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1. Introduction

This paper derives sufficient conditions for a class of games of incomplete information, such

as first-price auction games, to have pure strategy Nash equilibria (PSNE).  The class of games

is described as follows: there are I agents, each with private information about her own type,

where types are drawn from a convex subset of the real line.  The joint distribution of types is

atomless, and the types may be correlated.  Each player takes an action after observing her type.

Players may be heterogeneous in utility functions or in the distribution of types, and the utility

functions may depend directly on other players’ types.  Thus, the formulation includes the

“mineral rights” auction (Milgrom and Weber (1982)), where bidders receive a signal about the

underlying value of the object, and signals and values may be correlated across players.

The goal of this paper is to dispense with many of the assumptions required in the prior

literature on existence of PSNE.  Instead, we explore the consequences of a restriction that arises

naturally in a wide variety of economic applications, the single crossing condition (SCC) for

games of incomplete information.  The SCC can be stated as follows: for every player i,

whenever each of player i’s opponents uses a pure strategy where higher types choose (weakly)

higher actions, player i’s expected payoffs satisfy Milgrom and Shannon’s (1994) single crossing

property.1  The SCC implies that in response to nondecreasing strategies by opponents, each

player has a best response strategy that is nondecreasing.

The paper has four parts.  The first part shows that when a game of incomplete information

satisfies the SCC, but when the players are restricted to choose from a finite action set, a PSNE

exists.  The second part considers games with a continuum of actions.  It establishes that if

players’ utility functions are continuous, a PSNE to the continuum-action game can be found by

taking the limit of a sequence of PSNE of finite-action games.  Third, the latter result is

extended to allocation games, such as first-price auctions, that have a particular type of

discontinuity.  The fourth part of the paper builds on Athey (1998a, b) to characterize the SCC

based on properties of utility functions and type distributions.  A wide variety of commonly

studied games satisfy the SCC.  It holds in many auction games, including private-value, first-

price auctions where bidders are (weakly) risk averse and the types are independent or affiliated.

In the class of “mineral rights” first-price auctions, the SCC holds when there are many identical

bidders, or two heterogeneous bidders, whose types are affiliated.  It also holds in all-pay

auctions and multi-unit first-price auctions with heterogeneous bidders and independent private

values.  Many other examples arise in the industrial organization literature, including noisy

                                               
1That is, when choosing between a low action and a high action, if a low type of player i weakly (strictly) prefers
the higher action, then all higher types of agent i weakly (strictly) prefers the higher action as well.
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signaling games (such as limit pricing with demand shocks), as well as oligopoly games with

incomplete information about costs or demand.

The existence theorems exploit a variety of consequences of the SCC.  The SCC implies that

we may search for equilibria in the space of nondecreasing strategies.  Indeed, the existence

theorems can be thought of as fixed point theorems tailored to the special case of nondecreasing

functions.  We begin by observing that in the case of finite action sets, a nondecreasing strategy

is a step function, and thus can be represented with a finite vector which determines the points of

strict increase of the function.  This vector is referred to as the vector of “jump points.”  Second,

we establish that when a player’s expected payoffs satisfy Milgrom and Shannon’s (1994) single

crossing property, the set of vectors of jump points representing optimal best responses for each

player is convex (this is not immediate, and it is important for the argument).  So long as the

type distribution is atomless, Kakutani’s fixed point theorem can be applied to the best-response

correspondence where players choose vectors of jump points.  To treat the continuum-action

case, we proceed by taking the limit of a sequence of equilibria with successively finer action

sets.  We make use of the fact that a sequence of nondecreasing functions has a subsequence

which converges almost everywhere to a function which, by virtue of its monotonicity, is

continuous almost everywhere.  Finally, the results on auctions make use of the special structure

of the auction game to rule out discontinuities in the limit as the action set gets fine.

The seminal work on the existence of PSNE in games of incomplete information (Milgrom

and Weber (1985), Radner and Rosenthal (1982)) restricts attention to finite-action games.  It

proceeds by proving existence of mixed strategy equilibria in a game where players choose

probability distributions over the actions, and then providing purification theorems.2  However,

this approach is limited because mapping from a mixed strategy equilibrium, where players

effectively choose probability distributions over the actions, to a pure strategy equilibrium

requires independence (or, at best, conditional independence) of type distributions, and players’

types must be restricted to directly affect only their own payoffs.  Radner and Rosenthal (1982)

provide several counter-examples of games which fail to have PSNE, in particular games where

players’ types are correlated.

Although results about existence of mixed strategy equilibria can be found when actions are

chosen from a compact subset of the real line (Milgrom and Weber, 1985), there are several

                                               
2 More precisely, Milgrom and Weber (1985) show that pure strategy equilibria exist when type spaces are
atomless and players choose from a finite set of actions, types are independent conditional on some common state
variable (which is finite-valued), and each player’s utility function depends only on his own type, the other
players’ actions, and the common state variable (the utility cannot depend on the other players’ types directly).
They also require a condition which they call “continuity of information.”
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known counter-examples to existence of PSNE in this context (Khan and Sun, 1996, 7).  In the

case where types are independent and payoffs are continuous, Khan and Sun (1995) have

recently shown that PSNE exist when the action sets are countably infinite, but not when the

action sets are uncountable.3

An alternative approach is due to Vives (1990), who shows that a sufficient condition for

existence of PSNE is that the game is supermodular in the strategies, in the following sense: if

one player’s strategy increases pointwise, the best response strategies of all opponents must

increase pointwise.  However, the strategies themselves need not be monotone in types.  Vives’

condition is applicable in games where each player’s payoff function is supermodular in actions,

but not in the auctions and log-supermodular pricing games highlighted in this paper.

Now consider the case of first-price auctions.  The issue of the existence of PSNE in first-

price auctions with heterogeneous agents has challenged economists for many years.  Recently,

several authors have made substantial progress.4  While the SCC is satisfied in the settings

considered in the literature,5 many interesting classes of auctions with heterogeneous bidders are

not treated by the existing analysis.  Further, even for the auctions where existence is known,

computation of equilibrium (which involves numerically solving a system of nonlinear

differential equations with two boundary points) can be difficult due to pathological behavior of

the system.  Thus, the computational algorithm suggested by the constructive existence theorems

in this paper may be of use in applications.  For example, it can be used to evaluate the effects of

mergers between bidders in auctions, as well as to analyze common value auctions with

heterogeneous bidders, about which very little is known.

2. Finite-Action Games

Consider a game of incomplete information between I players, i=1,..,I, where each player
first observes her own type ti∈Ti≡[ t i ,ti ]⊂ℜ and then takes an action ai from a compact action set

$i⊂ℜ.  Let $=$1×⋅⋅×$I, T≡T1×⋅⋅×TI, ai i≡ min$ , and ai i≡ max$ .  Player i’s payoff is ui(a,t).

The joint density over player types is f(t), with conditional densities f(t − i |ti).  Given any set of

                                               
3 Khan and Sun (1996) show further that if the type distributions are taken to be atomless on a special class of
measure spaces, called hyperfinite Loeb spaces, existence of PSNE can be obtained when actions are drawn from
the continuum (again maintaining continuity of payoffs and independence of types).
4 For asymmetric independent private values auctions, see Maskin and Riley (1993, 1996), Lebrun (1995, 1996),
and Bajari (1996a); for affiliated private values or common value auctions with conditionally independent signals,
see Maskin and Riley (1996).  Pesendorfer and Swinkels (1997) study symmetric common value auctions for
multiple units.  Lizzeri and Persico (1997) have independently shown that a condition closely related to the single
crossing condition is sufficient for existence and uniqueness of equilibrium in two-player mineral rights auction
games with heterogeneous bidders, but their approach only extends to n players under symmetry.
5 Weber (1994) studies mixed strategy equilibria in a class of auction games where the affiliation inequality fails.
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strategies for the opponents, α j :[ t j ,t j ]→$ j,  j≠i, player i’s objective function can be written as

follows (using the notation  ( , ( ))ai i iα− −t ≡ (..,α
i-1

(ti-1
),ai

,α
i+1(ti+1),..)):

U a ti i i i( , ; ( ))α− ⋅ ≡ ui ((ai ,α −i ( t− i )),t ) f (t −i ti )dt− i
∫ t −i

The following basic assumptions are maintained throughout the paper.

