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Single-Ensemble-Based Eigen-Processing
Methods for Color Flow Imaging—Part I. The

Hankel-SVD Filter
Alfred C. H. Yu, Member, IEEE, and Richard S. C. Cobbold, Life Member, IEEE

Abstract—Because of their adaptability to the slow-time
signal contents, eigen-based filters have shown potential in
improving the flow detection performance of color flow im-
ages. This paper proposes a new eigen-based filter called
the Hankel-SVD filter that is intended to process each slow-
time ensemble individually. The new filter is derived using
the notion of principal Hankel component analysis, and it
achieves clutter suppression by retaining only the principal
components whose order is greater than the clutter eigen-
space dimension estimated from a frequency-based analysis
algorithm. To assess its efficacy, the Hankel-SVD filter was
first applied to synthetic slow-time data (ensemble size: 10)
simulated from two different sets of flow parameters that
model: 1) arterial imaging (blood velocity: 0 to 38.5 cm/s,
tissue motion: up to 2 mm/s, transmit frequency: 5 MHz,
pulse repetition period: 0.4 ms) and 2) deep vessel imag-
ing (blood velocity: 0 to 19.2 cm/s, tissue motion: up to
2 cm/s, transmit frequency: 2 MHz, pulse repetition period:
2.0 ms). In the simulation analysis, the post-filter clutter-
to-blood signal ratio (CBR) was computed as a function
of blood velocity. Results show that for the same effective
stopband size (50 Hz), the Hankel-SVD filter has a nar-
rower transition region in the post-filter CBR curve than
that of another type of adaptive filter called the clutter-
downmixing filter. The practical efficacy of the proposed
filter was tested by application to in vivo color flow data ob-
tained from the human carotid arteries (transmit frequency:
4 MHz, pulse repetition period: 0.333 ms, ensemble size:
10). The resulting power images show that the Hankel-SVD
filter can better distinguish between blood and moving-
tissue regions (about 9 dB separation in power) than the
clutter-downmixing filter and a fixed-rank multi-ensemble-
based eigen-filter (which showed a 2 to 3 dB separation).

I. Introduction

In ultrasound color-flow imaging, the computation of
flow estimates for each sample volume (or map pixel

location) within the imaging view is often regarded as a
nontrivial task from a signal processing perspective. The
difficulty of this computational operation is particularly
leveraged by the presence of high-energy, low-frequency
clutter (originating from tissue reverberations and beam
sidelobe leakages) that masks out the desired blood echoes
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in the acquired slow-time data. Hence, as one of the first
steps in color flow signal processing, a highpass filtering
procedure is applied to each raw slow-time ensemble (i.e.,
the received signal samples after fast-time demodulation
and range gating at a nominal depth) so that the clut-
ter can be suppressed before the computation of blood
flow estimates. Given that the slow-time ensemble size is
typically less than 20 samples owing to real-time imag-
ing constraints, such filtering can be more effectively per-
formed using time-variant filters that have a less signifi-
cant transient response. As reviewed by Bjaerum et al. [1],
the projection-initialized infinite impulse response (IIR)
filter and the polynomial regression filter are two partic-
ular types of time-variant filters that are useful for slow-
time clutter suppression. However, since these filters can-
not adaptively position their stopband locations based on
the signal contents, they inherently require a larger stop-
band to suppress nonzero-frequency clutter that may arise
when significant tissue motion is present over the data ac-
quisition time frame. As a result, they may concomitantly
suppress a substantial portion of the blood echoes, and in
turn the sensitivity of flow detection may be decreased.

A. Review of Existing Adaptive Filter Designs

To improve the suppression of clutter arising from mov-
ing tissues, some studies have considered the use of filtering
methods that can adapt its stopband to the clutter spectral
characteristics. For instance, Thomas and Hall [2] as well
as Brands et al. [3] have proposed an approach that first
involves the downmixing of the slow-time signal with the
mean clutter frequency before the highpass filtering oper-
ation. This downmixing step is intended to shift the clut-
ter spectral components toward zero frequency, thereby
making it possible for the slow-time clutter to be sup-
pressed without widening the filter stopband. Neverthe-
less, as pointed out elsewhere [4], this clutter-downmixing
approach can only be treated as a partially adaptive filter-
ing strategy because its performance inherently depends
on the choice of the highpass filter.

Over the past decade, an increasing amount of effort has
been devoted to using eigen-based methods (also known as
principal component analysis) for color flow signal process-
ing. These eigen-processing methods generally work by de-
composing slow-time ensembles into a series of orthogonal
bases (as opposed to fixed bases like the Fourier expan-
sion) and identifying the ones that are related to blood
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echoes. Since the orthogonal expansion is computed based
on the ensemble contents, eigen-based signal processing
strategies have the theoretical advantage of being able to
adapt to the slow-time signal characteristics, and thus they
have potential in suppressing nonstationary clutter while
preserving the blood echoes in the slow-time data. In the
context of clutter suppression, eigen-processing methods
appear to be first considered by Ledoux et al. [5], who pro-
posed to remove stationary clutter from an array of slow-
time ensembles along the same line-of-sight by eliminating
the most dominant components in the singular value de-
composition (SVD) of the ensemble array. Bjaerum et al.

[6] then made use of this subspace-based filtering concept
to develop an eigen-regression filter that is based on an
eigen-decomposition of the slow-time correlation statistics.
Around the same time, Kruse and Ferrara [7] designed a
similar filtering strategy for use in high-frequency swept-
scan-based flow imaging, while Kargel et al. [8] applied the
same approach to their strain-flow hybrid imaging mode.
On the other hand, Gallippi et al. [9], [10] evaluated the
use of an independent component analysis framework to
suppress clutter in their acoustic-radiation-force imaging
studies.

