proposed algorithm in 
Asano et al. (2000) reduces the ambient noise by eliminating 
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the noise-dominant eigenvalues. The basic principle of the 
subspace approach is that the clean signal might be confined 
to a subspace of the noisy Euclidean space. Therefore, the 
vector space of the noisy signal is decomposed into “sig-
nal” and “noise” subspaces using the singular value decom-
position (SVD) or eigenvector–eigenvalue factorization 
(Loizou, 2013). However, above algorithms do not consider 
the non-stationary noise and the aerial environmental noise, 
which have different spectral characteristics, for speech 
enhancement.

The use of Raspberry Pi for the experimental evaluation 
of speech signals has gained attention, due to its low cost 
for edge computing applications. A UAV-based voice rec-
ognition system is considered for recognizing the humans 
buried under the rubble after a massive disaster (Yamazaki 
et al., 2019). Here, the Raspberry Pi is mounted on UAV to 
process the voice signals (Yamazaki et al., 2019). A real-
time implementation of advanced binaural noise reduction 
algorithm is demonstrated using Raspberry Pi in Azarpour 
et al. (2017). In Drakopoulos et al. (2019), a DNN-based 
noise suppression scheme for audio signals is demonstrated 
using Raspberry Pi. Motivated by Yamazaki et al. (2019), 
Azarpour et al. (2017), Drakopoulos et al. (2019), in this 
work, the experimental evaluations of both algorithms, that 
is, proposed speech enhancement algorithm and spectral 
subtraction algorithm are performed using Raspberry Pi 4 
Model B board.

3 � Basic spectral subtraction algorithm

The spectral subtraction is one of the widely used algorithms 
for single-channel speech enhancement (Loizou, 2013). It 
efficiently estimates the clean speech spectrum from the 
noisy speech spectrum by subtracting the estimate of the 
noise spectrum. The implementation of spectral subtraction 
algorithm is performed with the following assumptions. (i) 
speech signals are assumed to be stationary; (ii) speech and 
noise are uncorrelated; and (iii) phase of the noisy speech 
is unchanged. Let y[n] represent the noisy speech which is 
defined as

where s[n] denotes the clean speech signal and d[n] is the 
noise signal. Since our focus is on speech enhancement in 
frequency domain, the expression of discrete short-time 
Fourier transform (STFT) of y[n], s[n], and d[n] are Y[�, k] , 
S[�, k] , and D[�, k] , respectively. Here, Y[�, k] , S[�, k] , 
and D[�, k] are noisy, clean, and noise signal in frequency 
domain, respectively. Y[�, k] is obtained as

(1)y[n] = s[n] + d[n],

(2)Y[�, k] = S[�, k] + D[�, k],

where k ∈ {1, 2, ....,N} denotes the frame index with N being 
the number of frames and � denotes the discrete angular 
frequency of a frame. With Pyy[�, k] and P̂dd[𝜔, k] being the 
noisy speech power spectrum and estimated noise power 
spectrum, respectively, the estimate of the clean speech 
power spectrum, P̂ss[𝜔, k] , is obtained as Jaiswal and 
Romero (2021)

Finally, the enhanced speech signal is obtained by comput-
ing the inverse short-time Fourier transform (Inverse STFT) 
of the square root of P̂ss[𝜔, k] , using the phase of the noisy 
speech signal. A detailed derivation of the spectral subtrac-
tion algorithm is presented in Jaiswal and Romero (2021).

Spectral subtraction algorithm has a trade off between 
speech information and interference. To avoid speech distor-
tion, it must be done carefully. There is a possibility that we 
may loose some clean speech information while subtracting 
the noise from the noisy signal. If we subtract too much, 
some speech information may be lost; if too little is sub-
tracted, much of the interfering noise (musical noise) may be 
present. Musical noise is the noise with increasing variance 
that remains present in the estimated speech signal and may 
cause listening fatigue (Vaseghi, 2008).

4 � Implicit Wiener filter in frequency domain

The estimate of the clean speech obtained from spectral sub-
traction algorithm is influenced by the musical noise due to 
the negative subtraction value. Thus, Wiener filter, which is 
a linear estimator, minimizes the mean square error between 
the original (clean) and the estimated speech signal and takes 
care of the direct subtraction (Haykin, 1996; Loizou, 2013).