Assumption A1 The types have joint density with respect to Lebesgue measure, f(t), which is

bounded and atomless.6  Further, ui ((ai ,α−i (t −i )), t) f ( t− i ti )dt − i
∈S∫ t − i  exists and is finite for all

convex S and all nondecreasing functions α j :[ t j ,t j ]→$ j, j≠i.

The following definitions are needed (the strong and weak versions will be referred to in

later sections).

Definition 1  h(x,θ) satisfies the (Milgrom-Shannon) single crossing property of incremental
returns (SCP-IR) in (x;θ) if, for all xH

>xL and all θH
>θ

L, h(xH,θL)−h(xL,θL)≥(>)0 implies
h(xH,θH)−h(xL,θH)≥(>)0, and h satisfies weak SCP-IR if for all xH

>xL and all θH
>θ

L,
h(xH,θL)−h(xL,θL)>0 implies h(xH,θH)−h(xL,θH)≥0.

The definition of SCP-IR requires that the incremental returns to x cross zero at most once,

from below, as a function of θ; it implies that the set of optimizers is nondecreasing in the

Strong Set Order, defined as follows.

Definition 2  A set A⊆ℜ is greater than a set B⊆ℜ in the strong set order, written A≥SB, if, for
any a∈A and any b∈B, max(a,b)∈A and min(a,b)∈B.  A set-valued function A(τ) is
nondecreasing in the strong set order if for any τ

H > τ
L, A(τ

H
)≥SA(τ

L
).

Lemma 1  (Milgrom and Shannon, 1994)  Let h : ℜ2 → ℜ .  Then h satisfies SCP-IR if and only
if x*(θ,B)≡ argmax

x∈B
h(x,θ) is nondecreasing in θ and B in the strong set order.

Under SCP-IR, there might be a x′∈x*(θ
L
) and a x′′∈x*(θ

H
) such that x′>x′′, so that some

selection of optimizers is decreasing on a region; however, if this is true, then x′∈x*(θ
H
) as well.

Definition 1 can be used to state the sufficient condition for existence of a pure strategy Nash

equilibria in nondecreasing strategies.

Definition 3 The Single Crossing Condition (SCC) for games of incomplete information is
satisfied if for each i=1,..,I, whenever every opponent j≠i uses a strategy α j :[ t j ,t j ]→$ j  that is

nondecreasing, player i’s objective function, U a ti i i i( , ; ( ))α− ⋅ , satisfies single crossing of
incremental returns (SCP-IR) in (ai

;ti
).

                                               
6 In games with finite actions, Assumption A1 can be relaxed to allow for mass points at the lower end of the
distribution, so long as for each player, there exists a k>t j such that the lowest action chosen by player j is chosen
throughout the region [t j,k).
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Our first observation is that when the action set
is finite, any nondecreasing strategy α i it( )  is a step

function, and the strategy can be described simply

by naming the values of the player’s type ti
 at which

the player “jumps” from one action to the next

higher action.

Consider the following representation.  Let
$ i ={A0,A1,..,AM

} be the set of potential actions, in

ascending order, where M+1
 
is the number of

potential actions (and for notational simplicity, we

suppose for the moment that the action sets are the

same for all players).  Define T t ti
M

m

M

i i≡ ×
=1
[ , ] , Σ i

M ≡ x ∈ = ≤ ≤ ⋅⋅ ≤ =+
+T x t x x x x ti

M
i M M i

2
0 1 2 1, ,< A,

and let Σ≡Σ1
M ×⋅⋅×Σ I

M .  A nondecreasing strategy for player i, α i :[ t i ,ti ]→$i, can be represented

by a vector x∈Σ i
M  according to the following algorithm (illustrated in Figure 2).

Definition 4  (i) Given a nondecreasing strategy α
i
(ti

), we say that “the vector x∈Σ i
M  represents

α
i
(ti

)”  if x t t Am i i i m= ≥inf ( )α< A whenever there is some n≥m such that αi
(ti

)=An
 on an open

interval of Ti, and xm=ti  otherwise.

(ii)  Given x∈Σ i
M , let {x}  denote the set { ti , x1,..,xM ,ti} , and let m* (t,x) ≡ max{m xm < t} .  We

say a nondecreasing “strategy α
i
(ti

) is consistent with x”  if αi
(ti

) = Am ti*( , )x  for all ti
 ∈ Ti\{ x} .

Each component of x is a “jump point” of the step function described by α
i
.  Since x does not

specify behavior for ti
∈{ x}, a given x∈Σ

i
 might correspond to more than one nondecreasing

strategy.  However, because there are no atoms in the distributions of types, a player’s behavior

on the set {x} (which has measure zero) will not affect the best responses of other players.

Given X=(x1,..,xI)∈ΣΣ, let V1(a1,t1;X) denote the expected payoffs to player 1 with type t1

when player 1 chooses a1∈$1 and players 2,..,I use strategies consistent with (x2,..,xI).  Then,

V1(a1,t1;X)≡ ⋅⋅ ⋅ − −
====

++

II∑∑ � u a A A f t dm m
t x

x

t x

x

m

M

m

M

I

I mI
I

mI
I

m

m

I

1 1 1 1 1
00

2

1

2 2
2

2 1
2

2

( , ,.., , ) ( )t t t . (1)

Since (1) embeds the assumption that opponent strategies are nondecreasing, the SCC
implies that Vi(ai,ti;X) satisfies the SCP-IR in (ai;ti) for all X∈ΣΣ.  Let ai

BR(ti|X)= arg max
ai i∈$

Vi(ai,ti;X); this is nonempty for all ti by finiteness of $i.  By Lemma 1, ai
BR(ti|X) is nondecreasing

in the strong set order, which in turn implies (see Milgrom and Shannon, 1994) that there exists
a selection, γi(ti)∈ai

BR(ti|X), from the set which is nondecreasing in ti.  Using Definition 3, γi(ti)

can be represented by a y∈Σi.  Now define the set of all vectors that represent best response

x1 x2 x3x4

A0

A1

A2

A3

A4

t i ti
ti

α i (ti )

Figure 2: The elements of the vector x specify
when the agent “jumps” to a higher action.
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strategies:

Γi(X)={y∈Σ i
M : ∃ αi(ti) which is

consistent with y such that αi(ti)∈ ai
BR(ti|X)}.

The existence proof proceeds by showing

that a fixed point exists for this

correspondence.  A critical property required

of Γ=(Γ1,..,ΓI) for this purpose is convexity.

However, establishing this property requires

some additional work, since the player might

be indifferent between two actions over a set

of types (and this remains true even under the

additional assumptions that the player’s payoff

function is strictly quasi-concave and that

payoffs are nowhere constant in type, so long as the action set is finite).

In Figure 3, ai
BR(ti|X) is nondecreasing in the strong set order.  In the figure, x and y are both

vectors of jump points representing optimal behavior; the arrows in the figure show convex

combinations of xm and ym for m=1,..,4.  Notice that any such convex combination also represents

optimal behavior.  The following Lemma shows that convexity of the best response

correspondence is a general consequence of the strong set order.

Lemma 2  Γi is convex if ai
BR(ti|X) is nondecreasing in the strong set order.

Proof: Fix X and suppose that w,y ∈Γi(X).  Let z=λ w+(1−λ) y for λ∈(0,1), and observe that

z∈Σi.  Now, for m=0,..,M, we show that Am is an optimal action on (zm,zm+1).  If wm=wm+1 and

ym=ym+1, then zm=zm+1 and there is nothing to show; so, assume that ym<ym+1.

Consider ti∈(zm,zm+1) and a k such that Ak∈ai
BR(ti|X).  Case 1: Either wm<wm+1 or ym<wm=wm+1<ym+1.

