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Abstract—Routine characterization of polarization mode dis-
persion of single-mode fibers in installed cables requires simple
and fast techniques. All standardized techniques use both fiber
ends, one connected to the optical source and the other one for
signal detection. Clearly, this causes several drawbacks in field
tests because the two fiber ends are usually far from each other.
Among standardized techniques, the fixed-polarizer method (also
called wavelength-scanning method) is one of the simplest to im-
plement. In this work we present a new single-end measurement
scheme based on the fixed polarizer method applied to the signal
backreflected by the fiber far-end. We report analytical equations
and numerical solutions that permit to calculate the mean value
of the differential group delay measuring the crossings and/or
extrema densities of the spectrum transmitted through a linear
polarizer. We also show that the mean value of the differential
group delay can be calculated using the Fourier transform of
the detected signal. Finally, experimental results on cascades of
single-mode step-index fibers confirm the robustness and easiness
of our proposal for polarization mode dispersion measurements.

Index Terms—Differential group delay, polarization mode dis-
persion (PMD).

I. INTRODUCTION

I T is widely accepted that polarization mode dispersion
(PMD) is the ultimate limit for optical system perfor-

mances. Furthermore, its random nature does not allow an easy
compensation, as happens for chromatic dispersion which is a
deterministic effect. Clearly, measurements are very useful not
only before and after cable manufacturing, but also on installed
and in-service systems, because PMD evolves as a function
of time, depending on environmental changes. Several PMD
measurement techniques have been standardized: Jones matrix
eigenanalysis (JME) method, fixed-polarizer (FP) method,
Poincaŕe sphere (PS) method and interferometric method. The
main drawback of all these methods is that they have to use
both fiber ends, one for transmission and the other one for
detection. Such a solution is very simple to apply in factory,
while it may be more difficult in field tests.

Recently, we suggested to perform PMD measurements by
means of the analysis of the state of polarization (SOP) of
the backscattered signal. This can be done using a continuous-
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wave as well as a pulsed source. In [1], a polarization optical
time-domain reflectometer (POTDR) scheme was proposed
based on a pulsed, temperature-tuned, DFB laser diode. The
differential group delay (DGD) was measured by applying
the PS method to the Rayleigh backscattered field. The same
scheme was also used to measure the mean value of the beat-
length [1], [2]. On the contrary, in [3] a different technique
was proposed where the optical source was a continuous-wave,
external cavity laser diode, and the PMD was characterized
by analyzing the SOP of the signal due to the Fresnel far-end
reflection.

Both solutions permit to measure the DGD using only one-
fiber end, although only the POTDR could measure the mean
beat-length and the local evolution of the DGD. However,
nowadays POTDR equipments are uneasy to use in field tests.
On the contrary, the continuous-wave scheme is based on
already available commercial instruments, and it requires a
very simple setup.

The purpose of this paper is to describe a new measurement
technique based on the continuous-wave (CW) scheme. In
particular, we establish accurate relationships between the
mean value of the DGD and the extrema density and the level-
crossing density of the backreflected signal passing through a
linear polarizer. We also show that the same DGD can be
calculated analyzing the spectral density of the signal; we
name this solution the pseudointerferometric (PI) method.

The extension of the FP and PI methods to the backreflected
signal is not trivial, because the statistical distribution of the
SOP and of the dispersion vector for fibers in the so-called
“long length regime” are very different in forward propagation
with respect to the round-trip configuration, as shown in [1],
[4]. As a basic example, the DGD of the round-trip follows
a Rayleigh distribution while the DGD in forward direction
follows a Maxwell distribution.

In this paper we also find analytically the probability density
function (pdf) of the three components of the polarization
dispersion vector of the round-trip. Moreover, we numerically
investigate the influence of the frequency window on mea-
surement accuracy. Finally, several experimental results are
presented that show a very good agreement with analytical
and numerical predictions.

