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Single Crystal PMN-0.33PT /Epoxy 1-3
Composites for Ultrasonic Transducer
Applications

Kei C. Cheng, Helen L. W. Chan, Chung L. Choy, Qingrui Yin, Hasou Luo, and Zhiwen Yin

Abstract—Lead magnesium niobate-lead titanate 0.67Pb
(Mg, ;3Nb2,3)05-0.33PbTiO3 (PMN-0.33PT, abbreviated
as PMN-PT) single crystals were used to fabricate PMN-
PT/epoxy 1-3 composites with different volume fractions
of PMN-PT ranging from 0.4 to 0.8. The electromechan-
ical properties of the 1-3 composites were determined by
the resonance technique. Theoretical modeling of the 1-3
composites matched quite well with the measured mate-
rial properties. It was demonstrated that the thickness elec-
tromechanical coupling coefficients of the composites could
reach as high as 0.8. A 2.4 MHz plane ultrasonic transducer
was fabricated using a PMN-PT /epoxy 1-3 composite with
0.37 volume fraction of PMN-PT. It shows a —6 dB band-
width of ~61% and an insertion loss of —14 dB.

1. INTRODUCTION

HE development of relaxor-based single crystals such
Tas lead magnesinm niobate-lead titanate {PMN-PT)
and lead zinc niobate-lead titanate (PZN-PT) has promis-
ing potential for ultrasonic transducer and actuator ap-
plications [1]-[8]. The single crystals exhibit high piezo-
clectric coefficient (dss > 2000 pC/N) and electromechan-
ical coupling factor (ksz ~ 0.9); commonly uscd piezo-
ceramic PZT provides dsz of ~600 pC/N and k33 of ~0.75.
The single crystals with these superior properties can pro-
vide better sensitivity and bandwidth for medical imaging
applications [2], [4], [5]. However, for ultrasonic imaging
and hydrophone applications, the relatively high acoustic
impedance of the single crystals (approximatcly 30 Mrayls)
raises a problem of acoustic impedance mismatch with thag
of human tissue (1.5 Mrayls) and water. In order to alle-
viate this problem, the single crystal is incorporated into
a polymer matrix to form 1-3 composite. The 1-3 compos-
ites shown in Fig. 1 consists of PMN-PT rods embedded
in an epoxy matrix. As the relatively softer polymer ma-
trix cannot clamp the vibration of the PMN-PT rods, the
PMN-PT rods inside the composites are relatively free to
vibrate. Hence, the thickness electromechanical coupling
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Fig. 1. Photograph of PMN-PT /epoxy 1-3 compaosites.

coefficient k; of the composites can approach the kgy of
the PMN-PT [9]-[13]. The ki3 is about 0.8~0.9 for PMN-
PT rod, and k; is about 0.6 for PMN-PT disc. In other
words, using 1-3 PMN-PT composites can improve the en-
ergy conversion efficiency of the transducer. Furthermore,
the electromechanical properties of the 1-3 composites also
can be tailored by varying the volume fraction and peri-
odicity to optimize the transducer performance.

I1. MATERIAL FABRICATION

The relaxor ferroelectric PMN-PT Z-cut single crystal
discs of 10-mun diameter and 3-mm thickness were grown
in the Shanghai Institute of Ceramics, Chinese Academy
of Sciences (SICCAS), Shanghai, China, by a modified
Bridgeman method [6]. As stated in [§], the single erys-
tals poled along the {001) direction posscss the maximum
piezoelectric response. It is reported that [8] poled single
crystals have a pseudo-tetragonal 4-mm macroscopic sym-
metry even though its microscopic symmetry is 3 m {8].
The calculated material properties presented in this paper
are based on the 4-mm symmetry. Before poling, Cr-Au
electrodes were applied to the flat surfaces of the PMN-
PT discs by magnetron sputtering. They were poled in oil
along their thickness direction by applying a direct current
(DC) field of 10 kV/em at 110°C for 10 minutes, and the
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TABLE I
PROPERTIES OF PMN-PT/EPoxXY 1-3 COMPOSITES.

SpA SpB SpC SpD
Thickness h (mm) 2.60 2.72 1.71 0.75
Lateral rod size L (mm) 0.832 0488 033 0.16
Width of epoxy d (mm) 0.108 0.105 0.090 0.087

No. of cuts 10 16 25 40

Volume fraction 0.77 0.62 0.48 0.37
Piezoelectric dzz {pC/N)

of the PMN-PT single

crystal before cutting 1980 1840 1600 2000
Density {kg/m?) 6652 5411 4419 4460

electric field was kept on until the samples were cooled to
ro0m temperature.