By definition of w and y, there exists a ti′<ti and a ti′′>ti such that Am∈ai
BR(ti′|X) and

Am∈ai
BR(ti′′|X).  If k<m, then the fact that Am∈ai

BR(ti′|X) implies that Am∈ai
BR(ti|X).  Likewise, if

k>m, then the fact that Am∈ai
BR(ti′′|X) implies that Am∈ai

BR(ti|X).  Case 2: wm=wm+1≤ym<ym+1.  Then,

there exists a ti′<ti and an m′′>m such that Am′′∈ai
BR(ti′|X), and a ti′′>ti such that Am∈ai

BR(ti′′|X).  If

k<m, note that the strong set order then requires Am′′∈ai
BR(ti|X).  But applying the strong set order

again, together with Am∈ai
BR(ti′′|X), implies that Am∈ai

BR(ti|X).  If k>m, the latter sentence applies

directly.  Case 3: ym+1<ym+1≤wm=wm+1.  Analogous to Case 2.

Thus, βi ( ti ,z) = Am*(t i , z) is a nondecreasing strategy consistent with z which assigns optimal

actions to almost every type, implying that z∈Γi(X). ã

With convexity established, it is straightforward to prove existence of a fixed point.

x1 x2 x3x4

A0

A1

A2

A3

A4

ti ti
ti

i(ti )aBR

y1 y2 y3 y4

Figure 3: The set ai
BR(ti) is nondecreasing in the

Strong Set Order.  The vectors x and y represent
“jump points” corresponding to optimal strategies.

The arrows indicate convex combinations of x and y.
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Lemma 3:  Suppose that A1 and the SCC hold.  Then there exists a fixed point of the
correspondence (Γ1(X),.., ΓI(X)):Σ→ΣΣ.

Proof of Lemma:  Since ΣM is a compact, convex subset of (M+2)⋅I −dimensional Euclidean

space, we can apply Kakutani’s fixed point theorem.  We argued in the text that Γ is nonempty,

and Lemma 2 established convexity.  Now consider closed graph.  It is clear from the definition

(1) that Vi(ai;X,ti) is continuous in the elements of X under our assumption that the type
distribution is atomless.  Consider a sequence (Xk ,Yk )  which converges to (X,Y), such that

Yk∈Γ(Xk) for all k.  To see that Y∈Γ(X), consider player i, and a type ti∈Ti\{ yi}.  Then there
exists an m ∈{0,..,M} such that ym

i <ti<ym
i

+1.  Since yi,k converges to yi, there must exist an K such

that, for all k>K, ym
i ,k <ti<ym

i k
+1

, , and thus Am is one of ti’s best responses to Xk since Yk∈Γ(Xk).  But,

since Vi(ai,ti;X) is continuous in X, if Vi(Am,ti;X
k)≥Vi(Am′ ,ti;X

k) for all k>K and all m′, then

Vi(Am,ti;X)≥Vi(Am′ ,ti;X). ã

Existence of a PSNE follows directly from this Lemma.  It remains only to assign strategies

to players that are consistent with a fixed point of Γ.  Let X be such a fixed point, and let

(β1(t1),..,βI(tI)) be a vector of nondecreasing strategies where each βi(ti) is consistent with Γi(X).

Since the type distribution is atomless, a given player i does not care about the behavior of her
opponents at jump points, and thus βi(ti) is a best response to any set of strategies β− i (⋅)

consistent with X−i.  This implies that (β1(t1),..,βI(tI)) is a PSNE of the original game.  Formally:

Theorem 1  Assume A1 and the SCC hold.  If $ i
 is finite for all i, this game has a PSNE, where

each player’s equilibrium strategy, βi(ti), is a nondecreasing function of ti.

Before proceeding, it is useful to pause to consider the precise role of the SCC in this

analysis.  Can the result be extended to non-monotone strategies?  In the working paper (Athey,

1997), this question is explored more fully by considering strategies of “limited complexity.”

The basic idea is that a PSNE exists if we can find bounds on the “complexity” (formalized as

the number of times the function changes from nondecreasing to nonincreasing or vice versa) of

each player’s strategy, such that player i’s best response stays within her specified bound

whenever all opponents use strategies within their respective bounds.  The main limitation of the

extension to games with limited complexity is that much stronger assumptions may be required

to guarantee convexity, which followed above as a consequence of the SCC: the working paper

assumes that the best response action is unique for almost all types.

What is ruled out by the SCC, or more generally by a restriction like “limited complexity”?

An example of a game with no PSNE, due to Radner and Rosenthal (1982), is especially

instructive.  The setup is as follows: the game is zero-sum, and each player can choose actions A0

or A1.  When the players match their actions, player 2 pays $1 to player 1, while if they do not

match, the players each receive zero.  The types do not directly affect payoffs, and are uniformly
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distributed on the triangle 0≤t1≤t2≤1.  Notice first that this game fails the SCC.  When player 2

uses a nondecreasing strategy, player 1’s best response is nondecreasing.  However, when player

1 uses a nondecreasing strategy, player 2’s best response is nonincreasing, since player 2 prefers

not to match with player 1.  Further, this game also fails the more general “limited complexity”

condition.  Intuitively, player 1’s best response to any pure strategy of player 2 will essentially

mirror player 2’s strategy, while player 2 will wish to reverse any pure strategy of player 1.

3. Games with a Continuum of Actions and Continuous Payoffs

This section shows that the results about existence in games with a finite number of actions

can be used to construct equilibria of games with a continuum of actions.  The properties of the

equilibrium strategies implied by the SCC play a special role in the limiting arguments used in

section.  While arbitrary sequences of functions need not have convergent subsequences,

sequences of nondecreasing functions do have almost-everywhere convergent subsequences.

Thus, all that remains is to show that the limits of these sequences are in fact equilibria to the

continuous-action game.

The assumption of finite actions in Section 2 plays two roles: (i) it guarantees that an optimal

action exists for every type, and (ii) it simplifies the description of strategies so that they can be

represented with finite-dimensional vectors.  In moving to the continuum-action case, we

introduce the assumption that payoffs are continuous in actions.  Continuity is a substitute for

finiteness in (i), and further, it is used in showing that the limit of a sequence of equilibria in

finite-action games is an equilibrium of the limiting game.

Theorem 2  Assume A1.  Suppose that (i) for all i, $ i =[ , ]a ai i , (ii) for all i, ui(a,t) is continuous

in a on [ , ]a ai i , and (iii)  for any finite $n⊂$, a PSNE exists in nondecreasing strategies.  Then a

PSNE exists in nondecreasing strategies in the game where players choose actions from $.7

Proof:  For each player i, consider a sequence of action sets {$ i
n}, where

$ i
n= a a a mi

m
i i

n
n+ − =

10
0 10( ): ,..,> C.  Let $n=($1

n ,..,$ I
n), and let βn be the corresponding

nondecreasing PSNE strategies.  Helly’s Selection Theorem (Billingsley (1968), p. 227)

guarantees that a sequence of nondecreasing, bounded functions on Ti⊆ℜ has a subsequence

which converges almost everywhere to a nondecreasing function (and in particular, it converges

at continuity points of the limiting function).  Let {n} denote a sequence such that
{ β1

n(t1),..,β I
n(tI)} converges almost everywhere to β*(t).

Let ˆ Z i= t n ti i
i n∃ ∈ s. t.  { },x< A, and note that ̂ Z i is countable and thus has measure zero.  Consider

                                               
7 In the working paper, we show that this result can be easily extended to show that if every finite-action game has
an equilibrium in strategies of bounded variation, the continuum-action game will as well.
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player i, and a type ti∈Ti\ �Z
i, such that βi

*(ti) is continuous at ti.  Let  b=βi

*(ti); Helly’s Selection
Theorem implies β i

n(ti) converges to b.  Consider any a′∈$
i, and consider a sequence {′an} such

that, for all n, ′ ∈an i
n

$ , and further ′an→a′.  Since β i
n(ti

) is an equilibrium strategy for any n, then

for all n, Ui
(β i

n(ti
),ti

;β− i
n (⋅)) ≥ Ui

( ′an,ti
;β− i

n (⋅)).  Because payoffs are continuous and since β− i
n (t − i )

converges to β−i
* ( t −i )  for almost all t − i , it follows that, for almost all t − i , ui

(β i
n(ti

),β− i
n (t − i ),t)

converges to ui
(b,β−i

* ( t −i ) ,t) and ui
( ′an,β− i

n (t − i ),t) converges to ui
(a′,β−i

* ( t −i ) ,t).  As the type

distribution is atomless, the expectations also converge, so that Ui
(b,ti

;β−i
* (⋅))≥Ui

(a′,ti
;β−i

* (⋅)). ã

Corollary 2.1  Assume A1 and the SCC.  Suppose that (i) for each i, $ i =[ , ]a ai i , and (ii) for all i,

ui(a,t) is continuous in a on [ , ]a ai i .  Then there exists a PSNE in nondecreasing strategies.