II. THEORETICAL BACKGROUND

The measurement techniques we are going to describe
are based on the analysis of the backreflected field. The
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total backscattered power is given by two contributions: the
Rayleigh scattering (RS), that is a distributed effect, and the
Fresnel reflection (FR) from the fiber far-end. Both these
contributions may be used to analyze the PMD properties of
a fiber. Moreover, Rayleigh backscattering as well as Fresnel
reflection are usually modeled as ideal reflectors [5], so that
from a theoretical point of view they can be described by the
same model. The main difference is in the experimental set-
up. In fact, if you are interested in RS, you have to use a
pulsed-source in transmission and a time-resolved polarimeter
in detection. On the contrary, if you can assume that FR is
dominant with respect to RS, then it will be sufficient to use a
continuous-wave optical source in transmission and a standard
polarimeter in detection. It may be easily verified [6], that if the
fiber far-end is well cleaved, and the fiber length is in the order
of 50 km or less, then FR is indeed the dominant component of
the backscattered power and RS can be neglected (as we will
do in the remainder of this paper). This is still more true if one
considers that the RS of the whole fiber is almost unpolarized,
while the FR is not.

The evolution of the SOP of the far end backreflected field
can be conveniently described by means of Stokes vectors
and Müller formalism. In fact, let be the unit Stokes
vector at the output of a loss-less, single-mode fiber. Then

, where is the Müller matrix of the
fiber, and is the input SOP. The frequency dependence
of can be explicitly written by means of the following
differential equation [7]:

(1)

where the primes indicate the derivative with respect to,
and is the inverse matrix of . The vector

is the well-known polarization dispersion vector,
and its modulus is equal to the DGD, .

Analogous results had been obtained for backreflected field,
i.e., the field that forward propagates up to the fiber far end,
undergoes Fresnel reflection, and then back propagates down
to the fiber near end. Let be the Stokes unit vector of
such field, it reads [1], [3]

(2)

where is the Müller matrix representing the round-
trip propagation, is the transpose of and

. Similarly to (1), the dependence of on
frequency can be expressed as

(3)

where is given by [1], [3]

(4)

and its modulus is equal to the round-trip DGD, which results
.

In this paper we will always deal with fibers in thelong
length regime. Because of this, all the quantities introduced
up to now have to be described in terms of their statistical

properties. In particular, it is known that covers uniformly
the Poincar̀e sphere, independently of the input SOP [8].
Hence, if we rewrite in function of its angular coordinates

and

(5)

then and are statistically independent random variables
with the pdf derived in Appendix A.

The randomness of is a consequence of the randomness
of . It is well known that are Gaussian
random variables, statistically independent of each other, with
zero mean and the same standard deviation. Therefore,is
Maxwell distributed, while is Rayleigh distributed, and
the following relationship holds between their mean values [1]:

(6)

A. Statistical Description of

Let us introduce the analytical description of the statistical
distribution of . In [3] it was shown that the pdf of

obtained by numerical simulations agreed very
well with the experimental one. Moreover, it was also shown
that both of them were close to a soliton shaped pdf.

In order to find the analytical expression of the statistical
description of , let us show that when the fiber is in the
long-length regime each column of the matrix is an unit
vector that uniformly covers a sphere with unit radius. In fact,
if we set , then is the first column of

. Similarly to (5) let us write this column as

(7)

It is also useful to write as follows:

(8)

where results to be flat distributed between 0 and (i.e.
) and statistically independent of (these are

all consequences of the statistical properties of and .
See for example [9]).

By means of (4) and (7), we can calculate the first compo-
nent of , which yields

(9)

It is reasonable to assume the elements ofto be statistically
independent of those of ; the rightness of this assumption
will be confirmed by experimental and numerical results. From
Appendix C we can say that has the same statistical
properties of , and hence is flat
distributed between and 1, like the first component of
vector . Finally, recalling that is Rayleigh distributed
and statistically independent of, by means of (B6) we can
state that the pdf of reads

(10)

Clearly, the same result holds also for and .
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Fig. 1. PDF of
B1: experimental results (vertical bars) and numerical
results (black dots) are from [3] continuous line is the theoretical result (10).

Fig. 1 shows the experimental data (vertical bars) and the
numerical results (black dots) published in [3]. Continuous
line is the analytical pdf of as in (10), where was
set to the measured value of 0.2 ps. The agreement between
theoretical, numerical and experimental results is fairly good.