Given the clean speech power spectrum, Pss[�] , and noise 
power spectrum, Pdd[�] , the condition for optimal transfer 
function of the Wiener filter HWF[�]

1 for speech enhance-
ment in frequency domain is given as Loizou (2013), Jaiswal 
and Romero (2021)

For estimating the clean speech, Pss[�] and Pdd[�] must be 
estimated accurately. Therefore, an additional flexibility is 
provided to these estimates by introducing two adjustable 
parameters � and � . These parameters are achieved by so-
called modified or parametric Wiener filter, resulting in the 
following implicit estimator (Lim & Oppenheim, 1979):

(3)P̂ss[𝜔, k] = Pyy[𝜔, k] − P̂dd[𝜔, k]

(4)
[
HWF[�] =

Pss[�]

Pss[�] + Pdd[�]

]

1  The detailed derivation of the transfer function of the Wiener filter 
H

WF
[�] is presented in our work (Jaiswal & Romero, 2021).
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Here, � represents the noise suppression factor and � is the 
noise adjustable parameter that controls the amount of per-
ceived noise. The value of � is calculated using segmental 
SNR (SNRseg) (see Eq. 6) of each frame of the noisy speech 
signal as, � = 4 − 0.15 SNRseg . For the frame having high 
segmental SNR, � should be small which is the case when 
speech is present. However, for the frame having low seg-
mental SNR, � should be large which is the case when low-
energy frames or pauses are present. The segmental SNR is 
defined as Loizou (2013)

where s[n] and ŝ[n] are the clean and the enhanced speech 
signal, respectively. N is the frame length and M is the num-
ber of frames in the speech signal.

Furthermore, to accommodate the non-stationarity of the 
speech signal, it is convenient to introduce the following 
approximation (Lim & Oppenheim, 1979)

Here, we approximate the true power spectral density of 
s[n] by its spectral energy. After substituting (7) in (5) with 
� = 1∕2 , Ŝ[𝜔]2 is obtained as Jaiswal and Romero (2021)

Finally, the enhanced speech signal is estimated by taking 
the inverse short-time Fourier transform of |Ŝ[𝜔]| on a frame-
by-frame basis. We use overlap-add method (Daher et al., 
2010) to recombine spectra of individual frame with the 
phase of noisy speech signal. The block diagram of proposed 

(5)H[�] =

[
Pss[�]

Pss[�] + �Pdd[�]

]�

(6)SNRseg =
10

M

M−1�

m=0

log

�
1 +

∑Nm+N−1

n=Nm
s2[n]

∑Nm+N−1

n=Nm
(s[n] − ŝ[n])2

�
,

(7)Pss[𝜔] ≈ |Ŝ[𝜔]|2.

(8)|Ŝ[𝜔]| =
[
|Y[𝜔]|2 − 𝛾Pdd[𝜔]

]1∕2
.

Implicit Wiener filer-based speech enhancement algorithm 
is shown in Fig. 2.

5 � Noise estimation

Different types of noises are encountered in daily life. Each 
type of noise has a distinct behavior and spectral charac-
teristics. For example, AWGN noise is stationary whereas, 
exhibition, station, drone, helicopter, and airplane noise are 
non-stationary due to the constantly changing spectral char-
acteristics. Accurate noise estimation from the noisy speech 
results in an improved speech quality. To estimate the noise 
spectrum, the speech enhancement algorithm employs a first 
order recursive equation (Loizou, 2013), which averages the 
previous noise estimates and the current noisy speech spec-
trum as

where � ( 0 ≤ � ≤ 1 ) denotes the smoothing parameter. 
Pyy[�, k] , P̂dd[𝜔, k] , and P̂dd[𝜔, k − 1] denote the the short-
time power spectrum of the noisy speech, estimate of the 
noise power spectrum in �th frequency bin of current frame, 
and estimate of the past noise power spectrum, respectively. 
Here, the value of � is selected analytically. For different 
values of � , segmental SNRs (Loizou, 2013) are calculated 
for each frame of the noisy speech sample. Then, the transi-
tion in segmental SNRs is observed to select the value of � . 
Usually, segmental SNR decreases as the � increases.