Corollary 2.1 establishes that the assumption of finite or countable actions can be dispensed

with for the class of games that satisfies the SCC.  This result contrasts with the general finding

(see Khan and Sun, 1996, 7) that PSNE may not exist when the action sets are uncountable and

the type distribution is atomless (Lebesgue).8  It can be readily verified that the counter-

examples put forward by Khan and Sun (1996, 7) for this class of games fail the SCC.

4. Games with Discontinuities: Auctions and Pricing Games

Auctions and resource allocation games are perhaps the most widely studied applications of

games of incomplete information.  The problem is to allocate one or more goods to a subset of a

group of agents, where each agent has private information about her value for the good.  For

example, in a first-price auction for a single good, each player submits a sealed bid after

observing her type, and the highest bidder receives the good and pays her bid.  However,

Corollary 2.1 cannot be applied to auction games, because payoffs are not continuous.  A player

sees a discrete change in her payoffs depending on whether she is a “winner” or a “loser” in the

auction.  If any opponents use a given bid b with positive probability, then a player sees a

discrete change in the probability of winning when she increases her bid above b.  Thus, we say

that the discontinuity arises as a result of “mass points” in the distribution over opponent actions.

The literature has focused on the existence question primarily for the case of first-price

auctions.  Two main approaches have been used: (i) establishing that a solution exists to a set of

differential equations (Lebrun (1995), Bajari (1996a), Lizzeri and Persico (1997)), and (ii)

establishing that an equilibrium exists when either types or actions are drawn from finite sets,

and then invoking limiting arguments (Lebrun (1996), Maskin and Riley (1992)).  This paper

takes the second approach.  Note that limiting approaches require additional work, since

                                               
8 However, Khan and Sun (1996, 1997) show that the use of atomless Loeb measure spaces for the types, as an
alternative to Lebesgue, can restore the applicability of limiting arguments.
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discontinuities can lead to a situation where there exists a PSNE for every finite action set, but

not in the continuum-action case (for example, see Fullerton and McAfee (1996)).  Our approach

is to use properties of PSNE of finite-action games to show that in the limit, as the action set gets

fine, no “mass points” arise and thus payoffs are continuous.

The setup is given as follows.  Winners receive payoffs v i(ai,t), while losers receive payoffs
v

i(ai,t).9  Thus, payoffs depend on the other players’ actions only through the allocation

decision.  The allocation rule ϕi(a) specifies the probability that the player wins as a function of

the actions taken by all players.  Thus, a player’s payoff given a realization of types and actions

is

u v a v a

v a v a
i i i i i i i

i i i i i

( , ) ( ) ( , ) ( ( )) ( , )

( , ) ( ) ( , ),

a t a t a t

t a t

= ⋅ + − ⋅
= + ⋅

ϕ ϕ
ϕ

1

∆
(2)

where ∆v a v a v ai i i i i i( , ) ( , ) ( , )t t t≡ − , and player i’s expected payoffs can be written as:

U a t u a f t d

v a f t d v a a f t d

i i i i i i i i i i i

i i i i i i i i i i i i i i

( , ; ( )) ( , ( ), ) ( )

( , ) ( ) ( , ) ( , ( )) ( )

α α

α
− − − − −

− − − − − −

⋅ =

= ⋅ + ⋅ ⋅
I
I I

t t t t

t t t t t t t∆ ϕ

There are several classes of examples with this structure.  In a first-price auction, the winner

receives the object and pays her bid, so that v 
i(ai,t) is the value of winning at bid ai, while losers

get payoffs of vi(ai,t)=0.  In a private values auction, v i(ai,t) does not vary with opponents’

types, while in Milgrom and Weber’s (1982) formulation of the mineral rights auction, v 
i(ai,t)

represents the expected payoff to the bidder conditional on the vector of type realizations, and

the vector t is interpreted as a vector of signals about each player’s true value for the object

(where signals and values may be correlated).  In an all-pay auction, the player pays her bid no

matter what, but the winner receives the object.  In some pricing games, the lowest price (the

highest action) implies that the firm captures a segment of price-sensitive consumers, while

having a higher price implies that the firm only serves a set of local customers.

We further require that each player loses for certain when she chooses her lowest possible

action.  This can be interpreted as a “reservation price”: only actions above the lowest possible

price are considered for allocation.  Attention is restricted to allocation rules which take the

form:

ϕ
σσ σ σ σ

σ σ
σ σ

σ σ
i I k I k

TI i
a a

a aj
a a

a ajL L T L
L T

L T

j i

j jL
j i

j jT

( )
| |{ , } { ,.., } \

a 1 1 1 1= +
�
! 

"
$#

⋅ ⋅≥ + ≥ − >
⊆

∩ =∅

<
=

%&'
()*∈

=
>

%&'
()*∈

∑ ∏ ∏-

s.t. 
or and 

< A < A
1

1

, (3)

To interpret this, player i receives the object with probability zero if k or more opponents choose

                                               
9  Intermediate outcomes could also be considered; the arguments used to establish existence extend naturally.
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actions such that aj>ai, and with probability 1 if I−k or more opponents choose actions such that

aj<ai.  The remaining events are “ties,” resolved randomly.  Consider the example of a first-price

auction for a single object.  Then, k=1, and the player wins with probability zero if 1 or more

opponents place a higher bid.  More general mechanism design problems also fall into this

framework.10

We group together several regularity assumptions.

Assumption A2  (i) For all i, all ai∈[ , ]a ai i  and all t, v 
i(ai,t) and v i(ai,t) are bounded and

continuous in (ai,t); (ii) The support of F(t) is a product set; (iii) ∆v ai i( , )t < 0  for all i; (iv) For

all i, all ai∈[ , ]a ai i  and all t, ∆vi(ai,t) is strictly increasing in (−ai,ti), and there exists a λ>0 such

that, for all (ai,t) and all ε>0, ∆vi(ai,t -i,ti+ε)−∆vi(ai,t -i,ti)≥λε.

Part (i) includes regularity assumptions.  Part (ii) guarantees that any action used by a player

with positive probability is viewed as having positive probability by all types of all opponents.

Part (iii) guarantees that the players have available actions larger than any they would choose to

use in equilibrium, and thus every action but the lowest action is an interior optimum if it is

chosen.  Part (iv) requires that choosing a higher action decreases the gain from winning.

Further, the gain to winning is strictly increasing in the type, and there is a uniform lower bound

on the slope.  All of these assumptions, or more stringent ones, are standard (though sometimes

implicit) in the literature on auctions.

Now consider an existence result for this class of games.  We can construct a set of

strategies, denoted β*(t), as the limit of a sequence of equilibria to finite-action games, {βn(t)},

as in Theorem 2.  Because of the potential discontinuity described above, Theorem 2 cannot be

applied directly to establish that β*(t) is a PSNE of the continuum-action game.  However, if we

can prove that there are no mass points in the limit (that is, no action is used with positive

probability), continuity will be restored and the arguments of Theorem 2 can be applied.

Our approach (detailed formally in the Appendix) is to rule out mass points using the fact

that {βn(t)} converges to β*(t) uniformly except on a set of arbitrarily small measure, together

with the fact that we can characterize certain properties of each βn(t) based on the fact that it is a

PSNE.  We proceed by contradiction: suppose that two players, i and j, both use action b with

positive probability.  But this is inconsistent with equilibrium, since player j could increase her

payoff by increasing her action just above b, thereby winning against instead of tying with

opponent types who use b.

