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Abstract

Single-crystalline nanoporous Nb2O5 nanotubes were fabricated by a two-step solution route, the growth of

uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001]

direction. Nb2O5 tubular structure was created by preferentially etching (001) crystallographic planes, which has a

nearly homogeneous diameter and length. Dense nanopores with the diameters of several nanometers were

created on the shell of Nb2O5 tubular structures, which can also retain the crystallographic orientation of Nb2O5

precursor nanorods. The present chemical etching strategy is versatile and can be extended to different-sized

nanorod precursors. Furthermore, these as-obtained nanorod precursors and nanotube products can also be used

as template for the fabrication of 1 D nanostructured niobates, such as LiNbO3, NaNbO3, and KNbO3.

Introduction

Nanomaterials, which have received a wide recognition
for their size- and shape-dependent properties, as well
as their practical applications that might complement
their bulk counterparts, have been extensively investi-
gated since last century [1-8]. Among them, one-dimen-
sional (1D) tubular nanostructures with hollow interiors
have attracted tremendous research interest since the
discovery of carbon nanotubes [1,9-14]. Most of the
available single-crystalline nanotubes structurally possess
layered architectures; the nanotubes with a non-layered
structure have been mostly fabricated by employing por-
ous membrane films, such as porous anodized alumina
as template, which are either amorphous, polycrystalline,
or only in ultrahigh vacuum [13,14]. The fabrication of
single-crystalline semiconductor nanotubes is advanta-
geous in many potential nanoscale electronics, optoelec-
tronics, and biochemical-sensing applications [1].
Particularly, microscopically endowing these single-crys-
talline nanotubes with a nanoporous feature can further
broaden their practical applications in catalysis, bioengi-
neering, environments protection, sensors, and related
areas due to their intrinsic pores and the high surface-
to-volume ratio. However, it still remains a big long-
term challenge to develop those simple and low-cost
synthetic technologies to particularly fabricate 1 D
nanotubes for functional elements of future devices.

Recently, the authors have rationally designed a general
thermal oxidation strategy to synthesize polycrystalline
porous metal oxide hollow architectures including 1 D
nanotubes [15]. In this article, a solution-etching route
for the fabrication of single-crystalline nanoporous
Nb2O5 nanotubes with NH4F as an etching reagent,
which can be easily transformed from Nb2O5 nanorod
precursors is presented.
As a typical n-type wide bandgap semiconductor (Eg =

3.4 eV), Nb2O5 is the most thermodynamically stable
phase among various niobium oxides [16]. Nb2O5 has
attracted great research interest due to its remarkable
applications in gas sensors, catalysis, optical devices, and
Li-ion batteries [9-11,16-21]. Even monoclinic Nb2O5

nanotube arrays were successfully synthesized through a
phase transformation strategy accompanied by the void
formation [10], which can only exist as non-porous
polycrystalline nanotubes. In this study, a new chemical
etching route for the synthesis of single-crystalline
nanoporous Nb2O5 nanotubes, according to the prefer-
ential growth habit along [001] of Nb2O5 nanorods, is
reported. The current chemical etching route can be
applied to the fabrication of porous and tubular features
in single-crystalline phase oxide materials.

Experimental section

Materials synthesis

Nb2O5 nanorod precursors

Nb2O5 nanorods were prepared via hydrothermal tech-
nique in a Teflon-lined stainless steel autoclave. In a
typical synthesis of 1 D Nb2O5 nanorods, freshly
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prepared niobic acid (the detailed synthesis processes of
niobic acid from Nb2O5 has been described in previous
studies by the authors [22-25]) was added to the mix-
ture of ethanol/deionized water. Subsequently, the white
suspension was filled into a Teflon-lined stainless steel
autoclave. The autoclave was maintained at 120-200°C
for 12-24 h without shaking or stirring during the heat-
ing period and then naturally cooled down to room
temperature. A white precipitate was collected and then
washed with deionized water and ethanol. The nanorod
precursors were dried at 60°C in air.
Single-crystalline nanoporous Nb2O5 nanotubes

In a typical transformation, 0.06-0.20 g of the obtained
Nb2O5 nanorods was added to 20-40 ml deionized
water at room temperature. 2-8 mmol NH4F was then
added while stirring. Afterward, the mixture was trans-
ferred into a Teflon-lined stainless steel autoclave and
kept inside an electric oven at 120-180°C for 12-24 h.
Finally, the resulting Nb2O5 nanotubes were collected,
and washed with deionized water and ethanol, and
finally dried at 60°C in air.