III. CALCULUS OF THE DETECTED POWER

As anticipated in the introduction, the backreflection fixed-
polarizer method is based on the analysis of the power
transmitted through a polarizer as a function of frequency,
that can be expressed as follows:

(11)

being the Stokes vector representing the linear polarizer.
Since the fiber is assumed with no losses, and since we are
dealing with normalized power, also is normalized between
0 and 1. By means of (2), (11) can be so rearranged

(12)

and assuming the input field to be linearly polarized, and the
output polarizer to be perfectly aligned to it , the
detected power may be simplified as follows (please note that
since and represent a linear SOP, their third component
is zero)

(13)

Finally, introducing (5) into (13), we obtain

(14)

Obviously, when the fiber is in the long length regime,
is a random quantity. With the help of (A5), it is easy

to find its statistical description; in particular its cumulative

distribution function (CDF) reads as1

(15)

where is the probability of the event . The pdf can be
calculated by taking the derivative of , which yields

(16)

finally, the mean value of results to be .
Let us now find an explicit expression for the derivative of
with respect to . From (11) we have that ;

using (3) and with the help of properties of orthogonal matrices
[1], it results

Recalling that , and that represents a linear polariza-
tion, may be further simplified, leading to

(17)

where .

IV. A NALYSIS OF LEVEL CROSSINGRATE

We would like to investigate the relationship between the
mean DGD and the mean value of the ratio , where

is the number of times crosses the level in
the frequency window . This mean value can be found by
means of the following formula [10]:

(18)

where is the expected value of, given . Let us
notice that when , then . Consequently,
(18) rearranges to:

which further simplifies to

Now, let us assume that is statistically independent
of [8]. By means of (16), writing as in (8),
can be rewritten as follows:

Since (see
Appendix C), and using (6), we finally find

(19)

1In this work we will give the statistical description of a random variable
by means of either its pdf or its cumulative distribution function, together
with the validity domain of the given expressions. Outside this domain, the
functions are assumed to be zero or one, accordingly.
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In particular, if we choose (the mean level), then
it results

(20)

where . For comparison, we report the
formula found in [8] for the “forward configuration”

(21)

V. ANALYSIS OF THE EXTREMA

Counting the extrema of a signal is equivalent to counting
the times its derivative crosses the zero level. Because of this
the mean number of extrema of over an unitary frequency
band can be expressed as [10]

(22)

An analogous expression holds for the forward configuration,
and in [8] it is shown that only the first factor can be theoret-
ically calculated. On the contrary, when one is dealing with
the backreflected signal, not even can be theoretically
found, since the nonuniformity of distribution complicates
the equations. So we could investigate the relationship between

and only by a numerical analysis.
We described the fiber by means of the waveplate model

described in Appendix D. Fibers were assumed to be made of
10 000 waveplates, while the ratio ranged between 1
and 20 ( is the plate length and is the mean beat-length
of each waveplate). The signal was simulated over
1000 nm, scanned in steps of 0.1 nm, at a center wavelength of
1500 nm. For each fiber the number of extrema was counted,
not only of , but also of the forward propagating fields.
Results were averaged over an ensemble of 25 000 fiber.

Independently of the value assumed by , we found
the following relationship for the backreflected signal:

(23)

A similar equation holds for the extrema density in the forward
configuration, and it reads

(24)

the slight difference (2%) between [8, eq. (32)] and (24) is due
to the different model adopted (see Appendix D). A similar
comment has been already reported in [11].

VI. SOURCE BANDWIDTH INFLUENCE

Theoretical results reported in Section IV require the knowl-
edge of for all the frequencies, which is practically
impossible. Moreover, also numerical results of Section V
were obtained using a band wider than those practically
accessible. Because of this it is interesting to investigate the
effects of a bounded bandwidth source.

Like in [8], we have numerically analyzed the following
quantity:

(25)

where is the theoretical mean DGD calculated by means
of (D10), is the value obtained from a single measure

Fig. 2. Normalized DGD variance plotted as a function of the reciprocal
bandwidth. Linesa, b, c, and d refer, respectively, to (26), (27), (28), and
(29).

of (using either extrema or crossing-level counting),
and the symbol denotes an average carried out over an
ensemble of 25 000 fibers.