6 � Experimental dataset

In the presence of both stationary and non-stationary noises, 
the performance of the algorithms for speech enhancement 
is evaluated. We generate AWGN noise at different SNRs 
of 0 dB, 2.5 dB, and 5 dB for the stationary scenario. We 
use exhibition, station, drone, helicopter, and airplane 
noise at SNRs of 0 dB, 2.5 dB, and 5 dB for non-stationary 

(9)P̂dd[𝜔, k] = 𝛼P̂dd[𝜔, k − 1] + (1 − 𝛼)Pyy[𝜔, k]

FramingNoisy
Speech Windowing STFT

Noise
Estimation

Speech 
 Enhancement  

(IWF) 

Inverse
STFT

Overlap-
add

Phase

Enhanced
Speech

Fig. 2   Block diagram of the proposed Implicit Wiener filer-based speech enhancement algorithm

2  The detailed derivation of Ŝ[𝜔] is presented in our work (Jaiswal & 
Romero, 2021).
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scenarios. Noisy samples for the exhibition and the station 
are taken from the noisy speech corpus NOIZEUS (Hu & 
Loizou, 2006), in which the noise samples are used from the 
Aurora dataset (Hirsch & Pearce, 2000). NOIZEUS corpus 
was created when the phonetically balanced IEEE English 
sentences were uttered by three male and three female speak-
ers, respectively. The drone noise is taken from the drone 
audio dataset (Al-Emadi et al., 2019). The helicopter and 
airplane noise are taken from the environmental sound clas-
sification (ESC) dataset (Piczak, 2015).

We also consider two clean speech utterances, one is pro-
nounced by a male speaker and another by a female speaker. 
The male utterance is “A good book informs of what we 
ought to know” and the female utterance is “Let us all join as 
we sing the last chorus”. For the stationary scenario, we gen-
erate AWGN noise with SNRs of 0 dB, 2.5 dB, and 5 dB and 
combine it with each clean speech utterance to obtain noisy 
speech sample. Similarly, for the non-stationary scenario, 
exhibition and station noise, obtained from the Aurora data-
set, are added with each clean speech utterance at 0 dB, 2.5 
dB, and 5 dB SNR in order to obtain noisy speech sample. 
In addition, drone, helicopter, and airplane noise are also 
added to each clean speech utterance at 0 dB, 2.5 dB, and 5 
dB SNR to obtain the corresponding noisy speech sample. 
The speech samples are narrow-band, with frequency of 8 
kHz and an average duration of 3 seconds. The samples are 
saved in .WAV (16 bit PCM, mono) format.

7 � Evaluation methodology of the speech 
enhancement algorithm

After generating noisy speech samples as discussed in 
Sect. 6, each speech sample is divided into multiple frames 
having a frame duration of 25 ms with 50% overlap. Each 
frame has a Hamming window with a duration of 25 ms. The 
windowed speech frames are analyzed using a 256-sampled 
short-time Fourier transform (STFT). The noise is estimated 
using Eq. (9). Since stationary and non-stationary noises 
have different time-frequency distributions and spectral 
characteristics, they reflect different impacts on the speech 
signals. Consequently, we calculate the frame-wise seg-
mental SNR (see equation (6)) of each noisy speech sample 
(uttered by a male and a female speaker) to obtain the best 
value of smoothing parameter, � , for estimating the noise 
of each noise type. In the implicit Wiener filtering, we also 
consider initial 5 frames of the noisy speech sample as noise/
silence to estimate the noise power spectral density (PSD) 
using equation (9). A simple voice activity detector is used 
to update the noise PSD.

The performance of speech enhancement algorithm 
is evaluated with four objective speech quality measures 
such as perceptual evaluation of speech quality (PESQ), 

log-likelihood ratio (LLR), cepstral distance (CD), and 
weighted spectral slope distance (WSS). For testing, we 
also have the original (clean) speech sample. PESQ (Hu & 
Loizou, 2006) compares the clean speech sample and the 
enhanced speech sample and generates a quality score that 
ranges from -0.5 to 4.5. A higher value of PESQ indicates 
better speech quality.

LLR is a spectral distance measure used to measure the 
mismatch between formants of the clean and the enhanced 
speech sample (Loizou, 2013). It usually ranges between 0 
and 2, and is defined as Loizou (2013), Jaiswal and Romero 
(2021)

where aT
s
 and āT

ŝ
 denote the linear prediction coefficients 

(LPC) of the clean and the enhanced speech sample, respec-
tively. T denotes transpose. Rs represents the auto-correlation 
matrix of the clean speech sample.