Materials characterization

The collected products were characterized by an X-ray
diffraction (XRD) on a Rigaku-DMax 2400 diffract-
ometer equipped with the graphite monochromatized
Cu Ka radiation flux at a scanning rate of 0.02°s-1. Scan-
ning electron microscopy (SEM) analysis was carried
using a JEOL-5600LV scanning electron microscope.
Energy-dispersive X-ray spectroscopy (EDS) microanaly-
sis of the samples was performed during SEM measure-
ments. The structures of these nanorod precursors and
nanotube products were investigated by means of trans-
mission electron microscopy (TEM, Philips, TecnaiG2
20). UV-Vis adsorption spectra were recorded on UV-
Vis-NIR spectrophotometer (JASCO, V-570). The
photoluminescence (PL) spectrum was measured at
room temperature using a Xe lamp with a wavelength
of 325 nm as the excitation source.

Results and discussion

Typical XRD pattern of the Nb2O5 nanorod precursors
obtained from the ethanol-water system shown in
Figure 1 exhibits diffraction peaks corresponding to the
orthorhombic Nb2O5 with lattice constants of a = 3.607
Å and c = 3.925 Å (JCPDS no. 30-0873). No diffraction
peaks arising from impurities such as NbO2 were
detected, indicating the high purity of these precursor
nanorods. The morphology of these precursor products
was observed by means of SEM and TEM. Figure 2
shows typical SEM images of the obtained Nb2O5 precur-
sors with uniform 1 D rod-like morphology. The high
magnification image (Figure 2b) clearly displays these
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Figure 1 XRD pattern of Nb2O5 nanorod precursors . All

the peaks can be indexed to the orthorhombic Nb2O5 (JCPDS no.

30-0873).
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Figure 2 Morphology and structure characterizations of Nb2O5

nanorod precursors: (a) low-magnification SEM image shows that

these precursor nanorods have a uniform diameter and length; (b)

high-magnification SEM image. The bottom inset is a low-

magnification TEM image of a single solid nanorod. The top inset

shows a HRTEM image of the boxed region shown in the bottom

inset of Figure 2c, which indicates that these precursor nanorods

grow along the [001] direction.
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nanorods with the diameter 300-600 nm and the length
2-4 μm. The bottom inset of Figure 2b shows typical
TEM image of a single solid Nb2O5 nanorod, demon-
strating that the nanorod have a diameter of ~300 nm
and length of approximately 2 μm, which is in agreement
with the SEM observations. The HRTEM image (the top
inset of Figure 2b) taken from the square area exhibits
clear lattice fringes, indicating that the nanorod is highly
crystallized. The spacing of 0.39 nm corresponds to the
(001) planes of Nb2O5, which shows that these precursor
nanorods grow along the [001] direction.
After the hydrothermal process along with an inter-

face reaction, Nb2O5 nanotubes were obtained with
F--assisted etching treatment. The XRD pattern shown in

Figure 3a reveals a pure phase, and all the diffraction
peaks are very consist with that of nanorod precursors
and the reported XRD profile of the orthorhombic
Nb2O5 (JCPDS no. 30-0873). EDS analysis was used to
determine the chemical composition of an individual
nanotube. The result shows that these nanotube products
contain only Nb and O elements, and their atomic ratio
is about 2:5, which is in agreement with the stoichio-
metric ratio of Nb2O5. The EDS results clearly confirm
that F was not doped into these nanotubes (Figure 3b).
The morphology and structure of the finally nanopor-

ous nanotubes were first evaluated by SEM observation.
The representative SEM image in Figure 4a reveals the
presence of abundant 1 D rod-like nanostructure,
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Figure 3 Composition characterizations of Nb2O5 nanotube products: XRD (a) and EDX (b) patterns of single-crystalline nanoporous