B. Motivations of Study

Despite its adaptability to the slow-time signal contents,
in practice the eigen-regression filter is often faced with two
types of implementation challenges. First, consistent esti-
mation of slow-time correlation matrix normally requires
multiple signal ensembles with clutter characteristics that
are statistically stationary. In the existing eigen-based fil-
ter designs, this estimation procedure is often carried out
through ensemble averaging of the slow-time signal ensem-
bles along the same line-of-sight or interleaved pulse fir-
ing region (with the inherent assumption that the clutter
statistics are stationary over the depth of view). Such an
approach is generally effective in microvasculature imaging
studies where the imaging depths are typically a few mil-
limeters, but it is less likely to be valid for arterial imaging
studies with centimeter-scale imaging depths over which
the extent of tissue motion may not be coherent. The other
limitation of the eigen-regression filter is that its efficacy
is rather sensitive to the choice of the clutter eigen-space
dimension (i.e., the number of principal components corre-
sponding to clutter) owing to the filter’s adaptive nature.
As such, it is necessary to develop an effective algorithm
for this filter to select the clutter eigen-space dimension.

In the first of this two-part paper series, we present a
novel eigen-based clutter filter design that does not require
the use of multiple slow-time ensembles to perform the
orthogonal decomposition. This filter, which we refer to
as the Hankel-SVD filter, works by exploiting the eigen-
space properties of a matrix form known as the Hankel
matrix whose entries are constant along the reverse diag-
onals and whose orthogonal expansion can be found from
an SVD analysis. To formulate discussion on the Hankel-
SVD filter, the rest of this paper is organized as follows.

Section II presents the theoretical principles of the Hankel-
SVD filter and describes a frequency-based algorithm for
estimating the clutter eigen-space dimension. Section III
then details the slow-time signal synthesis method used to
analyze the new filter’s flow detection performance, and
the corresponding results are discussed in Section IV. An
in vivo case study on the use of the Hankel-SVD filter in
suppressing slow-time clutter is presented in Section V.
Some concluding remarks are provided in Section VI.

II. Principles of the Hankel-SVD Filter

Like existing eigen-regression filters, the proposed
Hankel-SVD filter attempts to decompose the slow-time
signal as a sum of orthogonal basis functions. However,
instead of relying on multiple ensembles of slow-time sig-
nal to estimate the basis functions, the Hankel-SVD ap-
proach computes the orthogonal bases through an SVD of
a Hankel data matrix (which has constant entries along
its reverse diagonals) created from the slow-time signal of
individual sample volumes. For a given slow-time ensem-
ble x with ND samples, the signal approximation obtained
from the Hankel-SVD approach can be expressed as

x = [x(0), x(1), . . . , x(ND − 1)]
T

≈
P

∑

k=1

γkϕk.
(1a)

In the above, P is the number of orthogonal bases in the
Hankel component approximation (with P < ND), while
γk and ϕk are, respectively, the kth expansion coefficient
and orthonormal basis vectors that satisfies the following
orthogonality relation:

E{ϕ
H
k ϕl} =

{

1 (k = l)

0 (k �= l)
. (1b)

This formulation is based on a principal Hankel compo-
nent analysis framework that is originally used in time-
series analysis and array processing [11]. Such an approach
should be distinguished from the SVD analysis framework
reported by Ledoux et al. [5], who used multiple slow-time
signal ensembles to compute the orthogonal bases.

A. Computation of Orthogonal Bases

An overview of the proposed single-ensemble-based
eigen-filtering strategy is depicted in Fig. 1. This filtering
strategy begins with the creation of a Hankel data matrix
by dividing a slow-time ensemble into partially overlapping
segments and rearranging them into the following array1:

A =

⎡

⎢

⎢

⎢

⎣

x(0) x(1) · · · x(ND − P )
x(1) x(2) · · · x(ND − P + 1)

...
...

. . .
...

x(P − 1) x(P ) · · · x(ND − 1)

⎤

⎥

⎥

⎥

⎦

P×(ND−P+1)

(2)

1The (i, j)th Hankel matrix entry takes on the (i + j)th sample in
the signal ensemble.
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Fig. 1. Flow diagram of the proposed Hankel-SVD filter. During operation, the filter is applied to the slow-time ensemble of each sample
volume.

Fig. 2. Illustration of how the Hankel matrix A is constructed for
the case where the slow-time ensemble size is eight (ND = 8) and
the dimension parameters is four (P = 4).

where P must satisfy the relation P ≤ ceil(ND/2), i.e., the
smallest integer greater than or equal to ND/2. As such,
the relation P ≤ ND −P +1 always holds, and the matrix
A has a rank (i.e., the number of independent rows) that is
equal to P with a largest possible rank of ceil(ND/2). An
example of the entire matrix formation process is shown in
Fig. 2. Note that, for this matrix, statistical stationarity
of the samples in the signal vector is inherently assumed.

To compute the P orthogonal components in the Hankel
component approximation, we can factor the Hankel data
matrix into the following sum of P orthogonal, rank-one
matrix components via the SVD:

A =
P

∑

k=1

Ak =
P

∑

k=1

σkukv
H
k . (3)

In this expression, Ak is the kth rank-one Hankel compo-
nent in the decomposition, while σk, uk, and vk are cor-
respondingly the singular value, left singular vector (with
dimension P ), and right singular vector (with dimension
ND − P + 1) of Ak. Note that the P singular values in
(3) are ordered from largest to smallest by definition, and
hence Ak can be considered as the kth-order principal
Hankel component. From these principal Hankel compo-
nents, it is possible to reconstruct the orthogonal basis

vectors γkϕk as seen in (1a). One particular way to per-
form this reconstruction process, as originally described
by Poon et al. [12], is to sum and average the matrix
elements along the reverse diagonals of Ak because the
matrix more or less maintains a constant reverse-diagonal
structure. Such an approach is used by the proposed fil-
tering method.