                                               
10 When a player’s payoffs satisfy the single crossing property, only direct mechanisms in which the allocation
rule is monotonic can be incentive compatible; then, we can let the player’s announcement of type be her action,
and redefine payoffs to incorporate the allocation rule of the mechanism.
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To rule this out, consider the requirements that they place on {βn(t)}.  The argument can be

roughly sketched as follows.  Note that if player i’s limiting strategy requires a subset Si of types

to use action b, then given a d>0, all but a small subset of Si must be using an action on

[b−d,b+d] for a fine enough action grid.  But then we will argue that there must be some action

grid fine enough, and some d small enough, such that the “cost” to player j of increasing her

action by d is less than the benefit from the increase in the probability of defeating most of the

types tj∈Si.

However, to complete the latter argument, it is necessary to establish that increasing the

probability of winning (for example, by increasing the action from b−d to b+d) is in fact a

benefit.  That requires two building blocks.  First, we wish to begin from the premise that if a

player is using action b−d, she sees a positive gain from winning at b−d.  The issue is that it is

possible that the player wins with probability 0 at b−d, in which case nothing about her

preferences for winning at b−d can be inferred.  To see an example where this would be
problematic, suppose that a set Si of player i types uses action b−εn and a set [ , ]t tj j′  of player j

types bids b for all n, where εn→0, so that b−εn wins with probability zero for player i.  Then the

limiting strategies require player i to choose b and win with positive probability, which may not

be optimal.  To rule out such a scenario, we show that for every finite-action game, there exists a

PSNE that is robust to perturbations that generate a small probability that each action wins.  To
state the result, we use the following additional notation: let Wi(ai;α − i ) denote the event that the

realization of t -i and the tie-breaking mechanism ϕi(a) are such that action ai wins when
opponents use strategies α − i .

Lemma 4  For i=1,..,I, let $ i  be finite.  Consider an auction game with payoffs given by (2)-(3),

and assume that A1 and the SCC hold.  (i) For all δ>0, there exists a PSNE in nondecreasing
strategies of the modified game where each player type on ti∈[ t i ,t i +δ] is required to use action

ai . (ii)  There exists a PSNE in nondecreasing strategies, β* that satisfies the following:  There

exists a sequence { δk}, where lim k k→∞ =δ 0, and a corresponding sequence { � ( ; )β ⋅ δ k }  of PSNE

strategies of the game modified as in (i), such � ( ; )β ⋅ δ k →ββ*, and further, whenever β i it( )>ai ,

lim ( � ( ; ), ) , ( � ( ; ); � ( ; ))
k

i i i k i i i i k i kE v t t W t
→∞ − ⋅∆ β δ β δ δt  β ≥0.

The second building block guarantees that player i’s expected gain from winning goes up

when player i increases her action:

For all i=1,..,I, all ai
,ai

′∈[ ai ,a i ], and whenever every opponent j≠i uses a strategy

α j :[ t j ,t j ]→$ j  that is nondecreasing, E v a t W ai i i i i i∆ ( , ) , ( ;t  )′ −α  is strictly increasing in

ti 
 and nondecreasing in ′ai . (4)

This assumption is also standard in the literature, although it is in fact fairly restrictive.
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Although it holds trivially for private value auctions, it requires strong assumptions on the type

distribution in more general models.  For single-unit auctions with symmetric bidders, Milgrom

and Weber (1982) showed that when ∆vi is nondecreasing in t, (4) holds if the types are

affiliated.  Using properties of affiliated random variables, Milgrom and Weber’s (1982) result

can be extended to show that (4) holds for single-unit auctions with asymmetric bidders, or (as

shown in Pesendorfer and Swinkels (1997)) for multi-unit auctions with symmetric bidders.

With these two building blocks in place, we can rule out the possibility that two players both

use the same action with positive probability.  Another case of potential concern occurs if just

one player, player i, uses action b with positive probability.  Although this case can be ruled out

using somewhat more involved arguments, we will not undertake this exercise here because it

does not affect existence of PSNE: only a countable number of actions can be used by player i

with positive probability, and thus the set of opponent types who see a discontinuity in payoffs

has measure zero.  Since Bayesian Nash equilibrium only requires that almost every type

chooses an optimal action, such mass points do not affect existence.  The conclusion then

follows:

Theorem 3  For all i, let $ i =[ , ]a ai i .  Consider an auction game with payoffs described by (2)-
(3), and assume A1, A2, (4), and that the game satisfies the SCC.  Then, there exists a PSNE in
nondecreasing strategies.

Theorem 3 generalizes the best available existence results about first-price auctions.

Previous studies (Maskin and Riley (1993, 1996); Lebrun (1995, 1996), Bajari (1996a)) have

analyzed independent private values auctions, as well as affiliated private values auctions and

common value auctions with conditionally independent signals about the object’s value (Maskin

and Riley (1993, 1996).  The work closest to ours is Lizzeri and Persico (1997), who have

independently established existence and uniqueness of equilibria in a class of games similar to

the one studied above, but with the restriction to two bidders.  The approach taken in this paper

is different from those of the existing literature, in that it separates out the issue of monotonicity

of strategies and existence, showing that monotonicity implies existence.  Thus, the only role

played by assumptions about the joint distribution over types is to guarantee that the single

crossing property holds.

Once existence is established for the continuous-action game, standard arguments can be

used to verify the usual regularity properties (including optimality of actions for every type).

For example, strategies are strictly increasing on the interior of the set of actions played with

positive probability, and no player sees a gap in the set of actions played with positive

probability by opponents.  Further, with appropriate differentiability assumptions, a differential

equations approach can be used for characterizations.
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It is important to highlight that Theorems 2 and 3 not only provide existence results for the

continuum case; they also establish that finite-action games can be used to closely approximate

continuum-action games.  Thus, the continuum model is an appropriate abstraction for auctions

in which fixed bid increments are specified.  As well, revenue and allocation in an auction will

not be very sensitive to small changes in the number of bid increments allowed.

Perhaps more importantly, the convergence results also motivate a computational algorithm.

This may be particularly useful in the case of first-price auctions, since in the absence of general

characterization theorems and functional form examples, computation of equilibria to first-price

auctions is the main tool available to evaluate the effects of mergers (or collusion) between

bidders in auctions.  However, prior to Marshall et al (1994), there were no general numerical

algorithms available for computing equilibria to asymmetric first-price auctions.  Numerical

computation of equilibria in asymmetric first-price auctions in the independent private values

case is difficult due to pathological behavior of the system of differential equations at the origin.

Marshall et al (1994) provide computations for the independent private values case for a

particular functional form; see also Bajari (1996a, b).

Theorem 3 suggests an alternative: compute equilibria to games with successively finer

action sets.  The computation of a finite-action equilibrium requires searching for a fixed point

to the correspondence Γ defined in Section 2, where the calculation of Γ(X) is a simple exercise

of calculating the best-response jump points for each player.  The more difficult part of the

problem is solving the nonlinear set of equations X=Γ(X).  There are a number of standard ways

to approach this problem.  There is not a global “contraction mapping” theorem, and so the

simplest algorithm Xk+1=Γ(Xk) is not guaranteed to converge, and indeed it does not appear to in

numerical trials.  However, the working paper (Athey, 1997) provides a number of

computational examples which could be computed using either variations on the algorithm Xk+1=

λ⋅Γ(Xk) + (1-λ)⋅Xk)), or quasi-Newton approaches.11

5. Characterizing the Single Crossing Condition in Applications

This section characterizes the single crossing condition in several classes of games of

incomplete information.  The results make use of the properties supermodularity and log-

supermodularity.12  A function h:X→ℜ is supermodular if, for all x,y∈X,

                                               
11 While quasi-Newton methods might at first seem computationally burdensome, there are potentially large
computational benefits to using an analytic Jacobian.  In particular, the point at which player i jumps to action Am,
denoted xi

m, affects only the following elements of the best response of opponent j≠i: xj

m-1, x
j

m, and xj

m+1.  Thus, the
Jacobian (of dimension M⋅I × M⋅I) can be computed with only I⋅3 function calls.
12 The operations “meet” (∨) and “join” (∧) are defined for product sets as follows:
x y∨ = (max( , ), . ., max( , ))x y x y

n n1 1
 and x y∧ = (min( , ), .. , min( , ))x y x y

n n1 1
.
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h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y) .  A non-negative function h:X→ℜ is log-supermodular if, for

all x,y∈X, h(x ∨ y) ⋅ h(x ∧ y) ≥ h(x )⋅ h(y) . Recall that when h:ℜn→ℜ, and vectors are ordered in

the usual way, Topkis (1978) proves that if h is twice differentiable, h is supermodular if and
only if ∂2

∂xi ∂x j
h(x) ≥ 0 for all i ≠ j.

