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Abstract

We describe an object classification method that can learn from a single train-
ing example. In this method, a novel class is characterized by its similarity
to a number of previously learned, familiar classes. We demonstrate that this
similarity is well-preserved across different class instances. As a result, it
generalizes well to new instances of the novel class. A simple comparison
of the similarity patterns is therefore sufficient to obtain useful classifica-
tion performance from a single training example. The similarity between the
novel class and the familiar classes in the proposed method can be evaluated
using a wide variety of existing classification schemes. It can therefore com-
bine the merits of many different classification methods. Experiments on a
database of 107 widely varying object classes demonstrate that the proposed
method significantly improves the performance of the baseline algorithm.

1 Introduction

Recent methods of visual object classification achieve high performance levels. However,
they require hundreds of examples for training [12, 13, 5, 2]. The cost of collecting
such large amounts of training data may be prohibitive. For example, when learning
to avoid dangerous objects (e.g. predators), situations that permit acquisition of training
examples are hazardous. Since the system’s behavior is incorrect until a sufficient number
of examples has been gathered, minimizing this number is crucial to allow adaptation to
new situations. Obtaining useful performance with very few training examples is also
important when the learning is incremental (i.e. the examples are presented sequentially
and the system is updated after each presentation). In addition, realistic classification
schemes should be able to handle a large number of classes. For example, it is estimated
that humans are familiar with tens of thousands of different classes [3]. As a result, the
accumulated cost of learning all classes may become excessive. Reducing as much as
possible the number of required training examples may help deal with this problem.

In this paper, we propose an object classification method that can learn from a single
example. With this method, a system that can already classify several classes can be ex-
tended to classify an additional novel class using a single training example. We assume
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that for several classes, a sufficient number of examples has been available to train clas-
sifiers by one of the existing methods. These classes will be referred to as ‘familiar’. The
novel class is then represented by its similarity to each of the familiar classes. This sim-
ilarity is measured by the already trained classifiers for the familiar classes. Intuitively,
this representation can be thought of as using a name such as ‘catfish’ or ‘dragonfly’ to
describe a new class by its similarity to several more common classes. More formally,
we show that similarities are preserved across different class instances. Therefore, the
description in terms of similarities generalizes well to unfamiliar instances of the novel
class. As a result, novel object classes can be learned from a single training example.
Since in this scheme generalization to within-class variability is transferred across differ-
ent classes, we refer to this method as cross-generalization.

The remainder of this paper is organized as follows. In the next section, relevant
previous work is reviewed. In section 3, we describe and analyze the proposed cross-
generalization method. Experimental evaluation of the method is presented in section 4.
We conclude with additional remarks in section 5.

2 Related previous work

The classification approach proposed here is based on obtaining outputs from a set of clas-
sifiers and combining these outputs using a higher-level classifier. This approach is known
as ‘classifier stacking’ [14]. Classifier stacking has been combined with representation by
similarities and used successfully for object recognition in [5]. The present paper extends
the work in [5] in several ways. The main contribution is that our algorithm can learn
from a single training example. In contrast, over 100 examples have been used for train-
ing in [5]. In addition, we present a theoretical analysis of the proposed representation to
explain its empirical success in single-example learning. The final important distinction
between [5] and the proposed scheme is that only similarities to individual familiar ob-
jects (under varying viewing conditions) were used in [5]. As a result, the scheme in [5]
did not learn novel object classes. The tasks in [5] were restricted to recognizing individ-
ual novel objects or assigning a novel object to one of the existing, familiar classes. In
contrast, in the current scheme novel objects are characterized by similarities to familiar
objectclasses(rather than individual objects). This simple modification allows the pro-
posed scheme to learn novel object classes and generalize to new instances of these novel
classes. This is an important extension, because for current computer vision algorithms,
object classification is a more challenging task than individual recognition.

Next, we survey additional relevant approaches, emphasizing their training require-
ments. Algorithms such as nearest-neighbor classification [4] require the space of input
patterns to be covered with sufficient density by training examples to achieve good perfor-
mance [4]. Natural object images are usually scattered over a large region (i.e. the within-
class scatter is high) due to the significant variability present in natural object classes.
Consequently, thousands of training examples may be required to cover this region.

Using features that are invariant to irrelevant variability decreases the within-class
scatter and consequently reduces the required training set size [3, 9]. However, designing
invariant features for every possible problem is not feasible [3, 9], and automatic learning
of invariants [11] requires hundreds of training examples.

Linear discriminant analysis [4] (LDA, also called FLD) explicitly constructs features



to reduce the influence of within-class scatter. This is performed by maximizing the ratio
of between-class to within-class scatters. However, hundreds of training examples are
required for this method [2].

In [7, 6], parametric class models are used for classification. The distribution of pa-
rameters in models for the familiar classes is evaluated and used as a prior for parameters
of the novel class. This prior helps avoid inaccurate parameter estimates and consequently
increases the performance. However, only a single prior distribution is learned from all
familiar classes in [7], and this single prior is then used for all novel classes. Such a
prior biases the novel class parameters towards the values frequently appearing among
the familiar classes. For novel classes with less frequent parameter values, the prior
will assign low probability to the correct values of parameters, leading to degradation
of performance. This undesirable behavior will not disappear when more familiar classes
become available, because the parameter probabilities depend on relative fraction, rather
than the absolute number, of uncommon classes. For example, suppose that 95 out of
100 familiar classes represent various quadrupeds and the remaining five classes repre-
sent different kinds of flowers. In this case, any novel class in [7] will be strongly biased
towards quadrupeds. If the novel class in fact represents a new kind of flower, this bias
will adversely affect the performance. In contrast, in the proposed cross-generalization
scheme the influence of highly dissimilar classes is automatically reduced, and only rel-
evant familiar classes contribute significantly. An additional advantage of the proposed
cross-generalization method is that it is not restricted to a single classifier model. For
example, the priors learned in [7, 6] are highly model-specific and are only suitable for
the ‘constellation’ model. Such priors cannot be used with alternative models such as
neural networks or SVMs. In contrast, cross-generalization can be used with a wide va-
riety of classifiers, and can even combine several different classifier types. In spite of
this generality, the performance of cross-generalization compares favorably to that of the
model-specific schemes.