B. Estimation of Clutter Eigen-Space Dimension

Because the aim of the Hankel-SVD filter is to suppress
clutter in the slow-time signal, it is necessary to determine
whether a principal Hankel component Ak is part of the
clutter eigen-space. In general, there are two types of ap-
proaches to carry out this analysis. First, given that clut-
ter often has higher energy than blood echoes and white
noise, a principal Hankel component can be considered as
being part of the clutter eigen-space if its singular value
magnitude σk is larger than a given value. Such way of
estimating the clutter eigen-space dimension is similar to
the eigenvalue analysis algorithms reported previously in a
few eigen-filter designs [7], [13]. Alternatively, since clutter
generally consists of low-frequency contents, it is possible
to identify a clutter eigen-space component based on the
frequency contents of each orthonormal basis vector ϕk.
This latter approach is adopted in the Hankel-SVD filter
to determine the clutter eigen-space dimension because the
approach can be implemented in a way that gives filtering
characteristics similar to the stopband of a conventional
bandpass filter.

The clutter eigen-space analysis algorithm used by the
Hankel-SVD filter is illustrated in Fig. 3. This algorithm
is fundamentally based on two assumptions: 1) the slow-
time clutter is contained in the more dominant Hankel
components (i.e., ones with larger singular values); 2) the
blood flow component of the slow-time signal is contained
in the Hankel components with high Doppler frequen-
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Fig. 3. Steps used by the Hankel-SVD filter to estimate the clutter eigen-space dimension. First (left), the clutter characteristics are examined
by testing whether the most dominant component has a mean frequency (marked as black ⊗) less than a threshold fthr(clut). After that
(right), the clutter dimension is determined by finding higher component order with a mean frequency estimate inside the clutter band
∆fthr (in this example, the clutter dimension is equal to three).

cies. Specifically, the analysis begins with an assessment
of whether clutter is present in the slow-time ensemble by
finding whether the most dominant Hankel component has
a mean frequency fD,1 that is less than a spectral thresh-
old fthr(clut). If clutter is considered to be present, then
the mean frequency of the other Hankel components is
also estimated. Note that, by using the well-known lag-
one autocorrelator [14], the mean Doppler frequency fD,k

of a Hankel component can be found from the orthonormal
basis vector ϕk as follows:

fD,k =
1

2πTPRI
arg

[

ND−1
∑

n=1

ϕk(n)ϕ∗

k(n − 1)

]

, (4)

where TPRI is the pulse repetition interval (i.e., the slow-
time sampling interval). From these estimates, the clutter
eigen-space dimension is found by searching for the largest
component order whose mean frequency falls within a clut-
ter band ∆fthr that is centered at fD,1 (as shown in Fig. 3).
Consequently, the estimated clutter dimension Kc can be
expressed as (5) (see next page). Once the clutter dimen-
sion has been estimated, the filtered slow-time signal y

can be found as follows by summing the orthogonal basis
functions beyond the estimated clutter dimension:

y = [y(0), y(1), . . . , y(ND − 1)]
T

=
P

∑

k=KC+1

γkϕk.
(6)

It is worth noting that the average power of the filtered
slow-time signal can be actually estimated from the singu-
lar values of the principal Hankel components beyond the
clutter dimension. In particular, since the squared sum of
singular values is equal to the Frobenius matrix norm (i.e.,
the squared sum of matrix entries), the post-filter signal
power ρy can be estimated as

ρy =
P

∑

k=KC+1

σ2
k

P (ND − P + 1)
, (7)

where the normalization factor in the denominator stems
from the fact that each Hankel component Ak has P (ND−
P + 1) entries.

C. Relationship to Existing Eigen-Filters

The theoretical formulation of the Hankel-SVD filter
can actually be linked to existing eigen-regression filters. In
particular, the Hankel-SVD approach can be considered as
a signal-domain formulation of a modified eigen-regression
filter that involves data smoothing when computing the
correlation matrix. This relationship can be seen by first
noting that the Hankel matrix A in the Hankel-SVD fil-
ter can be converted into the following P × P correlation
matrix:

Rx ≈ AAH =
⎡

⎢

⎢

⎢

⎣

R0(0) R1(−1) · · · RP−1(−P + 1)
R0(1) R1(0) · · · RP−1(−P + 2)

...
...

. . .
...

R0(P − 1) R1(P − 2) · · · RP−1(0)

⎤

⎥

⎥

⎥

⎦

P×P

for Rk(l) =

ND−P+k+l
∑

n=k+l

x(n)x∗(n − l), (8)

where Rk(l) is the smoothed autocorrelation estimate for
the lth lag and is computed by summing the single-sample
correlation values over a window of ND − P + 1 samples
(with k being the first sample index in the window when
the lag is zero). From the properties of the SVD, it is
well known that the eigen-decomposition of this smoothed
correlation matrix is related to the SVD of the Hankel data
matrix as follows:

A =
P

∑

k=1

σkukv
H
k ⇔ AAH =

P
∑

k=1

σ2
kuku

H
k , (9)

where the eigenvalues and eigenvectors of AAH are, re-
spectively, the squared singular values and the left singu-
lar vectors of A. Based on such property, the Hankel-SVD
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Kc =

⎧

⎨

⎩

0 , for |fD,1| > fthr(clut)

arg max
k

{|fD,k − fD,1| < ∆fthr/2} , for |fD,1| < fthr(clut)
(5)

filter can therefore be seen as being similar to an eigen-
regression filter that computes orthogonal bases from a
smoothed correlation matrix.

D. Computational Considerations

As can be expected from its formulation, the computa-
tion load of the Hankel-SVD filter is rather high as com-
pared with that for nonadaptive filters like the IIR filter.
In particular, this new filtering strategy requires the com-
putation of an SVD on the Hankel matrix formed from
each slow-time signal, and after the SVD is computed, a
series of vector operations is needed to reconstruct the
principal Hankel components. Indeed, as shown elsewhere
(see Table 2-2 in [15]), the application of this filter to each
slow-time signal would need at least on the order of P 3

floating point operations when P is equal to ND/2. Nev-
ertheless, since ND is often kept below 20 samples in color
flow imaging, the additional burden needed by the Hankel-
SVD filter is less substantial. Also, by taking advantage of
the persymmetric structure of the Hankel data matrix, it
is possible to perform the SVD with fewer floating point
operations via the use of more efficient algorithms (see [16]
for a general reference).