Five facts together can be used to establish our characterization theorems: (i) if h(x,t) is

supermodular or log-supermodular, then h(x,t) satisfies SCP-IR; (ii) sums of supermodular

functions are supermodular, while products of log-supermodular functions are log-supermodular;

(iii) if h(x) is supermodular (resp. log-supermodular), then so is h(α1(x1),..,αn(xn)), where αi(⋅) is
nondecreasing; (iv) a density is log-supermodular almost everywhere if and only if the random

variables are affiliated (as defined in Milgrom and Weber, 1982);  (v) if t is affiliated, and

further h(x,t) is supermodular in (x,tj) for all j (resp. log-supermodular in (x,t)), then
H x t h x f t di i i i( , ) ( , ) ( | )= I − −a

b
t t t  is supermodular in (x,ti) (resp. log-supermodular in (x,ti,a,b)) (see

Athey 1998a, b).13

5.1. General Classes of Games

First consider a general formulation of games with supermodular payoffs.

Theorem 4  Assume A1, and suppose (i) for all i, ui is supermodular in a and (ai,tj), j=1,..,I, and
(ii) the types are affiliated.  Then the game satisfies the SCC.

Theorem 4 is particularly applicable in games with additively separable payoffs (for

example, when an investment has an additively separable cost, as when ui(a,t)=hi(a)−ci(ai,ti) or

ui(a,t)=hi(a,ti)−ci(ai)), since supermodularity is preserved by sums.  Many of the supermodular

games that have been studied under assumptions of complete information (see Topkis (1979),

Vives (1990), and Milgrom and Roberts (1990) for examples) can be extended to the case of

incomplete information using Theorem 4.  For example, many oligopoly games have variations

where firms have incomplete information about their rivals production costs or demand

elasticity.  Games between two players whose choices are strategic substitutes can also be

considered, such as a Cournot quantity game between two firms.14

However, it should be noted that the games studied in Theorem 4 also satisfy Vives’ (1990)

sufficient condition for existence of PSNE.  The next class of games does not.

Theorem 5  Assume A1, and suppose (i) for all i, ui(a,t) is nonnegative and log-supermodular,

                                               
13 For the case where payoffs are supermodular, the assumption that types are affiliated can be weakened; what is
actually required is that for each i, f t d

i i iS
( | )t t− −I  is nondecreasing in ti for all sets S whose indicator function is

nondecreasing in t−i.  See Athey (1998a).
14 See Fudenberg and Tirole, 1991, pp. 215-216 for an example with linear demand and incomplete information
about cost.
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and (ii) the types are affiliated.  Then the game satisfies the SCC.

Theorem 5 may be especially useful in games with multiplicatively separable payoffs (for

example, when ui(a,t)=hi(a)⋅ci(ai,ti) or ui(a,t)=hi(a,ti)⋅ci(ai)), since log-supermodularity is

preserved by multiplication.  For example, this result can be applied to pricing games with

incomplete information (analyzed in the case of homogenous players by Spulber (1995)).  Let ti

represent the (constant) marginal cost of firm i, let ai be the price, let demand to firm i be

Di(a1,..,aI), and suppose payoffs are given by (ai−ti)⋅D
i(a1,..,aI).  Notice first that (ai−ti) is log-

supermodular.  Athey (1998b) shows that when opponents use nondecreasing pricing functions,

expected demand is log-supermodular if the cost parameters are affiliated and D1(a1,..,aI) is log-

supermodular.15

5.2. Auctions

This section studies a variety of auction games, all of which satisfy the additional conditions

required to apply Theorem 3.  Consider first private-value first-price auctions.  Payoffs can be
written in the notation of Section 4: v i(ai,t)=Vi(ti−ai) and v i(ai,t)=0.  To satisfy A2, in this

subsection we maintain the assumption that each Vi is bounded, strictly increasing with non-

vanishing slope, and continuous.  Each player’s expected utility can then be written

Vi(ti−ai)⋅Pr(win with ai| α−i,ti).  If Vi(0)≥0 and ln(Vi) is concave, Vi is log-supermodular in (ti,ai).

It can also be verified (see the working paper (Athey, 1997)) that Pr(win with ai| α−i,ti) is log-

supermodular when f is log-supermodular, opponents use nondecreasing strategies, and ties are

resolved randomly.  This implies that expected payoffs are log-supermodular and further, given

strict monotonicity of Vi, the SCC holds.

The results also apply to private values, first-price auctions for multiple units, where each

agent demands a single unit.  For example, in a 2-unit auction, the players with the highest two

bids win an object and pay their bids.  Unfortunately, this complicates the analysis of log-

supermodularity of the function Pr(ai wins|ti).  If the types are drawn independently, then Pr(ai

wins|ti) does not depend on ti, and the expected payoff function reduces to Vi(ti−ai)⋅Pr(ai wins);

the properties of this objective are then the same as in the single-unit auction analyzed above.

Another example is the all-pay auction, which has been used to model activities such as

lobbying.  In this auction, the highest bidder receives the object, but all bidders pay their bids.
In an independent private values formulation, v i(ai,t)=Vi(ti−ai) and v i(ai,t)=Vi(−ai) for some

nondecreasing Vi.  Expected payoffs from action ai are then (Vi(ti−ai)−Vi(−ai))⋅Pr(ai

                                               
15 The interpretation of the latter condition is that the elasticity of demand is a non-increasing function of the
other firms’ prices.  As discussed in Milgrom and Roberts (1990b), demand functions which satisfy this criteria
include logit, CES, transcendental logarithmic, and a set of linear demand functions (see Topkis (1979)).
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wins)+Vi(−ai).  Since Pr(ai wins) is nonnegative and nondecreasing in ai, it is straightforward to

verify that the second term of this expression is supermodular if Vi(ti−ai)−Vi(−ai) is

nondecreasing in ti (which follows since Vi is increasing) and supermodular in (ai,ti).  In turn,

Vi(ti−ai) is supermodular if and only if it is concave (the bidder is risk averse).  Supermodularity

(together with our assumption that Vi is strictly monotone) implies that the SCC holds.

Finally, consider mineral rights auctions.  We introduce an auxiliary result that can be used

to analyze games that do not fit into the classes of supermodular or log-supermodular games

analyzed in Theorems 4 and 5.  The result applies if either (i) there are only two players, or if

(ii) ui(a,t) takes a very special form.  In particular, ui must depend on the opponents’ types and

actions through a single index, denoted si.  That is, ui(ai,α−i(t−i),t) = ki(ai,si,ti;α−i).  In a first-price

mineral rights auction with identical bidders using symmetric strategies, αj(⋅)=αl(⋅) for all j,l≠i, si

is the value of the highest opponent type, and payoffs depend on opponent types only through

the realization of this type and the associated action.  Then (ignoring ties for notational
simplicity), ki(ai,si,ti;α−i) = Et −i

[vi(ai,t)|max{tj:j≠i}=si]⋅1[ ( )] ( )a s ii j i
s>α .  In a multi-unit auction, si

might be a different order statistic of the distribution.  In other applications, si might be a
sufficient statistic for t − i .

Theorem 6  Suppose that for all i=1,..I, there exists a random variable si and a family of
functions ki i( ; )⋅ −α :ℜ3→ℜ, such that (i) U a ti i i i( , ( ), )α − ⋅ =E k a s t ts i i i i i ii

[ ( , , ; )| ]α− ;  (ii) when α−i(⋅)
is nondecreasing,k a s ti i i i i( , , ; )α−  is supermodular in (ai;ti) and satisfies weak SCP-IR in (ai;si);
and (iii ) ti and si are affiliated, and the support of si is constant in ti.  Then the game satisfies
SCC.  Further, (i)-(iii) imply that if α − i (⋅) is nondecreasing, U a ti i i i( , ( ), )α − ⋅  satisfies strict SCP-
MR wherever it is differentiable in ai and ∂

∂ai
ki is non-zero on a set of si of positive measure.

