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We report on the fabrication and characterization of field-effect transistors based on single crystals
of the organic semiconductor dibenzo-tetrathiafulvaléBP8-TTF). We demonstrate that it is
possible to prepare very-good-quality DB-TTF crystals from solution. These devices show high
field-effect mobilities typically in the range 0.1-1 &V s. The temperature dependence was also
studied revealing an initial increase of the mobility when lowering the temperature until it reached
a maximum, after which the mobility decreased following a thermally activated behavior with
activation energies between 50 and 60 meV. Calculations of the molecular reorganization energy
and intermolecular transfer integrals for this material were also performed and are in agreement with
the high mobility observed in this material. @005 American Institute of Physics
[DOI: 10.1063/1.1848179

The improved electronic performance of organic field-In addition, these molecules were the ones showing higher
effect transistor§OFET9 over the last few years has shown intermolecular transfer integrals and lower reorganization en-
great potential for a wide range of functional applicationsergies. In particular, dithiophene-tetrathiafulvalé®d-TTF,
where low-cost, light-weight, flexibility, and large-area cov- Fig. 1(a)] exhibited a mobility of up to 1.4 cAtV sl®
erage are required.Although most previous studies on DB-TTF seems,a priori, a very promising candidate
OFETs have focused on the fabrication and improving thenolecule to study for the preparation of OFETSs as, like DT-
quality of organic thin filmg currently, a few groups are TTF, it is symmetric and completely conjugatéice., alter-
devoting their efforts to the preparation of single-crystalnation of single and double bond#\lso, DB-TTF crystal-
OFETs as they typically show higher charge carrier mobili-lizes in a similar way to DT-TTF forming stacks of planar
ties because of their high molecular order. Crystals ofmolecules with an interplanar distance of 3.948[Rig.
oligoaceng‘loand thiophenJé derivatives have been studied 1(b)]. In addition, the calculated h|ghe_st occup|ed_ molecular
and OFET mobilities of up to 15 ¥V s have been re- orbital (HOMO) energy levelgsee details to followin DB-
ported for rubrene Crystafsln all these cases, the samples
were prepared from the vapor phase in order to obtain high (a)
purity materials and/or because of the low solubility of these
materials in common organic solvents. In this letter, we re- s s s s
port on the preparation of single crystal OFETs based on an s/\j[ >=< ]i/\s > <
organic semiconductor, dibenzo-tetrathiafulvalébD&-TTF, ¢ g o - s
Fig. 1(a)]. Moreover, we show that it is possible to prepare DT-TTF DB-TTF
good quality DB-TTF crystals with very high mobilities
from solution, which makes this material very interesting for (b) (©)
potential applications in low-cost electronics.

Very recently, we studied the correlation between crystal
structure and mobility in single-crystal OFETs based on &
tetrathiafulvalene derivativé$. A correlation between the S
mobilities and the different investigated crystal structures “C\w
was observed. This was corroborated by density functional / '?%\Q
(DF) calculations of the molecular reorganization energies e 0]
(Meorg™> and the maximum intermolecular transfer
integrals™® It was observed that the molecules showing the
best performance for OFETs crystallize forming uniform ¢

stacks of almost planar molecules in a herringbone pattern.
FIG. 1. (a) Molecular structure of dithiophene-tetrathiafulvalgmer-TTF)

and dibenzo-tetrathiafulvale®B-TTF). (b) Crystal structure of DB-TTF

3Electronic mail: marta@aqt.tn.tudelft.nl viewed along the axis.(c) Single-crystal of DB-TTF on prefabricated gold
PElectronic mail: cun@icmab.es electrodes. The scale bar corresponds to 160
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TTF (4.88 eV} and DT-TTF (4.94 e\} are very similar, A L AL

which was experimentally confirmed by cyclic voltamper- '1400—_ wVp=sv Va=-30Y )
ometry measurements of DB-TTF. The experiment showed . | z e -20 V.
two separate reversible one-electron oxidations &ith and je=
EZ, of 062 and 097V, respectively (in q0004 = _
CH3CN/0.1 M TBAPF; vs SCB very similar to the values 2 o] e 10V
found for DT-TTF in the same condition&.,=0.67 Vand £ -800 BV .
E$,=0.97 V). a °