III. Simulation Method

To facilitate analysis of the Hankel-SVD filter’s perfor-
mance, a signal synthesis model was first developed to gen-
erate slow-time ensembles with various spectral character-
istics. In this model, the clutter and blood components of
the slow-time signal were separately generated using two
different approaches. Such a hybrid synthesis approach is
physically justified by recognizing that tissue and blood
scatterers follow different movement mechanisms: Tissues
tend to move in a quasicyclic pattern while blood scatter-
ers simply traverse through the sample volume. Based on
these separate mechanisms, the slow-time clutter was syn-
thesized as sampled data with phase modulation features
(as described in [17]), while the blood echoes were gener-
ated by feeding complex Gaussian noise through a linear
filter whose impulse response corresponds to the slow-time
signal for a single moving scatterer (as originally proposed
in [18]).

A. Synthesis Procedure

1. Clutter Simulation: An overview of our slow-time
signal synthesis procedure is illustrated in Fig. 4. One of
the major components in the synthesis procedure is the
generation of the clutter waveform in the slow-time signal.

Fig. 4. System-level schematic of the slow-time signal synthesis ap-
proach. In this study, the single-scatterer blood echo template carried
the form of a Gaussian-shaped complex sinusoid, while the clutter
vibration pattern was a single-tone waveform.

As shown in the Appendix, this process begins by defin-
ing a clutter vibration pattern φc(n) to represent the in-
stantaneous phase of the slow-time clutter. For our study,
the vibration pattern was modeled as a sinusoid whose fre-
quency and peak amplitude were set based on the specified
clutter parameters. The clutter waveform template hc(n)
was then obtained by setting the vibration pattern as the
phase argument of a complex exponential operator, and
thus the nth sample of this template can be expressed as

hc(n) = exp{jφc(n)} = exp{jφc,max sin(2πfvibnTPRI)}.
(10)

In the above, fvib is the vibration frequency of the clutter
vibration pattern, and φc,max is the maximum instanta-
neous clutter phase that equals to the following (see Ap-
pendix):

φc,max =
2fovc,max cos θc

cofvib
, (11)

where vc,max is the maximum tissue velocity, θc is the
beam-tissue angle, fo is the ultrasound frequency, and co is
the acoustic propagation speed. Once the clutter waveform
template is defined, it is multiplied with a complex Gaus-
sian random number (of zero mean and unit variance) to
model the random magnitude and phase of coherent tissue
scatterers within the sample volume. Note that this clutter
simulation approach inherently assumes constant charac-
teristics for coherent tissue scatterers throughout the en-
semble period. As such, the data samples in the simulated
clutter would not exhibit signal decorrelation character-
istics that may arise from the cyclic movement of tissue
scatterers into and out of the sample volume.
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2. Blood Signal Simulation: Another major step in the
signal synthesis process is generation of the blood com-
ponent in the slow-time signal. This process first involves
the creation of an echo template to model the Doppler sig-
nal originating from a single moving scatterer. The echo
template used in this study was defined as a Gaussian-
enveloped complex sinusoid whose modulating frequency
corresponds to the mean Doppler frequency calculated
from the Doppler equation and the specified flow velocity.
For a given modulating frequency fD(b) and a temporal
width parameter Twidth, the nth sample of the blood echo
template can be expressed as follows (see Appendix):

hb(n) = exp
{

−(nTPRI/Twidth)
2
}

· exp
{

j2πfD(b)nTPRI

}

.
(12)

To account for the transit time broadening effects of blood
scatterers [19], the temporal width of the blood echo tem-
plate was defined as a function of blood flow velocity. In
particular, for large beam-flow angles, it can be shown that
the temporal width parameter is proportional to the fol-
lowing relation:

Twidth ∝
1

βb

∝
coFnum

2vbfo sin θb

, (13)

where βb is the spectral broadening bandwidth (assumed
to be the −20 dB bandwidth in the simulations), vb is the
blood velocity, Fnum is the F-number of the transducer,
and θb is the beam-flow angle. Once the single-scatterer
echo template was defined, the blood signal for multiple
scatterers was then synthesized by convolving complex
Gaussian random samples (of zero mean and unit vari-
ance) with the template. Note that, during the simulations,
the transient samples in the convolution were discarded to
maintain statistical uniformity in the synthesized data. As
well, multiple realizations of the blood signal were gen-
erated at once by convolving a large number of random
samples with the single-scatterer echo template.

3. Slow-Time Signal Generation: To synthesize slow-
time ensembles, the amplitudes of the simulated clutter
and blood signals were first scaled according to the rel-
ative clutter and blood scattering strengths. After that,
the scaled components were summed together along with
white noise samples that were generated separately. For
analysis purpose, the clutter-only slow-time signal (i.e., the
signal for a sample volume with no blood flow) was also
obtained by summing only the scaled clutter components
and white noise samples. The nth sample of the synthe-
sized slow-time signal and its clutter-only counterpart can
be expressed as

x(n) = κc[gchc(n)] + κb[gb(n) ∗ hb(n)] + κww(n),
(14a)

xc(n) = κc[gchc(n)] + κww(n), (14b)

where gc and gb(n) are, respectively, the complex Gaus-
sian random samples used to model the tissue and blood

scatterer distributions; also, κc, κb, and κw, respectively,
denote the amplitude scaling coefficients for clutter, blood
echoes, and white noise. In the simulations, the relative
strengths between the amplitude scaling coefficients were
characterized according to the clutter-to-blood signal ratio
(CBR) and the blood-signal-to-noise ratio (BSNR), which
in turn are defined by

CBR = 20 log10(κc/κb), (15a)

BSNR = 20 log10(κb/κw). (15b)

Note that, before using the signals synthesized from (14a)
and (14b) for filter performance analysis, they were quan-
tized to a certain number of bits as set forth by the spec-
ified dynamic range, and they were divided into nonover-
lapping segments to yield multiple signal realizations.