CD (Loizou, 2013; Hu & Loizou, 2007) provides an esti-
mate of the log spectral distance between two spectra. It has 
the range of [0, 10] and it is calculated as Loizou (2013), 
Jaiswal and Romero (2021)

where cs[k] and c̄ŝ[k] represent the cepstrum coefficients 
(obtained from LPC) of the clean and the enhanced speech 
sample, respectively. p denotes the maximum order of the 
LPC coefficients.

WSS (Loizou, 2013) is based on the weighted difference 
between the spectral slopes in each band. It has the range 
of [0, 150]. With Ss[k] , and S̄ŝ[k] being the spectral slope 
of the clean and the enhanced speech sample, respectively, 
and W[k] being the weight of the band k, WSS is obtained 
as Loizou (2013), Jaiswal & Romero (2021)

In addition to the objective performance measures, the infor-
mal listening test of the enhanced speech signal is also per-
formed for both speech enhancement algorithms.

8 � Implementation using the edge 
computing system

This section presents the implementation of speech enhance-
ment algorithms on an edge computing system, that is, the 
Raspberry Pi (Azarpour et al., 2017).

(10)dLLR(as, āŝ) = log10

(
āT
ŝ
Rsāŝ

aT
s
Rsas

)
,

(11)dCD(cs, c̄ŝ) =
10

loge 10

√√√√2

p∑

k=1

(cs[k] − cŝ[k])
2,

(12)dWSS(Cs, C̄ŝ) =

36∑

k=1

W[k](Ss[k] − S̄ŝ[k])
2
.
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For the experimental evaluation of the considered speech 
enhancement algorithms, we employ the Raspberry Pi 4 Model 
B, which acts as a mini computer, as shown in the Fig. 3. It 
is a faster, highly powerful, re-engineered, and completely 
upgraded model. It is equipped with ARM7 quad core proces-
sor having 1.5 GHz speed and supports upto 8 GB SDRAM. It 
has two USB 3.0 and two USB 2.0 ports. It supports Ethernet, 
WiFi, and bluetooth at 2.4 GHz and 5 GHz operating frequen-
cies. It also has a camera, audio, and composite video ports.

Since Raspberry Pi (RPi) works with C/C++, we install the 
MATLAB support package for RPi hardware. This package is 
used for the configuration and the deployment of MATLAB 
code into the RPi board for the experimental evaluation. The 
MATLAB support package for RPi hardware is used to make 
a network connection between RPi and computer. Here, we 
connect the RPi to the computer using Ethernet. Further, this 
package compiles the MATLAB functions into C functions 
and deploys the C code into the RPi. The Raspberry Pi model 
B is compatible with MATLAB release R2020a and higher. 
Finally, the Raspberry Pi Resource Monitor App is used to 
track the resource consumption of the speech enhancement 
algorithms.

For the simulation analysis in MATLAB, we use audioread 
function to extract the sample values and frequency from a 
given speech sample. However, this function is not supported 
for deploying into RPi. Thus, for the experimental implemen-
tation of both speech enhancement algorithms, we read the 
sample values and frequency extracted in MATLAB. Table 1 
lists the resources consumed in the RPi hardware for the exper-
imental evaluation of both spectral subtraction and proposed 
speech enhancement algorithms.

9 � Results and discussions

The speech enhancement algorithms are implemented in 
MATLAB R2021b on Windows 10 laptop having Intel Core 
i5 8th generation processor, Intel UHD Graphics 620, and 16 
GB of memory.

Tables 2, 3, 4, 5, 6, and 7 present the segmental SNR 
of the spectral subtraction with recursive noise estimation 
algorithm for AWGN, exhibition, station, drone, helicopter, 
and airplane noise at SNRs of 0 dB, 2.5 dB, and 5 dB with 
different values of smoothing parameter “ � ”, for the speech 
uttered by both a male and a female speaker. It is observed 
from Tables 2, 3, 4, 5, 6, and 7 that for the increasing value 
of � , the SNRseg decreases for each input SNR scenario, 
showing deviation in the SNRseg. However, the SNRseg 
decreases at the extreme point � = 1 . Thus, from Tables 2, 
3, 4, 5, 6, and 7, we observe that � = 0.9 is the most appro-
priate value.