Four samples of PMN-PT/epoxy 1-3 composites with
volume fractions of 0.4 to 0.8 as shown in Fig. 1 were
made by a dice-and-fill technique [11]-[13]. Poled single
crystals were cut in one direction using an automatic dic-
ing saw {DAD 321, Disco Corporation, Tokyo, Japan) with
an 80 pm thick blade. Epoxy LW5157 with a hardener
HY5159 (in 10:1 ratio) supplied by Ciba-Giegy Ltd., USA,
was used to fill the grooves in the single crystals. After the
epoxy had cured, a second set of cuts perpendicular to
the first direction was made. If reticulated cuts were made
in both directions before casting the epoxy, the PMN-PT
rods may break because they are very fragile. It was found
that, after filling the first set of grooves, if a thin layer of
epoxy was left on top of the crystal, the chance of chip-
ping the crystal during the second set of cuttings could
be greatly reduced. After filling the second set of cuts by
epoxy, the composite was allowed to cure at 40°C in an
oven for 12 hours in order to develop optimum properties.
Excess epoxy was ground away with wet and dry papers
(no. 800 and 1000, Kovax, Tokyo, Japan). Repoling the
composites was implemented in case they were depoled
during the cutting.

I11. PROPERTIES OF PMN-PT/EPOXY 1-3
COMPOSITES

The composites fabricated in this study all have fine
polymer width so that they can be considered as homoge-
neous piezoelectric materials. Piezoelectric dss value and
the density of the composites and the single crystals were
measured and are shown in Table I. The PMN-PT single
crystals used to fabricate the PMN-PT/epoxy 1-3 compos-
ites have high piezoelectric coefficient dzz of ~2000 pC/N
as measured by a Model ZJ-3D Piezo-d3z meter supplied
by the Beijing Institute of Acoustics Academia Sinica,
China.

The electromechanical properties of PMN-PT /epoxy 1-
3 composites were determined at room temperature follow-
ing the IEEE Standards on Piezeelectricity [14]. Thickness
electromechanical coupling coeflicient k;, mechanical qual-

ity factor Qs, and elastic stiffness c&} were determined by
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Fig. 2. Electrical impedance Z and phase angle § against frequency
spectrum (1 MHz-20 MHz) for a PMN-PT /epoxy 1-3 composite disk
with a 0.37 volume fraction of PMN-PT.

measuring the resonant and antiresonant frequencies of the
thickness mode resonance in the composite disc. From the
electrical impedance vs frequency plot (Fig. 2), a strong
thickness resonance with its third and fifth harmonics can
be observed. These resonant frequencies were measured
with an HP 4294A (Agilent, Palo Alto, CA) impedance
analyzer. In order to avoid mode coupling, which adversely
affects the measurement, the thickness to width or aspect
ratio of the PMN-PT rods inside the composite samples
was higher than 3. A weak vibration mode f, arisen from
the latera] vibration of the PMN-PT rods [10], [13] was
observed. Due to blade vibration, the resultant polymer
width in the composites varied from 85 pm to 100 pm,
which was larger than the thickness of the blade. How-
ever, the estimated stopband resonances will be >10 MHz
[10], [13]. that are not observed in the frequency range of
interest. Other parameters such as the acoustic velocity
V3D and the relative permittivity ess/ep at 1 kHz were
also determined.

The measured piezoelectric, dielectric, and electrome-
chanical properties of the epoxy and the PMN-PT single
crystals are given in Tables IT and III [15], respectively. The
theoretical properties of the 1-3 composites as a function of
volume fraction are calculated by the modified series and
parallel model [11], {12]. The electromechanical coupling
coefficient k; in the composite can be determined by (1):

Trfr Wfa_fr
=5 E (1 F), W

where f, is the resonant frequency and f, is the antires-
onant frequency and assumed that f. ~ frequency of
minimum impedance and f, ~ frequency of maximum
impedance, as the PMN-PT single crystals and the com-
posites have low dielectric loss [14]. Experimentally, it was
found that the dielectric loss factor tand is less than 1%
for all the composites.