B. Filter Analysis Protocol

To assess the efficacy of the Hankel-SVD filter, various
sets of slow-time ensembles and their clutter-only compo-
nents (each with 10 000 realizations) were generated using
the above-described synthesis model and the parameters
listed in Table I. The synthesized data were intended to
model the received slow-time signal in a normal arterial
imaging scenario with minor tissue motion as well as a
deep vessel imaging scenario with significant tissue mo-
tion, lower transmit frequency, and longer ensemble peri-
ods. To gain insights on the Hankel-SVD filter, particular
signal realizations were selected from the synthesized data
to analyze the characteristics of the principal Hankel com-
ponents. Also, to assess the filter’s performance quantita-
tively, the Hankel-SVD filter was applied to all the syn-
thesized slow-time signals and their resulting post-filter
power was computed. As a benchmark for the post-filter
power estimates, the same procedure was repeated with
the clutter-only signals. Note that during the analysis, the
dimension parameter P of the Hankel-SVD filter was set
to five (i.e., ND/2, the maximum possible value), while the
two frequency thresholds fthr(clut) and ∆fthr were set, re-
spectively, to 100 Hz and 50 Hz (since the clutter spectral
range of the two flow scenarios is at most ±95 Hz, as will
be shown in Section IV-A).

C. Performance Measure

In this study, the post-filter clutter-to-blood signal ratio
(CBR) was analyzed at various blood velocities to exam-
ine the efficacy of the Hankel-SVD filter quantitatively.
This quantity was computed by finding the square-root of
the ratio between the average post-filter power of clutter-
only signals and that of slow-time signals corresponding to
a particular blood velocity. If a filter can effectively sup-
press clutter, the post-filter CBR should be less than one
in linear scale (or be negative in dB scale) because blood
echoes should dominate the filtered slow-time signal.

To facilitate comparative assessment, the above filter
analysis was also carried out with an IIR-based (with
projection-initialization) clutter-downmixing filter. The
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TABLE I

Simulation Parameters Used in the Clutter Filter Study.

Parameter Arterial Imaging Deep Vessel Imaging

Fixed Machine and Synthesis Parameters

Acoustic speed, co 1540 m/s
F-number, Fnum 4
Slow-time ensemble size, ND 10
Dynamic range 14 bits
Number of realizations per dataset 10000

Manipulated Machine Parameters

Pulse carrier frequency, fo 5 MHz 2 MHz
Pulse repetition interval, TPRI 0.4 ms 2.0 ms

Signal Strength Parameters

Clutter-to-blood signal ratio, CBR 30 dB
Blood-signal-to-noise ratio, BSNR 10 dB
Average noise strength, κw 10 dB

Blood Parameters

Beam-flow angle, θb 60◦

Flow velocity, vb Varying from 0 to aliasing velocity

Clutter Parameters

Beam-tissue angle, θc 0◦

Maximum tissue velocity, vc,max 2 mm/s 20 mm/s
Vibration frequency, fvib 5 Hz 5 Hz

Responding Signal Parameters

Ensemble period, NDTPRI 4.0 ms 20.0 ms
Aliasing velocity, valias 38.5 cm/s 19.2 cm/s
Max instantaneous clutter phase, φc,max 2.6 radians 10.4 radians

Hankel-SVD Filter Parameters

Dimension parameter, P 5
Dominant clutter freq. thr., fthr(clut) 100 Hz

Clutter stopband size, ∆fthr 50 Hz
IIR filter orders (for comparison) 3 5

IIR filter used was either a third-order (for arterial imag-
ing scenario) or fifth-order (for deep vessel imaging sce-
nario) Chebychev Type-I filter whose nominal cutoff was
set arbitrarily (because this parameter’s influence on the
stopband size is insignificant when using projection initial-
ization). These filter orders were chosen because their ef-
fective stopband size (taken as the width between −60 dB
points in the filter’s frequency response) is similar to the
cutoff bandwidth of 50 Hz used by the Hankel-SVD fil-
ter. It is worth pointing out that the eigen-regression filter
was not examined in these simulations because our signal
synthesis model does not generate statistically stationary
Doppler ensembles for multiple sample volumes (as needed
by the eigen-regression filter to estimate the correlation
matrix). Analysis of this filter will be considered in the in
vivo imaging case study described in Section V.

IV. Simulation Results and Discussion

A. Characteristics of Principal Hankel Components

1. Arterial Imaging Scenario: To illustrate some of the
characteristics of the principal Hankel components, a par-

ticular realization of the slow-time signal (with an ensem-
ble size of 10) was selected from the data set synthesized
with arterial imaging parameters. The blood velocity used
to synthesize this signal realization is 10 cm/s, correspond-
ing to a mean Doppler frequency of 325 Hz. Also, accord-
ing to the responding parameters listed in Table I (bottom
of middle column), this signal realization has a maximum
instantaneous clutter phase of 2.6 radians. The theoreti-
cal Doppler spectrum for this simulation flow scenario is
shown in Fig. 5(a). As can be seen, the clutter phase modu-
lation gives rise to low-frequency impulses that are closely
spaced on the Doppler axis between the spectral range of
±40 Hz.