Nb2O5 nanotubes. All the peaks in Figure 3a totally overlap with those of pure Nb2O5 (compare reference lines, JCPDS no. 30-0873) and no

evidence of any impurity was detected.
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implying the finally formed nanotubes well resemble the
shape and size of Nb2O5 nanorod precursors. The
detailed structure information is supported by the high-
magnification image shown in Figure 4b, which shows
some typical nanotubes with thin walls. For accurately
revealing the microstructure of these nanotubes, TEM
observation was performed on these nanotubes. Figure
5a shows a typical TEM image of these special nanos-
tructured Nb2O5. These nanotubes have a hollow cavity
and two closed tips. A magnified TEM image of some
Nb2O5 nanotubes is presented in Figure 5b. It can been
see that the nanotube surface is highly nanoporous and
coarse, composed of dense nanopores. SAED pattern
obtained from them by TEM shows they are single-crys-
talline, as seen in the typical pattern in Figure 5b (inset).
The nanoporous characterization of these single-crystal-
line nanotubes was further verified by a higher-magni-
fied TEM image (Figure 5c). The single-crystalline
nature of the nanotubes is further indicated by the
Nb2O5 lattice which can be clearly seen in the HRTEM

image of the surface of a nanoporous nanotube. Though
it is difficult to directly observe by TEM, since the
observed image is a two-dimensional projection of the
nanotubes, Figure 5d shows dense nanopores around
which the Nb2O5 lattice is continuous. The diameter of
the nanopores appears to be 2-4 nm, and the growth
direction of these nanoporous nanotubes is [001], just
the same as nanorod precursors. During the hydrother-
mal process of Nb2O5 nanorod precursors, the forma-
tion of single-crystalline nanoporous nanotubes can be
ascribed to preferential-etching of single-crystalline
nanorods. In hydrothermal aqueous NH4F solution, HF
were formed by the hydrolysis of NH4

+ and were further
reacted with Nb2O5 to form soluble niobic acid. The
etching of nanorods in this study preferentially begins at
the central site of the nanorod, which might be because
the central site has high activity or defects both for
growth and for etching. Further etching at the center of
nanorod leads to its splitting, and the atom in the (001)
planes are removed at the next process, causing the
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Figure 4 SEM images of single-crystalline nanoporous Nb2O5 nanotubes: (a) low-magnification SEM image; (b) high-magnification SEM

image.

Liu et al. Nanoscale Research Letters 2011, 6:138

http://www.nanoscalereslett.com/content/6/1/138

Page 4 of 8



formation of the tubular structure. Furthermore, during
the etching process, these newly generated soluble nio-
bic acid diffused into the reaction solution from the
central of the precursor nanorods, leaving dense nano-
pores on the shell of nanotubes with closed tips. For
verifying such preferential-etching formation mechan-
ism, HF solution as an etching reagent was directly
adopted. Figure 6 shows the morphology and structure
of Nb2O5 products, which exhibit that hollow tuber-like
nanostructures can also be achieved. However, the as-
obtained Nb2O5 products are broken or collapsed nano-
tubes, which is ascribed to the fast etching rate of HF
reagent. The diameter of nanoporous nanotubes can be
tunable by adjusting the diameter of precursor nanor-
ods. We can thus obtain different diameters of Nb2O5

nanotubes, which could meet various demands of

nanotubes toward practical applications. For example,
when Nb2O5 nanorods with a smaller diameter
(approximately 200 nm) were adopted as precursors, the
corresponding Nb2O5 nanotubes with similar sized
nanotubes were achieved (Figure 7).
These Nb2O5 nanotubes and nanorods can be used

as versatile templates to fabricate MNbO3 (M = Li,
Na, K) nanotubes and nanorods. For example, when
Nb2O5 nanorod precursors directly reacted with LiOH
at high temperature, LiNbO3 nanorods were immedi-
ately achieved. As shown in Figure 8a, b, the morphol-
ogy of Nb2O5 templates is preserved. XRD pattern of
the calcination products (Figure 8c) clearly shows the
pure-phase LiNbO3 ferroelectric materials. These
LiNbO3 nanorods were obtained through calcination of
Nb2O5 and LiOH with appropriate amount ratios at
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Figure 5 TEM characterizations of single-crystalline nanoporous Nb2O5 nanotubes: (a) low-magnification TEM image of nanoporous Nb2O5

nanotubes; (b, c) high-magnification TEM images of nanoporous Nb2O5 nanotubes showing that these nanotubes have a nanoporous shell. The