A proof of Theorem 6 can be found in Athey (1998b).  A first application these results

extends Milgrom and Weber’s (1982) model of a mineral rights auction, allowing for risk

averse, asymmetric bidders whose utility functions are not necessarily differentiable.  Athey

(1998b) shows that in this context, if there are two bidders whose types are affiliated, and the

utility functions v 
i(ai,t) are supermodular in (ai,tj), j=1,2, and nondecreasing in t, the conditions

of Theorem 6 are satisfied and the SCC holds.  Further, if each v 
i is bounded, decreasing and

differentiable in ai and increasing in ti with non-vanishing slope, then the auction game will be

admissible.  The last statement of Theorem 6 can be used to establish the SCC.

5.3. Noisy Signaling Games

Our results about existence of PSNE can also be applied to games with alternative timing

assumptions.  For example, consider a signaling game between two players, where player 1’s

utility is given by u1(a1,a2,t1) and player 2’s utility is given by u2(a1,a2).  After observing her type

(for example, marginal cost or a parameter of demand), Player 1 takes an action which generates
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a noisy signal, t2, that is observed by player 2.  Player 2 then takes an action.  An example is a

game of limit pricing (Matthews and Mirman (1983)), where an entrant does not know the cost

of the incumbent, but can draw inferences about the incumbent’s cost by observing a noisy

signal of the incumbent’s product market decision (the noise might be due to demand shocks).

In another example, Maggi (1998) examines the extent to which noise in the signaling process

undermines the first mover advantage in commitment games.  Different assumptions about the

nature of product market competition lead to different properties of payoffs.  Even if Theorems

4 and 5 do not apply, a corollary of Theorem 6 can be used:

Corollary 6.1  Suppose that there are two players, i=1,2.  Suppose that (i) for i=1,2, ui ( , )a t
satisfies weak SCP-IR in (ai,tj) and (ai,aj), and is supermodular in (ai,ti), and (ii) the types are
affiliated with non-moving support.  Then the game satisfies SCC.

6. Conclusions

This paper has introduced a restriction on a class of games called the single crossing

condition (SCC) for games of incomplete information.  We have shown that PSNE exist in such

games when the set of available actions is finite.  Further, with appropriate continuity or in

auction games, there exists a sequence of equilibria of finite-action games that converges to an

equilibrium in a game with a continuum of actions.  The results developed in this paper have the

following advantages.  First, existence of PSNE can be verified by checking general,

economically interpretable conditions, conditions which are satisfied by construction in many

economic applications.  Second, for games where the SCC is satisfied, the results provide a

significant generalization of the scenarios under which PSNE can be shown to exist.  Third, the

SCC is straightforward to verify, as shown in Section 4 (see Athey (1998a, b) for more details).

Finally, the constructive approach to existence taken in this paper has advantages for numerical

computation.  The equilibria are straightforward to calculate for finite-action games, and these

approximate the continuous equilibria for continuous games and auctions.

7. Appendix

Proof of Lemma 4:  (i) Define the constrained best response of player i to an arbitrary
(constrained or unconstrained) strategy by opponents represented by X: � ( , )a ti

BR
i X δ  is set equal

to a ti
BR

i( )X  when t ti i> + δ , to {a a ti i
BR

i∪ ( )X } when t ti i= + δ , and {ai } when t ti i< + δ .

Using this notation, we modify our correspondence, as follows:
ˆ Γ i(X,δ)={ y∈ΣM+2: ∃ αi(ti) which is consistent with y such that αi(ti)∈ ˆ a i

BR(ti X,δ )} .

The arguments of Theorem 1 can be extended in a straightforward way to derive existence of a

fixed point of ˆ Γ (X,δ) for all δ>0; details can be found in the working paper (Athey, 1997).

Then, consider a sequence Xk such that Xk ∈ ˆ Γ (Xk,1/k) for each k.  Since each Xk is an element of
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a compact subset of finite-dimensional Euclidean space, we can find a subsequence {k} such that

{ Xk} converges to a matrix X, and we simply need to establish that X∈Γ(X).  Consider ti such
that ti∈Ti\{ xi}.   Then there exists an m ∈{0,..,M} such that xm

i < ti < xm+1
i .  Since xi,k converges to

xi, there must exist an K such that, for all k>K, xm
i ,k < t i < xm+1

i,k  and ti>t i +1/k.  Find such a k>K.

Then Am∈ ˆ a i
BR(ti X k ,1/k)  since Xk∈Γ(Xk).  By definition and since  ti>t i +1/k, Am∈ ai

BR(ti Xk ) .

But, since Vi(ai;X,ti) is continuous in X, if Vi(Am;X
k,ti)≥Vi(Am′ ;X

k,ti) for all k>K and all m′, then

Vi(Am;X,ti)≥Vi(Am′ ;X,ti).  This implies Am∈ ai
BR(ti X), as desired.  (ii)  Finally, observe that for

each k, each action other than ai  wins with positive probability.  Since ai  is an available action

that yields zero payoffs, by revealed preference, E v t t W ti i n i k i i i n i k n k∆ ( � ( ; ), ) , ( � ( ; ); � ( ; )), ,β δ β δ δt β ⋅ ≥0

for all k.  Since payoffs are continuous in δk, the limit as δk approaches zero exists. ã

Lemma 5:  Consider an auction game satisfying A1, A2, (2)-(4), and the SCC.  Let β*(t) be the
limit of a convergent subsequence of equilibrium strategies to finite games, βn(t), that satisfy
Lemma 4 (ii).  Then the following holds:

For all i, for all ai∈$ i , ai>ai , Pr(βi

*(ti) = ai)⋅Pr(if player i uses ai, she ties for winner) = 0. (5)

Proof of Lemma 5:  To begin we introduce some notation for the event that, when players {I}\ i
use strategies β− ⋅i

n ( ) (or, in the limit β*(t)), the realization of t − i  and the outcome of the tie-

breaking mechanism are such that the action ai produces the stated outcome:

Wi
n(ai), Wi

*(ai): Player i wins using ai (either by winning a tie or winning outright).

τ i
W* (ai ) , τ i

L* (ai ) : Player i ties for winner at ai and player i wins (resp. loses) the tie.

For the case where W ti
n

i
n

i( ( ))β  occurs with probability 0, we use the following convention:

E v t t W t E v t t W ti i
n

i i i i
n

i
k

i i
n

i k i i
n

i
n

i k∆ ∆( ( ), ) , ( ( )) lim ( � ( ; ), ) , ( � ( ; ))β β β δ β δt t=
→∞

 ,

where {δk} and � ( ; )βn
k⋅ δ  are defined in Lemma 4.

We proceed by contradiction.  Assume (5) fails, and Pr(βi

*(ti) = ai)⋅Pr(τi

L*(b)) > 0 for some i and

some b.  To begin the proof, let K={ i:Pr(βi

*(ti) = b)>0} (note |K|≥2 follows from the assumption
(5) fails), and let J={1,..,I}\ K.  Recall that for each n, β i

n
it( ) is measurable, and the sequence

converges almost everywhere to βi

*(ti), and so the sequence converges uniformly to βi

*(ti) except

on a set of arbitrarily small measure (Royden, 1988, p. 73).

A little notation.  Let εn be the minimum increment to actions (assumed for simplicity to be the
same for all players and independent of the level of the action) for the action set $

Q. Find a set of

types E such that  βn(⋅) converges uniformly to β*(⋅) except for types t∈E, and such that for all
i∈K, supti

{Pr( t − i ∈E−i|ti)}<
1

10 Pr(τi

L*(b)).  For i∈K, let Si= { ti:βi

*(ti) = b}, let ˜ S i  = int{ti∈Si\Ei}, and

let ~ inf
~

t Si i= .
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For any d>0, define Nd as the smallest positive integer such that, for all n>Nd, (i) for all i and all
ti ∉Ei, |β i

n(ti)−βi

*(ti)|<d, and (ii) for all i∈K, Pr(β j
n(tj)∈(b−d,b+d) ∀j=J)< 1

10 Pr(τi

L*(b)) .  This Nd

exists for d small enough, since Pr(τi

L*(b))>0 by assumption for the specified players, and since
Pr(β j

* (tj)=b ∀j=J)=0 by assumption.

We proceed in a series of claims.