Figs. 5(b) and (c), respectively, show the singular value
and mean frequency estimate of the principal Hankel com-
ponents that correspond to the selected signal realization.
From these plots, it can be seen that the first principal
component corresponds to the clutter eigen-space based
on its distinctly higher singular value magnitude and low
mean frequency estimate. Also, the second principal com-
ponent appears to belong to the flow eigen-space because
its mean Doppler frequency estimate is close to the blood’s
actual mean frequency. The rest of the principal Hankel
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Fig. 5. Characteristics of principal Hankel components for a signal re-
alization in the arterial imaging scenario with 10 cm/s blood velocity:
(a) the theoretical Doppler spectrum; (b) singular value distribution;
(c) mean Doppler frequency estimates (marked as ⊗).

components appear to correspond to the noise floor since
their singular values are relatively small and their mean
frequency estimates do not correspond well with the pre-
defined spectral characteristics.

2. Deep Vessel Imaging Scenario: As a comparison to
the arterial flow example, a different realization of slow-
time signal was selected from the deep vessel imaging data
set. For this realization (also with an ensemble size of
10), the blood velocity was 10 cm/s, corresponding to a
mean Doppler frequency of 130 Hz; as well, the signal’s
maximum instantaneous clutter phase is 10.4 radians (see
right column of Table I). An illustration of the slow-time
clutter’s wideband spectral characteristics is provided in
Fig. 6(a), where it can be seen that the low-frequency im-
pulses due to clutter phase modulation (now spanning be-
tween ±95 Hz) are more significant than the ones in the
previous scenario.

Figs. 6(b) and (c) show the corresponding singular val-
ues and mean frequency estimates for the selected signal’s

Fig. 6. Characteristics of principal Hankel components for a signal
realization in the deep vessel imaging scenario with 10 cm/s blood
velocity. Descriptions are the same as Fig. 5.

principal Hankel components. It can be seen that the first
two principal components have higher singular values and
their frequency estimates are within the clutter spectral
range; as such, they appear to correspond to the clutter
eigen-space. On the other hand, the third principal com-
ponent appears to belong to the flow subspace because
its mean frequency estimate is near the predefined flow
Doppler frequency. As for the fourth and fifth principal
components, they appear to be describing the noise floor
in view of their small singular value magnitudes and their
spurious mean frequency estimates.

Based on the results seen in Fig. 5 and Fig. 6, it can
generally be concluded that the clutter and blood com-
ponents are likely to be contained within the first few
principal Hankel components corresponding to the slow-
time ensemble. Nevertheless, their actual eigen-space di-
mensions may vary depending on their respective Doppler
bandwidths and the random variations inherent in each
signal realization.
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Fig. 7. Post-filter CBR as a function of blood velocity for (a) arterial and (b) deep vessel imaging scenarios. Shown in the top and middle
plots, respectively, are the 25th-, 50th-, and 75th-percentile post-filter CBR estimates for the Hankel-SVD filter and the clutter-downmixing
filter. Also, a comparison of the 50th-percentile post-filter CBR for the two filters is given in the bottom plots. The filter parameters used
to obtain these results are given in Section III-B.

B. Post-Filter Clutter-to-Blood Signal Ratios

1. Arterial Imaging Scenario: As a quantitative assess-
ment of the new filter’s performance in the arterial imaging
scenario, the top graph of Fig. 7(a) shows the post-filter
CBR as a function of the actual blood velocity for a slow-
time ensemble size of 10 samples. The shown results are
the 25th-, 50th-, and 75th-percentile post-filter CBR esti-
mates obtained from the 10 000 signal realizations synthe-
sized at each blood velocity. Note that various percentile
CBR curves are shown in this figure to depict the varia-
tions in the distribution of post-filter CBR estimates ob-
tained at each blood velocity. The primary observation to
be noted from Fig. 7(a) is that the 50th-percentile (i.e.,
median) post-filter CBR curves started at a 0 dB level
and then approached the reciprocal of the expected BSNR
of −10 dB as the flow velocity increases. The 0 dB trend
observed at near-zero flow velocities can be explained by
recognizing that the low-velocity blood echoes are likely
attenuated concomitantly in the filtering process, so the
filtered slow-time signal in these cases tend to share simi-
lar form with the filtered clutter-only signal (and in turn,

they yield a 0 dB post-filter CBR). On the other hand, the
−10 dB trend in the higher velocity range can be explained
by considering that clutter can more likely be suppressed
without distorting high-velocity blood signals, so the fil-
tered clutter-only signal and the filtered slow-time signal
in these cases should be dominated, respectively, by white
noise and blood echoes (and in turn, they give a post-filter
CBR that approaches the expected BSNR’s reciprocal). It
follows that variations in post-filter CBR values are also
expected in the higher velocity range, because the power
of filtered clutter-only signals in this range is essentially
random noise power that equals to the mean-squared sum
of Gaussian random samples.

As a comparison, the middle graph of Fig. 7 shows
a similar set of post-filter CBR curves obtained using a
clutter-downmixing filter with similar stopband size; also,
the bottom graph of Fig. 7 gives a comparison of the me-
dian post-filter CBR curves for the two filters. It can be
seen that for all the shown post-filter CBR curves (i.e., the
25th-, 50th-, and 75th-percentile curves), the Hankel-SVD
filter has a narrower transition region than the clutter-
downmixing filter. Because a similar cutoff bandwidth
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TABLE II

Parameters for the In Vivo Flow Imaging Study.

Parameter Value

Data Acquisition Parameters

Transmit pulse frequency 4 MHz
Transmit pulse duration 0.75 µs (3 cycles)
Pulse repetition interval 333 µs
Slow-time enable size 10

Beam-flow angle ≈ 70◦

Image Size Parameters

Lateral field of view −11.5 to +11.5 mm
Number of beam lines 77

Axial field of view +5 to +25 mm
Number of depth samples (per beam) 115 (non-overlapping)

was used for the two filters, this result suggests that the
Hankel-SVD filter has a better clutter suppression perfor-
mance in the case where the slow-time clutter is relatively
narrowband with respect to the slow-time sampling rate.