As discussed before, k; in 1-3 composites can be en-
hanced by vsing PMN-PT rods embedded in the nonpiezo-
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TABLE IT
ROOM-TEMPERATURE MATERIAL PROPERTIES OF EPOXY,

Density P (kg/m3) 1200
Relative permittivity efen 4.21
Dielectric loss factor tand 0.005
Longitudinal wave velocity vy (m/s) 2658
Shear wave velocity vg (m/s) 1416
Longitudinal acoustic

impedance Zy, {Mrayl} 3.19
Shear acoustic impedance Zg {Mrayl) 1.70
Longitudinal stiffness €11 (10'°N/m?) 0.85
Shear stiffness Ca4 (10'9N/m?) 0.24
Stiffness in x-y plane cl2 (101N /m?2) 0.37
Longitudinal compliance s11 (107 1?m2/N)  159.61
Shear compliance Saa (10~ 2m?3/N) 41557
Compliance in x-y plane 312 (10712m?/N) —48.19
Shear modulus G (101°N/m?) 0.24
Bulk modulus K (109N /m?) 0.53
Young’s modulus Y (10 N/m?} 0.63
Mechanical quality factor Qar 24.5
Poisson’s ratio 4 0.30

TADBLE IIT

ROOM-TEMPERATURE MATERIAL PARAMETERS OF THE PMN-PT
SINGLE CRYSTALS.

Density I {kg/m?3) 7900
Relative permittivity efeo 5214
Dielectric loss factor tan§ 0.003
Piezoelectric coefficient das (pC/N) 1980
Electromechanical coupling

coefficient ks 0.6
Elastic stiffness el (10'°N/m?)  17.2
Flastic stiffness czli (10'°N/m?) 110
Mechanical quality factor Qg 41

electric passive epoxy matrix. The electromechanical cou-
pling coefficient %, of the composite as shown in Fig. 3 can
reach as high as 0.8, which is higher than that of a PMN-
PT disc (k: ~ 0.61), but it is still lower than the value of
a single PMN-PT rod (k33 ~ 0.9). The reason may be be-
cause the epoxy exerts a certain degree of lateral clamping
on the PMN-PT rods and modify its behavior as a totally
free rod. In general, using a softer polymer matrix can re-
duce the clamping to the single crystal and increase the
electromechanical coupling coefficient. However, the use
of highly compliant polymers will lower the stopband fre-
quency and provide little support during fabrication and
breakage of the rods will occur [4].

Plot of &} in Fig. 4 shows that c¢Z} linearly increases
with the volume fraction. The elastic stiffness ¢} can be
calculated by (2):

by = p(2tf)°, (2)

where p is a density and ¢ is the thickness of the composite.

Fig. 5 shows that the relative permittivity e33/¢¢ mea-
sured at 1 kHz also linearly increases with the volume frac-
tion ¢ {for ¢ > 0.3). In Fig. 6, it is seen that Qs of the
composites of all the volume fractions was about 10 to 20,
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Fig. 3. Electromechanical coupling coefficient k; as a function of sin-
gle crystal volume fraction.
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Fig. 7. Acoustic velocity VSD as a function of single crystal volume
fraction.

which is quite close to that of the polymer. The mechanical
quality factor Qs was calculated by (14):

1

Qus = - (Co T Ch) (f2,— 12y’

27 frr 2. (3)

where €y is the motional capacitance and Cy is the
clamped electrical capacitance, respectively. Z,, is the
minimum impedance, fr,. and f,, are the resonant and
antiresonant frequencies at the radial mode resonance of
the, PMN-PT disc, respectively.

The acoustic velocity V¥ also increases almost linearly
with the volumne fraction ¢ (for 0.3 < ¢ < 0.9) as shown
in Fig. 7.

From Figs. 3-7, it is seen that the modified series and
parallel model [11], [12], although simple, can give quite
accurate prediction to the materials properties of 1-3 com-
posites with ¢ > 0.2 in the absence of mode coupling,.
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IV. PrROPERTIES OF PMN-PT SINGLE CRYSTAL AND
PMN-PT/Eroxy 1-3 CoMPOSITE TRANSDUCERS

Two plane ultrasonic transducers were fabricated with
the PMN-PT single crystal and the PMN-PT/epoxy 1-3
composite of 0.37 volume fraction as the driving elements,
respectively. Both of the transducers have soft silicone rub-
ber backing and have no front face matching (Fig. 8). Their
performance such as the pulse-echo response and insertion
loss were measured and compared. The transducer was
connected to a Panametrics model 5062UA (Panametrics,
Waltham, MA} ultrasonic analyzer with the setting of 4 p.J
energy and 50 ochm damping. A flat stainless steel target
was placed at the bottom of a water tank. The transducer
was placed at the near/far field transition point T.