Claim 1:  There exists a D>0 such that for all i∈K, all ti ∈ ˜ S i , and all d<D:

Pr ( ) \ ( )W b d W b d ti
n

i
n

n i+ − + ε2 7> 1
2 Pr ( ) sup {Pr( )}*τ i

L
i t i ib t

i
2 73 8− ∈− −t E  for n>Nd. (6)

Proof of Claim 1:  All opponent types outside E-i who choose action b in the limit must choose

actions on [b−d+εn,b+d) for n>Nd.  By choosing action b+d rather than b−d+εn, player i chooses a

strictly higher action than those types she would lose to or tie with using action b−d+εn; at worst,

all of the types who choose action b in the limit choose action b−d+εn with grid n, and player i

defeats those players she would have otherwise tied with by increasing her action to b+d.  The
coefficient 12  creates additional “slack” that will be utilized below.

Claim 2:  For all ψ>0, there exists D>0 such that, for all i∈K and all ti∈
~
Si  such that ti>

~ti +ψ:

inf inf ( , ) , ( ) \ ( )
0> > >

+ + − +
d D n N

i i i
n

i
n

n
d

E v b d t W b d W b d∆ t ε >λψ 4. (7)

Proof of Claim 2:  Let ti′=
~ti +ψ/2∈ ˜ S i .  Then inf inf ( ( ), , ) , ( )

0> > > −′ ′ ′ +
d D n N

i i
n

i i i i i
n

d

E v t t t W b d∆ β t ≥0, by

Lemma 4 and since winning with b+d, an action higher than the assigned one, increases payoffs

by (4).  Combining this inequality with the lower bound on the slope of ∆vi and the fact that ti

>~ti +ψ yields inf inf ( ( ), , ) , ( )
0> > > −′ +

d D n N
i i

n
i i i i i

n

d

E v t t t W b d∆ β t  > λψ 2.  But, since payoffs are

continuous in actions, it is possible to find D>0 small enough such that
inf inf ( , , ) , ( )

0> > > −+ +
d D n N

i i i i i
n

d

E v b d t t W b d∆ t > 1
2 λψ 2.  Finally, winning with b+d but not with

b d n− + ε  gives higher expected payoffs than winning with b+d by (4).  Thus, (7) holds.

Claim 3: For all ψ>0, there exists D>0 such that, for all i∈K, ti∈
~
Si  such that ti>

~ti +ψ,  and all

0<d<D and n>Nd:  β i
n

it( )>b d n− + ε .

Proof of Claim 3: Player i with type ti prefers action b+d to a′ if:

E v b d t W b d W a W b d W a t

v a v b d f t d E v a v b d t W a W a t

i i i
n

i
n

i
n

i
n

i

i i i i i i i i i
n

i
n

i

∆

∆ ∆

( , ) , ( ) \ ( ) Pr ( ) \ ( )

[ ( , ) ( , )] ( ) ( , ) ( , ) , ( ) Pr ( )

+ + ′ ⋅ + ′

> ′ − + ⋅ + ′ − + ′ ⋅ ′I − −

t

t t t t t t

2 7
2 7

 (8)

But, we have already established in Claims 1 and 2 that when a′=b d n− + ε , the LHS of (8) is

always larger than 1
4 λψ ⋅ Pr ( ) sup {Pr( )}*τ i

L
i t i ib t

i
2 73 8− ∈− −t E >0.  The RHS of (8) becomes

arbitrarily small as d gets small by continuity of payoffs in actions.  Thus, for small enough d,

(8) holds.
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Claim 4: There exists a Ψ>0 such that, for all 0<ψ<Ψ, there exists a d>0 and a positive integer
n>Nd such that for all i∈K and all ti∈ ˜ S i  such that ti≥~ti +ψ, β i

n
it( ) ∉ (b−d,b+d).

Proof of Claim 4:  The logic of Claims 1-3 can be applied again.  Find a d>0 and an n such that

(6) and (7) hold, and such that the RHS of (8) is less than
1
4 λψ ⋅ Pr ( ) sup {Pr( )}*τ i

L
i t i ib t

i
2 73 8− ∈− −t E  for all i and all ti≥~ti +ψ  such that ti∈ ˜ S i .  Now, replace

b d n− + ε  with b d n− + 2ε  in (6) and (7).  Notice that, for ψ small enough, (6) still holds, since

by Claim 3, the set of types using b d n− + ε  is decreasing in ψ.  (7) holds replacing b d n− + ε

with any action less than b+d.  Since the RHS of (8) becomes smaller when a′ increases, (8)
must hold for all i and all ti≥~ti +ψ  such that ti∈ ˜ S i .  Thus, the bidding unravels all the way up to

b+d−εn.

Finally, observe that Claim 4 establishes that for small enough d and large enough n, an arbitrarily

small subset of types use actions on (b−d,b+d).  This contradicts the hypothesis of almost-

everywhere uniform convergence to strategies that yield Pr(βi

*(ti) = ai)⋅Pr(τi

L*(b)) > 0, and the

Lemma is proved. ã

Lemma 6  Consider an auction game satisfying A1, A2, (2)-(4), and the SCC.  Let β*(t) be the
limit of an almost-everywhere convergent sequence of nondecreasing PSNE strategies to finite-
action games, βn(t), that satisfy Lemma 4 (ii). (i) If ai

n→b and Ui(ai,ti;β−i
* (⋅)) is continuous at

ai=b, Ui(ai
n,ti;β− ⋅i

n ( )) converges to Ui(b,ti;β−i
* (⋅)).  (ii) For all i and almost every ti, Ui(ai,ti;β−i

* (⋅))

is continuous in ai at ai=βi

*(ti).

Proof of Lemma 6:  Part (i): First, note that

Ui(b,ti;β−i
* (⋅))−Ui(ai

nβ i
n

it( ),ti;β− ⋅i
n ( ))

= [Ui(b,ti;β−i
* (⋅))−Ui(ai

n,ti;β−i
* (⋅))]+[Ui(ai

n,ti;β−i
* (⋅))−Ui(ai

n,ti;β− ⋅i
n ( ))]. (A5)

The first term of the RHS of (A5) goes to zero as n gets large by continuity of Ui(ai,ti;β−i
* (⋅)) in ai

at b.  So it remains to consider the second term of the RHS of (A5).  This term converges to zero
if Ui(ai,ti;β− i

n (⋅)) converges uniformly (across ai in a neighborhood of b) to Ui(ai,ti;β−i
* (⋅)).  But

uniform convergence follows since f, v i, and ∆vi are bounded and since Pr(Wi

*(ai)) is continuous

at ai=b, and further, β− i
n (⋅) converges uniformly to β−i

* (⋅) except on a set of arbitrarily small

measure (details are in the working paper Athey (1997)).

Part (ii): Since v i and v i are continuous, whenever Pr(Wi

*(ai)) is continuous at ai=b, player i’s

expected payoffs are continuous there as well.  Consider b∈$i. Suppose first that Pr(τi

L*(b))=0,

which implies Pr(τi

W*(b))=0 as well (recall ties are broken randomly).  This in turn implies that

Pr(Wi

*(ai)) is continuous at ai=b.  Further, Lemma 5 establishes that if Pr(τi

L*(b))>0, only a single

type of player i uses action b.  Since Pr(τi

L*(b))>0 for only a countable number of actions b, the

set of types who face discontinuities has measure zero. ã
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Proof of Theorem 3:  Following the proof of Theorem 2, consider a sequence of games with

successively finer finite action sets, indexed by {n}.  Restrict attention to sequences of PSNE to

these games, {βn(t)}, that satisfy condition (ii) of Lemma 4 and converge almost everywhere to a
set of strategies denoted β*(t).  Applying the logic of Theorem 2, so long as (i) Ui(ai,β−i

* (⋅),ti) is

continuous at ai=βi
* ( ti ) , and (ii) Ui(β i

n(ti),ti;β− i
n (⋅)) converges to Ui(βi

* ( ti ) ,β−i
* (⋅),ti), βi

* ( ti )  is a

best response of player i, type ti when opponents use β−i
* (⋅).  But Lemma 6 establishes conditions

(i) and (ii) hold for almost every type, and we are done. ã
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