In forward configuration the following empirical relation-
ships hold (even if the adopted numerical model is slightly
different, these results are the same as those reported in [8])

(26)

(27)

where is the bandwidth. Similar expressions have been
found also for the round-trip configuration, and they read

(28)

(29)

As it was predictable, the relative error decreases as the
bandwidth increases. It can also be noticed that measurements
taken on the backreflected signal have a smaller uncertainty
compared to the analogous taken in the forward configuration.
This is clearly shown in Fig. 2, where lines, , , and refer,
respectively, to (26), (27), (28), and (29).

VII. A NALYSIS OF THE SPECTRAL DENSITY

Also the pseudointerferometric method can be modified
to operate on the backreflected field. Following the guide-
lines traced out in [12], we can define a mean-shifted signal

, and its correlation function
. The Fourier transform of is the

spectral density of , which reads as follows:
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Fig. 3. Schematic experimental setup.

Because is an even real function, the same holds for
, which has a zero mean and whose variance reads

(30)

Using the rules of Fourier calculus, we can rearrange expres-
sion (30) (with respect to [12], the factor is due to a
different definition of the Fourier transform):

moreover, since [10], we find

(31)

and using (14) and (17) it results (see also Appendix C)

Finally, recalling that is Rayleigh distributed and hence
, the searched relation-

ship reads

(32)

As before, let us report the analogous result for the “forward
configuration” (which can be derived from [12])

(33)

VIII. E XPERIMENT

The previous theoretical relationships have been verified by
the experimental setup shown in Fig. 3. The optical source, a
broad-band super-luminescent LED (with a 100 nm bandwidth,
centered at 1550 nm), is connected to port 1 of a polarization-
insensitive directional coupler. The optical radiation is then
passed through a bidirectional, all-fiber, linear polarizer, and
finally injected into the fiber under test. Please note that
connections between the coupler and the polarizer, and be-
tween the latter and the fiber should be done by means of
an angled connector (FC/APC), in order to reduce as much

Fig. 4. Values ofh��i measured in the round-trip configuration versus
h��i measured in the forward configuration. Filled dots refer to the PI
analysis, empty circles to the crossing counting, and empty diamonds to the
extrema counting. Error bars refer to the level crossing analysis.

Fig. 5. Values ofh��i measured in the round-trip configuration versus
h��i measured in the forward configuration. Filled dots refer to the PI
analysis, empty circles to the crossing counting, and empty diamonds to the
extrema counting. Error bars refer to the extrema density analysis.

as possible all those backreflections which could overlap the
far-end contribution. The optical spectrum analyzer (OSA) is
connected to port 2 of the coupler to collect backreflection
or, alternatively, to the fiber far-end, in a classical forward
configuration, as described in [8].

Measurements were performed over a set of 4 single-
mode, step-index fibers with length ranging from 3 km up
to 20 km. For each link, the spectrum of the backreflected and
of the transmitted power, without any polarizing element was
measured and stored. These data were subsequently used to
normalize the signals between 0 and 1. Fifteen spectra were
measured for each fiber length, both in the forward and round-
trip configuration, with a delay of at least 2 hours between
each measurement.

Experimental results are reported in Figs. 4 and 5. In both
figures the horizontal axis reports the mean DGD measured
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Fig. 6. CDF ofTB(!): the continuous line refers to experimental data, while
the dashed line is the theoretical result (15).

in the forward configuration, while the vertical axis reports
the value measured in the round-trip configuration. Circles
refers to measurements performed by means of the mean-level
crossing counting [i.e., (20) and (21)], diamonds are measures
made by extrema counting [(23) and (24)] and filled dots
refers to value obtained by means of the pseudointerferometric
method [(32) and (33)]. The power spectral density was
estimated by means of the following formula [13]:

where is the number of the measured evolution of ,
and is the source bandwidth. In Fig. 4 horizontal and
vertical bars represent respectively the uncertainty of the level
crossing analysis in forward and in round-trip configuration,
according to what reported in Section VI. In the same way,
bars reported in Fig. 5 represent the uncertainty of the extrema
counting technique. A good agreement is evident between the
three measurement methods, both in forward and round-trip
configuration.

The same experimental data had been differently elaborated
to produce Figs. 6 and 7. The former illustrates the comparison
between the theoretical CDF of [(15), dashed line in
the figure] with the experimental one (continuous line). The
latter reports as a function of the level , both
theoretically [continuous line in the figure, obtained rearrang-
ing (19)], and experimentally (black dots). Both figures show
a good correspondence between theory and experiment.