Tables 8 and 9 present the results of PESQ, LLR, CD, 
and WSS for the speech uttered by both male and female 
speakers, respectively. These tables are for both the spec-
tral subtraction and the implicit Wiener filter-based speech 
enhancement algorithms. Here, the speech signal is degraded 
by stationary noise (AWGN) and non-stationary noise (exhi-
bition, station, drone, helicopter, and airplane) at SNRs 0 
dB, 2.5 dB, and 5 dB, respectively. We also verified these 
performance metrics using the RPi experimental setup as 
shown in Fig. 3.

It can be noticed from Table 8 that when a male speaker 
pronounces speech utterance then the implicit Wiener 
filter-based speech enhancement algorithm is performing 
better than the spectral subtraction algorithm. The same 
is observed for both stationary and non-stationary noise 
at each input SNR except the station noise at 0 dB and 
helicopter noise at 2.5 dB, where the spectral subtraction 

Fig. 3   Experimental system demonstrating Raspberry Pi 4 Model B 
board

Table 1   Resource consumption of Raspberry Pi 4 Model B for the 
experimental evaluation of both SS and IWF-based speech enhance-
ment algorithms

Name Availability Utilization

SS IWF

ARMv7 processor rev 3 4 cores @ 1500 MHz 27% 28%
RAM 4 GB 3% 3%
SD Card 256 GB 1% 1%
Code execution time – 13 s 13 s
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Table 2   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for AWGN noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.152 6.024 5.942 5.891 5.864 5.838 5.834 5.855 5.867 5.652
2.5 dB 6.276 6.165 6.071 6.044 6.017 6.008 6.004 6.027 6.074 5.922
5 dB 6.390 6.329 6.243 6.181 6.182 6.181 6.229 6.242 6.255 6.224
Female
0 dB 6.486 6.341 6.269 6.226 6.181 6.155 6.187 6.151 6.194 5.907
2.5 dB 6.588 6.486 6.427 6.359 6.350 6.322 6.377 6.425 6.442 6.234
5 dB 6.684 6.618 6.569 6.546 6.536 6.565 6.577 6.644 6.690 6.572

Table 3   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for exhibition noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.174 6.022 5.936 5.882 5.843 5.819 5.801 5.796 5.805 5.624
2.5 dB 6.384 6.273 6.215 6.182 6.168 6.169 6.183 6.211 6.261 6.021
5 dB 6.388 6.264 6.205 6.173 6.159 6.161 6.179 6.218 6.289 6.245
Female
0 dB 6.512 6.369 6.278 6.217 6.178 6.154 6.150 6.175 6.239 5.856
2.5 dB 6.617 6.536 6.490 6.462 6.449 6.446 6.458 6.491 6.576 6.405
5 dB 6.718 6.625 6.570 6.537 6.525 6.525 6.542 6.590 6.657 6.608

Table 4   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for station noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.237 6.100 6.025 5.977 5.946 5.936 5.935 5.956 6.006 5.640
2.5 dB 6.451 6.321 6.251 6.212 6.193 6.189 6.193 6.206 6.247 6.092
5 dB 6.440 6.341 6.296 6.275 6.278 6.295 6.333 6.402 6.506 6.271
Female
0 dB 6.474 6.334 6.250 6.192 6.150 6.126 6.117 6.136 6.185 5.854
2.5 dB 6.612 6.457 6.362 6.293 6.250 6.221 6.207 6.208 6.219 6.122
5 dB 6.698 6.623 6.584 6.562 6.556 6.566 6.590 6.648 6.773 6.555

Table 5   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for drone noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.450 6.292 6.195 6.128 6.083 6.048 6.019 6.005 5.996 5.797
2.5 dB 6.564 6.431 6.353 6.298 6.265 6.240 6.222 6.220 6.223 6.131
5 dB 6.685 6.581 6.521 6.480 6.458 6.443 6.436 6.446 6.463 6.481
Female
0 dB 6.626 6.511 6.445 6.401 6.375 6.360 6.360 6.377 6.378 6.136
2.5 dB 6.725 6.635 6.582 6.549 6.532 6.526 6.536 6.563 6.577 6.463
5 dB 6.825 6.764 6.725 6.705 6.696 6.695 6.713 6.744 6.765 6.805
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algorithm has better PESQ, LLR and CD. It is also 
observed from Table 8 that the WSS of the spectral sub-
traction algorithm for each noise type at 2.5 dB is better. 
However, at other SNRs, WSS of the implicit Wiener filter 

algorithm is better. This indicates a poor noise reduction 
by the spectral subtraction algorithm, resulting in severe 
perceptual dissimilarity. Implicit Wiener filter algorithm 
performs better for airplane noise at 5 dB, giving highest 