2. Deep Vessel Imaging Scenario: In contrast to the ar-
terial results, Fig. 7(b) shows the post-filter CBR curves in
the deep vessel imaging scenario as a function of the true
blood velocity. In this scenario, because the slow-time clut-
ter is significantly more wideband in nature [see Fig. 6(a)],
the transition regions in all the post-filter CBR curves of
both filters are wider. Nevertheless, within the transition
region, the Hankel-SVD filter appears to be able to at-
tain the steady-state CBR value at lower velocities (near
8 to 10 cm/s) as compared with the clutter-downmixing
filter, which reaches steady-state CBR near 12 to 14 cm/s.
This result is consistent with the findings in the arterial
flow scenario. Hence, it seems that the Hankel-SVD filter
is generally more capable of suppressing slow-time clutter
without concomitantly attenuating the blood signal com-
ponents.

V. In Vivo Imaging Experiment

To facilitate further evaluation of the Hankel-SVD fil-
ter’s performance, a frame of in vivo RF color-flow data
was acquired using a Philips HDI-5000 scanner (Bothell,
WA) that was equipped with an L7-4 linear array probe.
The main acquisition parameters are listed in Table II. For
this data frame, the field of view corresponded to the cross
section of a 25-year-old youth volunteer’s carotid arteries
(beyond bifurcation) during cardiac systole where arterial
wall motion was the most significant [see Fig. 8(a)]. Note
that, during the acquisition, the volunteer was asked to
hold his breath so that any potential tissue motion due to
patient movement can be avoided.

A. Data Analysis Procedure

The first step in processing the acquired RF data frame
is to obtain the analytic slow-time signal of individual
sample volumes within the field of view. In our pro-

Fig. 8. Graphical overview of an in vivo imaging study on the human
carotid arteries (past bifurcation) with tissue motion due to arterial
wall distension. In (a), an illustration of the physical setting is shown.
In (b), a B-mode image of the imaging view is shown with labeled
sections of blood vessel (BV), moving tissue (MT), and static tissue
(ST).

cessing, this preprocessing was carried out using an in-
phase/quadrature (I/Q) demodulation routine. Once the
slow-time ensembles were obtained, they were individually
passed into the Hankel-SVD filter to suppress any clut-
ter that may be present, and the resulting filtered signal
power was computed. To study the Hankel-SVD filter’s
sensitivity to blood flow echoes as well as its specificity to
clutter, the filtered signal power was compared over differ-
ent regions of blood vessel, static tissue and moving tissue
within the data frame [as depicted in Fig. 8(b)]. It is worth
noting that, since the tissue motion in this case study is
primarily caused by arterial wall distension during peak
systole, the moving tissue sections were selected to be re-
gions adjacent to the blood vessels, while a static tissue
section was selected from a region located far away from
the blood vessels. In terms of the stopband parameters, the
Hankel-SVD filter used for this task had threshold values
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TABLE III

Regional Power for the In Vivo Imaging Study (in dB, with

Respect to Unity Reference Level).

Fixed-Rank,
Multi-

Clutter Ensemble
Region Hankel-SVD Downmixing Eigen

Blood vessel 1 (BV1) 53.2 54.2 54.5
Blood vessel 2 (BV2) 53.6 53.6 54.2
Moving tissue 1 (MT1) 44.5 50.9 52.0
Moving tissue 2 (MT2) 36.4 43.6 42.6
Static tissue (ST1) 36.2 38.2 38.2

of fthr(clut) = 200 Hz and ∆fthr = 100 Hz. These values
were chosen since they yielded high power estimates in the
blood vessel regions of the image [the BV1 and BV2 sec-
tions in Fig. 8(b)] while giving low ones in the static tissue
section.

For comparative assessment, the above filter analy-
sis procedure was repeated for two types of clutter fil-
ters: 1) an IIR-based clutter-downmixing filter (2nd-order,
projection-initialized), and 2) a fixed-rank multi-ensemble-
based eigen-filter (2nd-order clutter dimension). These fil-
ter orders were chosen so that they can give blood power
estimates that are similar to those provided by the Hankel-
SVD filter. Note that, for the multi-ensemble-based eigen-
filter, the slow-time correlation matrix was estimated via
ensemble averaging of all slow-time ensembles along the
same beam line.

B. Results and Discussion

Fig. 9 shows the filtered slow-time power maps obtained
from all three filters considered in this study. As shown in
these images, all three filters have produced power maps
that correctly indicated the presence of flow inside the two
blood vessels within the imaging view. Nevertheless, as
seen by its smaller power estimates outside the blood ves-
sel, the Hankel-SVD filter appears to be able to give a
better visualization of the blood vessel regions than the
two comparison filters. This observation is further sup-
ported by Table III, which shows that the Hankel-SVD
filter yielded a larger separation between the power esti-
mates of blood and tissue regions (about 9 dB difference
between the BV2 and MT1 regions, as compared with 2 to
3 dB for the other two filters considered). Based on these
results, it appears that the Hankel-SVD filter is more ca-
pable of distinguishing blood flow signals from slow-time
clutter when the processors are optimized to provide sim-
ilar filtered power estimates in the larger blood vessel.

Among the three processors considered in this study,
the fixed-rank multi-ensemble-based eigen-filter actually
produced power maps with the most distorted view of the
blood vessels. This mediocre performance is likely due to
two factors associated with the filter’s formulation. First,
the use of a fixed clutter dimension for the eigen-regression
filter may not be appropriate in this case study since the

Fig. 9. Filtered slow-time power maps for the in vivo scenario de-
picted in Fig. 9. Shown in (a), (b), and (c), respectively, are the power
maps for the Hankel-SVD filter, clutter-downmixing filter, and the
fixed-rank multi-ensemble-based eigen-filter. The dynamic range for
these power maps is 30 dB (from 25 to 55 dB, with respect to a unity
reference level). A 5 × 5 median-and-mean filter was applied to each
power map.
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slow-time clutter characteristics vary spatially over the
imaging view. Second, estimation of the slow-time corre-
lation matrix via multi-depth ensemble averaging may be
impractical given that clutter statistics are likely to be
nonstationary over a depth range of few centimeters. In
view of these problems, modifications to the formulation
of the multi-ensemble-based eigen-filter seem to be needed
for this filter to be effective in the in vivo imaging scenar-
ios where tissue motion varies spatially over the imaging
view. Some of these issues have recently been investigated
by Lovstakken et al. [13].