IX. CONCLUSION

We derived analytical expressions and numerical relation-
ships for single-end PMD measurements based on the fixed-
polarizer method. In particular we related the mean value of
the DGD to arbitrary-level crossing density, extrema density
and standard deviation of the backreflected power spectral
density. Analytical, numerical and experimental results are
in very good agreement. We estimated also the effect of the
limited bandwidth on the measurement accuracy. Finally, we

Fig. 7. Evolution of the normalized level crossing rate as a function of level.
The continuous line is the theoretical result (19), while the filled dots represent
the experimental data.

analytically found the pdf of the polarization dispersion vector
of the round-trip.

APPENDIX A
STATISTICAL DESCRIPTION OF

When a polarized signal propagates through a lossless,
randomly birefringent fiber in the long length regime, its state
of polarization, , is a random unit vector that uniformly
covers the Poincaré sphere [8].

Let be expressed as in (5). In order to find the statistical
description of the angular coordinatesand , we calculate the
probability of the event , where is an infinitesimal
area, centered around a point of azimuth and zenith

. We can write

(A1)

with the joint probability density function of and
evaluated in . On the other hand, is uniformly

distributed on the sphere, so it also results

(A2)

where is the radius of the sphere, and
is the measure of . By equating (A1) with

(A2), we can now state that

The evaluation of the marginal densities leads to the following
pdf’s [10]:

hence (A3)

(A4)

Using these results and developing cumbersome calculations
not reported for the sake of brevity, it is possible to show
that the three components of the vector are uniformly
distributed between and 1. Moreover,
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and this demonstrates thatand are statistically
independent.

Using (A4) we can find the statistical description of
, that is

which by means of trigonometric formulae leads to

(A5)

APPEDIX B
CALCULATION OF (10)

Let it be , where , and is Rayleigh
distributed, so that its pdf reads as

being the mean value of. Moreover, let us assume
that the two variables are statistically independent.

The cumulative distribution function (CDF) of can be
calculated by means of the total probability theorem, which
yields

where is the probability of the event , given .
Since the pdf of is an even function, we limit the analysis
to the case ; moreover, the CDF of reads

if
if
if

so that we have

By taking the derivative with respect to, we find the pdf of

integrating and extending the result also to negative values,
we finally find

(B6)

APPENDIX C
A USEFUL RESULT

The results to be presented in this section may be found
also in [14]. We report them here for completeness.

Let be uniformly distributed between 0 and , and let
be a random variable, statistically independent of, whose pdf
may be unknown. The characteristic function of the random
variable ( any integer but not zero) reads [10]

(C7)

Because of the statistical independence betweenand , the
innermost expected value of last expression may be evaluated
as if was a constant value, so that it results

(C8)

Let us define ; using the periodicity of the sine
function the last integral may be rearranged as

where is the Bessel function of the first kind of zero
order [15]. It should be noted that this result does not depend
anymore on , so it is easy to evaluate the outermost expected
value of (C7), which finally yields

Consequently, statistical properties ofdepend only on .
The pdf of is the inverse Fourier transform of

[10], so that it results

and, hence, we find [15]

(C9)

APPENDIX D
NUMERICAL MODEL OF A FIBER

Fibers can be numerically studied by means of the well
known waveplate model. Differences may occur in the imple-
mentation of this model, due to the statistical properties of
the waveplates. In [8] all waveplates were supposed to have
the same DGD; however with this choice the signal is
periodic as noted in [11].

Because of this, we assume that the waveplates are statisti-
cally independent of each other, both in terms of beat-length
and birefringence axes rotation. In fact, let be
the local birefringence vector, then we assume thatand
are statistically independent Gaussian random variables, with
zero mean and the same standard deviation. The waveplate
optical axes are uniformly distributed between 0 and,
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while the modulus of the birefringence, , is Rayleigh
distributed [16].

The DGD of each plate is [8]

where is the waveplate length (assumed constant); clearly,
is Rayleigh distributed. The total mean DGD of the fiber

can be calculated from [8] as follows:

where is the number of waveplates. When a fiber is in
the long-length regime, is Maxwellian. If we define the
beat-length as , we finally obtain

(D10)
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