Table 6   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for helicopter noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.286 6.144 6.067 6.024 5.997 5.992 5.989 5.996 6.013 5.769
2.5 dB 6.402 6.280 6.215 6.183 6.166 6.168 6.171 8.189 6.209 6.080
5 dB 6.528 6.427 6.375 6.353 6.345 6.349 6.361 6.385 6.404 6.403
Female
0 dB 6.597 6.499 6.436 6.395 6.362 6.341 6.332 6.339 6.353 6.181
2.5 dB 6.683 6.611 6.565 6.539 6.516 6.503 6.503 6.522 6.543 6.519
5 dB 6.768 6.723 6.697 6.683 6.672 6.669 6.679 6.705 6.731 6.872

Table 7   Segmental SNR 
of spectral subtraction with 
recursive noise estimation 
algorithm for airplane noise at 
SNRs 0 dB, 2.5 dB, and 5 dB

SNR �

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Male
0 dB 6.338 6.208 6.144 6.108 6.090 6.079 6.081 6.093 6.095 5.665
2.5 dB 6.645 6.339 6.283 6.254 6.245 6.245 6.256 6.270 6.281 5.984
5 dB 6.583 6.484 6.435 6.413 6.409 6.413 6.430 6.454 6.464 6.315
Female
0 dB 6.593 6.490 6.429 6.391 6.367 6.350 6.344 6.355 6.365 5.950
2.5 dB 6.685 6.607 6.564 6.537 6.524 6.515 6.522 6.548 6.571 6.273
5 dB 6.778 6.724 6.698 6.687 6.682 6.684 6.701 6.737 6.768 6.618

Table 8   PESQ, LLR, CD and 
WSS of enhanced speech using 
Spectral subtraction (SS) and 
Implicit Wiener filter (IWF)-
based speech enhancement 
algorithms for the speech 
pronounced by a Male speaker

Type of noise Input SNR PESQ LLR CD WSS

(dB) SS IWF SS IWF SS IWF SS IWF

AWGN 0 1.563 1.657 1.824 1.657 9.579 9.110 106.541 93.099
2.5 1.908 1.932 1.740 1.566 9.254 8.711 61.879 86.722
5 1.656 2.008 1.736 1.485 9.394 8.520 99.245 82.164

Exhibition 0 1.496 1.473 1.566 1.483 7.856 7.555 95.302 89.479
2.5 1.906 1.658 1.430 1.387 7.538 7.579 54.626 93.347
5 1.803 1.980 1.323 1.143 7.055 6.303 99.414 79.732

Station 0 1.683 1.496 1.070 1.167 5.834 6.045 88.213 73.604
2.5 2.047 1.944 1.388 1.287 7.646 7.391 49.926 84.377
5 1.910 2.275 0.883 0.830 5.101 5.030 82.288 67.854

Drone 0 1.663 1.942 1.753 1.492 9.361 8.460 119.340 116.619
2.5 2.088 2.238 1.619 1.404 8.808 8.158 85.830 111.763
5 1.754 2.419 1.629 1.296 8.980 7.745 106.827 102.352

Helicopter 0 1.825 1.807 1.201 1.049 7.002 6.118 102.432 108.025
2.5 2.312 2.102 0.821 0.917 5.355 5.602 68.859 97.942
5 2.065 2.338 1.106 0.810 6.670 5.184 93.885 88.767

Airplane 0 2.027 2.366 1.074 0.848 6.653 5.596 92.426 61.481
2.5 2.427 2.591 0.711 0.775 5.141 5.284 46.443 56.642
5 2.222 2.687 1.006 0.744 6.430 5.149 85.152 53.985
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PESQ, lowest LLR and WSS among other noise types. 
It also performs better for station noise at 5 dB, giving 
lowest CD among other noise types. This reflects that the 
speech degraded by the airplane noise at 5 dB is highly 
improved by the implicit Wiener filter algorithm. Finally, 
it is noticed that the Implicit Wiener filter algorithm exhib-
its better performance in reducing the non-stationary noise 
than the stationary noise.