(12

where a is radins of transducer and A; is the wavelength
in water at the center frequency of the transducer.

The pulse-echo waveforms were measured using an HP
Infinium oscilloscope (Agilent) (Figs. 9 and 10). The fast
Fourier transform of the pulse-echo waveform was stored,
and the bandwidth was determined from the —6 dB points
of the displayed specirum (Figs. 11 and 12). To determine
the characteristic of the transducer in its frequency do-
main, the following parameters from the waveforms of the
single crystal transducer and the 1-3 composite transducer
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Fig. 9. Measured pulse-echo responses of the PMN-PT transducer.
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composite transducer.

were calculated based on the American Institute of Ultra-
sound in Medicine {AIUM) Standard [16]:

Peak frequency f,: the frequency at which the am-
plitude of the spectrum is the maximum. Lower
and upper —6 dB frequencies (f; and f,): the fre-
quencies at which the magnitude in the amplitude
of the spectrum is 50% (—6 dB) of its maximum.

_Lf]‘l“fu

Center frequency fo. fo= 5 (5)
— 6 dB bandwidth (percentage). BW = f“; i % 100%
‘ (6)

The —6 dB bandwidth is a measure of the width of the
frequency distribution and is an indicator of the damping
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Fig. 12. Normalized received amplitude spectrum of the PMN-
PT/epoxy 1-3 composite transducer.

factor. From their frequency spectra (Figs. 11 and 12), it
was found that the center frequency of the PMN-PT sin-
gle erystal transducer was about 2.64 MHz, and its -6 dB
bandwidth was 31%. The PMN-PT/epoxy 1-3 compos-
ite transducer has a center frequency of 2.41 MHz and
a broader —6 dB bandwidth of 61%.

The insertion loss (or the relative pulse-echo scnsitiv-
ity) of the transducer is the key parameter that affects the
imaging quality. It is defined as the ratio of the power of the
received transducer echo power P, to the power of the ex-
citation pulse power Py delivered into the transducer. The
insertion loss (IL) for each transducer was determined by:

P, VIR v,
ILlelogF[’;—:lologV—}éE:%logv;, (7

To measure the insertion loss, an HP 8116A function

generator (Agilent) with 50 € coupling was used to gener-
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ate a tone burst of 20-cycle sine wave with an amplitude
Vo of 1 V [peak-to-peak voltage) at the center frequency f,
of transducer as displayed in the HP Infinium oscilloscope
with the 50 & coupling mode. By connecting the trans-
ducer to the function generator, the received echo voltage
amplitude V. excited from the transducer was measured by
the HP Infinium oscilloscope with 1 M{? coupling. It was
found that the insertion loss for the PMN-PT single crys-
tal transducer was about —17 dB and that of the PMN-
PT/epoxy 1-3 composite transducer was about —14 dB.
The IL of the PMN-PT /epoxy 1-3 composite transducer is
higher than that of a PZN-PT fepoxy 1-3 composite trans-
ducer [4] with a front-face matching (with 0.5 volume frac-
tion of PZN-PT, IL = —10 dB) and PZN-PT /epoxy com-
posite transducer [4] also has a wider bandwidth (97%),
presumably due to the effect of front-face matching.

V. CONCLUSIONS AND DISCUSSION

The PMN-PT/epoxy 1-3 composites with various vol-
ume fractions of PMN-PT were fabricated, and their elec-
tromechanical properties were measured by the resonance
method. The modified parallel and series model was used
to calculate the performance of the composites, and the
modeling results agreed quite well with the experimental
data. The composites have high electromechanical cou-
pling coefficient of 0.8, indicating that they have good
energy conversion efficiency. A single element transducer
using PMN-PT/epoxy 1-3 composite was fabricated, and
it had broader bandwidth compared to a PMN-PT sin-
gle crystal transducer of similar structure. The use of a
PMN-PT single crystal to replace conventional PZT piezo-
ceramics is still not very viable at present because of the
availability and cost of the single crystals. The batch pro-
duction of high-quality homogeneous PMN-PT single crys-
tals is still in progress. The use of these single crystals and
their composites in various applications other than medical
ultrasound is being developed and has attracted consider-
able current research interests. It is expected that more
work on the applications of these single crystals will be
found when the crystals are available commercially at a
lower cost.
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