We performed DF calculations, at a 6-3HGp)/ ~  -600+ .
B3LYP™ level of theory usingsAussiAN 987 to estimate 1
the N eorg Of the isolated DB-TTF molecule in the planar con- -4007 ]
formation found in the crystaf. ®A \eorgvalue of 0.248 eV 1 ]
was found for this molecule, which is close to the one re- 2%
ported for the best performing molecule in single-crystal 0 ' ' . . . . .
OFETs (DT-TTF, Aeorg=0.238 €V in the studied sequence 0 5 10 -15 20 -25 30 -35 -40
of crystals of molecules of this famii’ﬁ.Previoust, we dem- Vgp (V)
onstrated that an additional drop in thg4 value of DT-
TTF is observed if one considers the effect of the local crys- (a)
talline environment, rather than using an isolated molecular . . . T " T y
representation, helping to explain the observed high 50 o] ] Vg=-40V
mobilities® This effect is also expected to occur in DB-TTF. 40 £ oo :
The maximum intermolecular electronic coupling, estimated 0l S

o
9
3
5

via the calculation of the transfer integrafswas also calcu-
lated for DB-TTF giving a value of 0.037 e{0.034 eV for .
DT-TTF). It therefore could be expected that DB-TTF, dueto < 07" "l —————— Vg=0V
its similar characteristics to DT-TTF, might be an interesting A 0 e .
material to study for the preparation of OFETSs. k% ] ' ]
DB-TTF was synthesized as previously repoffeand
purified by recrystallization in chlorobenzene. The electrodes ]
(4 nm of Ti, acting as a sticking layer, covered by 26 nm of 30
Au) were fabricated by e-beam lithography on a silicon wa- -40 .
fer with a 200-nm-thick oxide. A warm solution of DB-TTF ] ]
in chlorobenzene was then poured over the electrodes ant - r . T . T
the solvent was allowed to evaporate slowly. This resulted in -1000 -500 0 500
the formation of transparent long regular plate-like crystals, Vgp (MV)
some of which connected two of the microfabricated elec- (b)
trodes[Fig. 1(c)]. In some cases, the formation of long crys-
talline dendrites was also observed. The long axis of theG. 2. (a) I, vs Vg at differentV; measured for the crystal shown in Fig.
crystals was determined to be the stacking direciithe  1(c), which has a lengthL) and width(W) of 130 and 70um, respectively.
crystallographid axis). In the inset the transfer characteristics of this devicevgt=-5V are

; ; own.(b) Igp Vs Vgp at Vg (0, -5, -10, -15, -20, —-25, -30, -35, and
Trans_port measurements were camed out using a PrObEéllO V) E‘o)r ;%rystaIS?NithL(igsoum andW=15 um. In the inset of this
Station Microscope coupled to an ADwin Gold external datay aon the conductandellsy/dVey) vs Ve is plotted.
acquisition system in air. The electrical characterization o
the devices was performed by measuring the source—drain
current,lgp, while sweeping the applied source—drain volt- Algp L
age,Vgp, across the two electrodes for different gate volt- 4= Wav
ages,Vg, applied to the silicon substrate. Figur@2shows sbrG
the outcome of the measurements performed on the crystal This formula neglects the influence of contact resis-
shown in Fig. 1c). The resulting graph is typical of gtype  tances and charge traps in the gate oxide and, therefore, pro-
semiconductor: the current increases with increasing negardes a lower limit on the device mobiIiﬁ}.The mobility of
tive gate voltage. The investigated OFETs were stable and ahhis device calculated in the range=0/;=-20 V was found
the data could be reproduced after several weeks. to be 0.1 crd/V s and the ON/OFF ratio was of the order of
The current-voltage characteristics could be modeled (f.
with We characterized 18 OFET devices, of which 9 exhibited
mobility values larger than 0.01 &tV s and 6 higher than
0.1 cglv s. The highest mobility found was as high as
_ N 1.0 cnt/V s. Thelgp—Vgp characteristics of this crystal in
lsp= (WCW/L)(Ve = V1 = Ver/2)Vsp, @ the linear regime are shown in Figi®2. From this graph, we
whereC is the capacitance per unit area of the gstethe  can extract the dependency of the conductaiuites/dVsp)
threshold voltageW andL the width and length of the crys- with Vg [see inset Fig. @)].
tal between the source and drain electrodes, respectively, and The measured threshold voltayg of these devices is
w the mobility that can be calculated in the linear regimealways positive(in the range 10-—100 )V indicating that

from there is conduction even without applying a gate voltage.
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o T In conclusion, we showed here that DB-TTF is a very
061 crystalA _ m = ® @ ] promising molecule for the preparation of single-crystal
. 1 OFETs. The devices based on this molecule display very
054 n ] high mobilities of the order of 0.1-1 &V s. This material
& . .. 1 could also be interesting as solution-processable transparent
> 0.4+ . conductor. The high performance of the devices together
NE : .. 1 with the nonmonotonous temperature dependence demon-
L34 . . strates that it is possible to prepare very good-quality crystals
Z crystal B ] of this material from solution, which opens new perspectives
802 . " L Aa J for applications in low-cost electronics.
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FIG. 3. Field-effect mobility vs temperature for two different single-crystal 1
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