It can be noticed from Table 9 that when a female speaker 
pronounces the speech utterance then the implicit Wiener 
filter-based speech enhancement algorithm outperforms 
the spectral subtraction algorithm. This can be observed 
for both the stationary and the non-stationary noise at each 
input SNR, expect for the case of exhibition and station 
noise at 2.5 dB, where the spectral subtraction algorithm 
has better PESQ. The LLR, CD, and WSS of the spectral 
subtraction algorithm for the AWGN, exhibition, station, 
helicopter and airplane noise at 2.5 dB are better. However, 
at other SNRs, LLR, CD, and WSS of the implicit Wie-
ner filter algorithm are better. This indicates a poor noise 
reduction by the spectral subtraction algorithm, resulting in 
severe perceptual dissimilarity. Implicit Wiener filter algo-
rithm performs outstanding for helicopter noise at 5 dB, 
giving highest PESQ and lowest LLR and CD among other 
noise types. It also performs outstanding for airplane noise 
at 5 dB, giving lowest WSS among other noise types. This 
reflects that the speech degraded by the helicopter noise at 
5 dB is improved more accurately by the implicit Wiener 
filter algorithm. Finally, it is noticed that the implicit Wiener 

filter algorithm exhibits better performance in reducing the 
non-stationary noise than the stationary noise.

Figure 4 shows the comparison of enhanced speech using 
the implicit Wiener filter-based speech enhancement algo-
rithm. This comparison is for the speech uttered by both 
male and female speakers, and degraded by each type of 
noise at 5 dB. It is remarkable in Fig. 4a that the speech 
quality (PESQ) and LLR of male uttered speech degraded 
with airplane noise at 5 dB are better than the other noise 
types. However, the CD of male uttered speech degraded 
with station noise at 5 dB is better. This indicates that the 
speech degraded due to the airplane and the station noise at 
5 dB, are enhanced more accurately with different measures 
employed. Similarly, it is also remarkable in Fig. 4b that 
the speech quality (PESQ), LLR, and CD of female uttered 
speech degraded with helicopter noise at 5 dB are better than 
the other noise types. This indicates that the speech degraded 
due to the helicopter noise at 5 dB is enhanced more accu-
rately. In addition, the speech quality (PESQ) and WSS of 
the male uttered speech degraded with airplane noise at 5 
dB are better than the female uttered speech using implicit 
Wiener filter-based speech enhancement algorithm. How-
ever, the LLR and CD of the female uttered speech degraded 
with the helicopter noise at 5 dB are better than the male 
uttered speech using implicit Wiener filter-based speech 
enhancement algorithm. This indicates that the male and 
the female uttered speeches are enhanced better with dif-
ferent quality measures in different noisy environments. It 
leads to design a noise-specific or context-specific speech 

Table 9   PESQ, LLR, CD and 
WSS of enhanced speech using 
Spectral subtraction (SS) and 
Implicit Wiener filter (IWF)-
based speech enhancement 
algorithms for the speech 
pronounced by a Female 
speaker

Type of noise Input SNR PESQ LLR CD WSS

(dB) SS IWF SS IWF SS IWF SS IWF

AWGN 0 1.594 1.839 1.530 1.397 9.068 8.378 119.713 103.075
2.5 1.815 1.899 1.298 1.323 8.508 8.195 63.850 93.645
5 1.803 2.227 1.504 1.228 8.984 7.868 109.863 81.030

Exhibition 0 1.563 1.617 1.015 0.999 5.881 5.901 106.839 92.325
2.5 1.849 1.696 0.953 1.086 6.195 6.713 59.202 91.358
5 1.816 2.019 0.925 0.886 5.587 5.397 105.653 77.759

Station 0 1.610 1.778 0.816 0.907 5.217 5.568 114.247 96.60
2.5 1.905 1.801 0.948 1.124 6.254 6.649 53.765 82.504
5 1.860 2.267 0.800 0.718 5.022 4.833 95.878 69.258

Drone 0 1.698 1.981 1.563 1.258 8.912 7.950 131.652 116.563
2.5 2.181 2.379 1.190 1.076 8.035 7.342 84.035 98.933
5 1.873 2.545 1.456 0.999 8.469 6.997 117.652 90.250