inset of Figure 5b shows the SAED pattern taken from an individual nanotube indicating that these nanotubes are single-crystalline; (d) HRTEM

image of the porous shell of a single nanotube revealing (001) lattice planes. The red circles indicate that the shell of these nanotubes densely

distributes nanopores.
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Figure 6 SEM images of collapsed Nb2O5 nanotubes obtained with HF as etching reagent: (a) low-magnification SEM image; (b) high-

magnification SEM image.
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Figure 7 SEM images of Nb2O5 nanotubes with a smaller diameter (approximately 200 nm). These nanotubes products were obtained

with the same etching route. Red circles in Figure 7c and d indicate the hollow section of nanotubes.
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500°C for 4 h. This calcination method is general and
versatile, and it can be applied to fabricate other
niobate materials such as NaNbO3 and KNbO3. The
optical properties of these Nb-based nanomaterials
(LiNbO3, NaNbO3, and KNbO3) are shown in Figure
S1 in Additional file 1).
UV-Vis adsorption measurement was used to reveal

the energy structure and optical property of the as-pre-
pared Nb2O5 nanorods and finally porous nanotube pro-
ducts. UV-Vis adsorption spectra of Nb2O5 nanorods
and nanotubes are presented in Figure 9a. It can be
seen from Figure 9a that the structure transformation
from solid nanorods to nanoporous nanotubes is accom-
panied by distinct changes in the UV-Vis spectra
because of the significant difference in shape between
nanorod precursors and nanotube products. As a direct
band gap semiconductor, the optical absorption near the
band edge follows the formula

hv A hv E ( ) /
g

1 2 (1)

where a, v, Eg, and A are the absorption coefficient, light
frequency, band gap energy, and a constant, respectively
[16,26]. The band gap energy (Eg) of Nb2O5 can be defined
by extrapolating the rising part of the plots to the photon
energy axis. The estimated band gaps of Nb2O5 nanotubes
and nanorods are 3.97 and 3.72 eV, respectively (Figure
9b), which are both larger than the reported value (3.40
eV) of bulk crystals [10]. The blue shift (approximately
0.25 eV) of the absorption edge for the porous nanotubes
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Figure 8 Morphology and composition characterizations of LiNbO3 nanorods. SEM images (a, b) and XRD pattern (c) of LiNbO3 nanorods

obtained through calcination of Nb2O5 nanorod precursors and LiOH at 500°C for 4 h. All the peaks in Figure 8c totally overlap with those of

the rhombohedral LiNbO3 (JCPDS no. 20-0631), and no evidence of impurities was detected.
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Figure 9 Optical properties of Nb2O5 nanorod precursors and

nanotube products. UV-Vis spectra (a) and the corresponding
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nanotubes measured at room temperature.
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compared to solid nanorods exhibits a possible quantum
size effect in the orthorhombic nanoporous Nb2O5 nano-
tubes [10]. Wavelength and intensity of absorption spectra
of Nb2O5 nanocrystals depend on the size, crystalline type
and morphology of the Nb2O5 nanocrystals. If their size is
smaller, then the absorption spectrum of Nb2O5 nanocrys-
tals becomes blue shifted. The spectral changes are
observed because of the formation of nanoporous thin-
walled tubular nanomaterials, similar to the previous
research result [10].

Conclusions

In summary, we have elucidated a new preferential-etch-
ing synthesis for single-crystalline nanoporous Nb2O5

nanotubes. The shell of resulting nanotubes possesses
dense nanopores with size of several nanometers. The
formation mechanism of single-crystalline nanoporous
nanotubes is mainly due to the preferential etching
along c-axis and slow etching along the radial directions.
The as-obtained Nb2O5 nanorod precursors and nano-
tube products can be used as templates for synthesis of
1 D niobate nanostructures. These single-crystalline
nanoporous Nb2O5 nanotubes might find applications in
catalysis, nanoscale electronics, optoelectronics, and bio-
chemical-sensing devices.

Additional material

Additional file 1: Figure S1 UV-Vis (a) and PL (b) spectra of Nb-

based nanomaterials. PL spectra were obtained with an excitation

wavelength of 325 nm measured at room temperature.
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EDS: Energy-dispersive X-ray spectroscopy; PL: photoluminescence; 1D: one-

dimensional; SEM: Scanning electron microscopy.
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