VI. Concluding Remarks

Existing eigen-based clutter filter designs generally re-
quire multiple ensembles of slow-time data that are sta-
tistically stationary to carry out the eigen-decomposition
analysis. To avoid such requirement, this paper has pre-
sented a single-ensemble-based eigen-filtering strategy—
the Hankel-SVD filter—designed to work with the slow-
time signal of individual sample volumes. This new ap-
proach can generally be beneficial in vascular imaging
studies where it is difficult to segment out image regions
with slow-time sample volumes that have similar signal
characteristics (such as the case where spatially-varying
tissue motion is present over a centimeter-scale depth
range). Nevertheless, it may not be as effective as exist-
ing eigen-based filters for very small ensemble sizes (e.g.,
when ND = 4) because the Hankel-SVD analysis only de-
composes the slow-time signal into, at most, ND/2 orthog-
onal bases.

A possible limitation of the Hankel-SVD filter is that,
during the clutter eigen-space analysis, slow-time clutter
is presumed to be contained in the more dominant Hankel
components. This assumption is generally valid when clut-
ter is significantly higher in strength as compared with the
blood echoes (as is the case in general vascular imaging).
However, the assumption would be invalid if the slow-time
clutter and the blood echoes are similar in strength (e.g., in
high-frequency imaging studies where the blood-scattering
strength is higher). In this case, a more advanced algo-
rithm is needed to determine precisely the clutter eigen-
space dimension. One possible way of developing such an
algorithm is to make use of fuzzy logic and pattern recog-
nition principles [20]. Alternatively, it may be possible to
use a multi-modal spectral estimator to first extract sev-
eral principal frequency estimates in parallel and then de-
termine the clutter eigen-space dimension based on the
spectral spread of the estimates.

Aside from its application in ultrasound color flow imag-
ing, the Hankel-SVD filtering technique may be useful to
other flow imaging modalities that also involve the sup-
pression of tissue clutter. For instance, this filter may pos-
sibly be applied to Doppler optical coherence tomogra-
phy (OCT) that shares similar flow estimation principles
with ultrasound [21]. Indeed, in processing Doppler OCT
signals, the proposed filter should be more effective than

conventional digital filters because the slow-time clutter is
inherently more reflective of the tissue motion owing to the
increased velocity resolution provided by OCT scanners.

Appendix A
Signal Synthesis Equations

As shown in [19], the slow-time signal of a single scat-
terer has the following general form for a given transmit
frequency fo and acoustic speed co:

h(n) = b(n) · g(n) · exp

{

j2πfo

2z(n)

co

}

.
(A1)

In the above, z(n) represents the scatterer’s displacement
with respect to the transducer origin during the nth pulse
firing, while b(n) and g(n), respectively, represent the
beam magnitude and the range gate scaling affecting the
scatterer over that particular firing. Based on (A1), we can
derive the slow-time signal synthesis equations for blood
and clutter by defining the actual forms of z(n), b(n),
and g(n).

A. Blood Signals

For a blood scatterer moving straight at a speed vb, its
displacement function zb(n) is given by

zb(n) = nTPRIvb cos θb, (A2)

where TPRI is the pulse repetition period and θb is the
beam-flow angle. By substituting this relation into (A1),
we can see that a blood scatterer gives rise to a slow-time
signal of this form:

hb(n) = b(n) · g(n) · exp

{

j2πfo

[

2vb cos θbnTPRI

co

]}

= b(n) · g(n) · exp{j2πfD(b)nTPRI}, (A3)

where fD(b) = 2vbfo cos(θb)/co is the Doppler frequency.
Note that, at large beam-flow angles, the scatterer crosses
the sample volume through the effective boundaries of the
ultrasound beam, and thus b(n) in (A3) can be assumed as
a windowing function while g(n) can be treated as a con-
stant. By further assuming that b(n) is a Gaussian window,
(A3) can then be seen as being equal to the blood signal
template in (12).

B. Clutter

In contrast to blood, tissue tends to pivot and move
in a quasicyclic manner similar to a spring oscillator. As
such, its displacement function zc(n) essentially takes on
an alternating form rather than a linear form like that for
blood. If the tissue scatterer moves purely in a sinusoidal
fashion (i.e., like a harmonic oscillator), then zc(n) has the
following form:

zc(n) = {zc,max cos θc} sin (2πfvibnTPRI) ,
(A4)
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where zc,max represents the maximum displacement, θc is
the beam-tissue angle, and fvib is the oscillation frequency.
By taking the derivative of zc(n), we can define a tissue
velocity function vc(n) equal to

vc(n) =
d

dn
[zc(n)] = {vc,max cos θc} cos (2πfvibnTPRI) ,

(A5)

where vc,max = 2πfvibzc,max is the maximum tissue veloc-
ity. By incorporating the above relations into (A1), the
slow-time signal for a tissue scatterer can then be ex-
pressed as

hc(n) = b(n) · g(n)

· exp

{

j

[

2fovc,max cos θc

cofvib

]

sin (2πfvibnTPRI)

}

= b(n) · g(n) · exp {jφc,max sin (2πfvibnTPRI)} ,

(A6)

where φc,max is the maximum instantaneous clutter phase
as given in (11). Assuming that the tissue movement is
not beyond the effective boundaries of the sample volume,
both b(n) and g(n) in the above relation can be regarded
as constants, and consequently (A6) has the same form as
the clutter waveform template in (10).
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