Helicopter 0 1.778 2.054 1.171 0.897 7.014 6.005 109.900 99.249
2.5 2.364 2.333 0.571 0.784 4.980 5.380 64.786 86.267
5 1.955 2.621 1.161 0.677 6.775 4.769 101.228 73.173

Airplane 0 1.760 2.178 1.209 0.880 7.209 5.877 102.774 69.538
2.5 2.221 2.264 0.663 0.838 5.495 5.644 55.942 66.255
5 1.898 2.424 1.124 0.765 6.743 5.281 93.567 59.873
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enhancement algorithm. Overall, it again directs to deploy 
the implicit Wiener filter-based speech enhancement algo-
rithm to reduce the non-stationary noise and perform speech 
enhancement tasks.

Figures 5 and 6 show the time domain and spectrum 
representation of the clean, noisy, and enhanced speech 
signals using the implicit Wiener filter-based speech 
enhancement algorithm for the speech uttered by a male 
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Fig. 4   PESQ, LLR and CD of the enhanced speech using implict 
Wiener filter-based speech enhancement algorithm, for a the speech 
uttered by a male speaker and degraded by each type of noise at 5 dB, 

and b the speech uttered by a female speaker and degraded by each 
type of noise at 5 dB

Fig. 5   Time domain and spectrogram representations of the clean, noisy, and enhanced speech using the implicit Wiener filter-based speech 
enhancement algorithm, for the speech pronounced by a male speaker and degraded by AWGN noise at 5 dB
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speaker and degraded by the AWGN and the airplane 
noise at 5 dB, respectively. It can be observed from Figs. 5 
and 6 that the speech enhanced by the implicit Wiener 
filter-based speech enhancement algorithm has improved 
signal estimation, showing superior performance for the 
non-stationary noise than the stationary noise. Moreover, 
it is worth noting that the spectral components that are 
being filtered out using the proposed speech enhancement 
algorithm constructs an insignificant amount of musical 
noise in some of the speech samples, which is not very 
susceptible to the hearing, and is acceptable.

10 � Conclusions and future work

In this paper, we have proposed and extended the implicit 
Wiener filter-based algorithm for speech enhancement, 
in the presence of the non-stationary noise (exhibition, 
station, drone, helicopter, and airplane) and the station-
ary noise (additive white Gaussian noise). The proposed 
speech enhancement algorithm employs a first order 
recursive noise estimation equation in order to estimate 
noise from the degraded speech. The equation employs a 
smoothing parameter for continuously updating noise in 
each frame. To obtain the most appropriate value of the 
smoothing parameter, segmental SNR is calculated in each 
frame of the noisy speech spectrum. The implementation 

results show that for various types of noise degradations 
tested, the proposed speech enhancement algorithm out-
performs the spectral subtraction algorithm. Moreover, 
the envelop of the estimated/enhanced speech signal is 
close to the envelop of the clean speech spectrum. The 
enhanced speech signal is shown to have similar percep-
tual quality as the clean speech signal. The spectrogram 
of the enhanced speech is also similar to the clean speech 
spectrogram. In addition, the informal listening test of 
the enhanced speech signal using the proposed speech 
enhancement algorithm demonstrates a clear sound as 
compared to the spectral subtraction algorithm. The con-
struction of the musical noise in the enhanced speech sig-
nal is too small which is acceptable. Furthermore, it is also 
shown that the proposed speech enhancement algorithm 
supports the low power edge computing device, such as, 
the Raspberry Pi.

As a result, the proposed speech enhancement algo-
rithm may be a promising future candidate to enhance the 
speech signal of various speech processing applications, 
such as, speech quality prediction metric, speech recogni-
tion system, speech identification system, speech coding 
system, etc., where a crystal clear speech is required for 
the efficient communication. One can easily integrate these 
speech enhancement algorithms as a pre-processing block 
in order to improve the system performance, when imple-
menting using the edge computing system. In addition, 

Fig. 6   Time domain and spectrogram representations of the clean, noisy, and enhanced speech using the implicit Wiener filter-based speech 
enhancement algorithm, for the speech pronounced by a male speaker and degraded by airplane noise at 5 dB
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we also intend to examine different noise estimation tech-
niques for designing and developing the speech enhance-
ment algorithms.
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