In [10], features are shared between several classes to reduce the total number of fea-
tures required for classifying a large number of classes. This sharing also allows learning
from few training examples. However, to obtain shared features in [10], all classes are
trained simultaneously. This is an undesirable requirement, since in the current prob-
lem formulation, a novel class is assumed to appear after learning of the familiar classes
is completed. In contrast, cross-generalization suits well the learning paradigm where
classes become available incrementally, and it avoids the delays required to accumulate a
large number of classes. In addition, the sharing algorithm used in [10] produces simple
generic features, such as lines and edges. Such generic features are usually outperformed
by more class-specific features. In contrast, in the proposed cross-generalization scheme
the familiar classifiers are trained for optimal performance, using highly class-specific fea-
tures. Although the resulting classifiers were not intended for reuse, cross-generalization
allows to extract and use information from these classifiers to facilitate further learning.

3 Cross-generalization

In this section, the proposed cross-generalization scheme is presented and analyzed. In
section 3.1, a brief description of the scheme is given. The analysis in section 3.2 shows
that the scheme can generalize reliably to novel class images with limited training data.



3.1 Brief description of the scheme

Let C1 . . .CN denote the familiar, well-learned classes. Denote byCi the classifier for the
i’th class. Denote the class to which a patternp belongs byC (p). Denote byCi(p) the
output ofCi on patternp.

In many classifiers, such as neural networks or Bayesian decision rules, meaningful
interpretation can be given to the valueCi(p) even whenp does not belong to classCi .
Such classifiers output a continuous value that indicates the degree of confidence that
the input pattern belongs to the given class. In this case,Ci(p) can be interpreted as the
similarity of patternp to the classCi . Note that the type of classifierCi is irrelevant for this
interpretation; arbitrary classifiers can be used (provided that they can output a similarity
value), and different classifier types used for different classes can be combined.

The main hypothesis that will be used below is that similar classes (such as horses and
dogs) exhibit similar within-class variability (for example, in both classes, the limbs can
move relative to the body). In section 4 we empirically validate some of the implications
of this hypothesis. One such implication is that the similarity ofp to classCi depends
mainly on the overall similarity between classesC (p) and Ci . The similarity is thus
roughly independent of the specific objectp used to make the comparison, and is well
preserved across different class instances. Therefore, the similarity of the objectp to class
Ci will generalize well to other objects of classC (p), and is therefore a good feature to
use for classification.

To learn a novel classC from a single exampleE ∈ C , the similarity ofE to the
familiar classes is recorded in a feature vectorCN

1 (E) = [C1(E) . . .CN(E) ]T of N numbers.
Other instances of classC are expected to have similarity vectors close toCN

1 (E), because
similarities are well preserved across different instances. Therefore, nearest-neighbor
classification can be used. New patternsP with similarity vectors sufficiently close to
CN

1 (E) are classified as belonging toC . Simplel2 norm is used for this classification. A
patternP is classified as belonging to classC when‖CN

1 (E)−CN
1 (P)‖2 is below a certain

thresholdθ . This threshold can be adjusted to obtain the desired tradeoff between hit and
false alarm rates.

3.2 Analysis

We represent input patterns asd-dimensional vectors in the input spaceRd. To facilitate
the analysis, the distribution of patterns of the novel class is assumed to be Gaussian with
meanµ and covariance matrixΣ. Typically, the dimensionality of the input space is high,
but only relatively few features are characteristic of the class. The values of the remaining
features may vary widely; therefore, the Gaussian is elongated in the direction of these
irrelevant features, and the corresponding eigenvalues ofΣ are large.

The classification schemes considered below map the input patternx∈ Rd into some
feature spaceRN by a mappingf . For example, the mapping used by the cross-generalization
classifier isCN

1 (x). In this feature space, the classification is performed using thel2
norm. The purpose of the analysis here is to evaluate the within-class variability in
the feature spaces used by various classifiers. For this, the within-class scatterSw =
E(‖ f (x1)− f (x2)‖2

2) (the expected squared distance between two instances of the class)
is calculated. Intuitively, smallerSw implies easier classification, because all class in-
stances have similar feature values. (Note thatSw can be changed arbitrarily by rescaling



the features and therefore should in principle be normalized by some measure of the over-
all scale. This normalization was not performed since our goal here is to analyze howSw

depends on class parameters rather than to give numerical estimates.)
First, the standard nearest-neighbor classifier in the input space is evaluated. This

classifier uses the identity mapping asf . It can be shown [1] thatSw = E(‖x1−x2‖2
2) =

2trΣ in this case. As mentioned above, the eigenvalues ofΣ in irrelevant directions are
large. Therefore,Sw can become arbitrarily large, and nearest neighbor classification will
perform poorly when many irrelevant features are present.

Next, the use of the Mahalanobis distance for classification is evaluated. This corre-
sponds to usingf (x) = Σ−1/2x. It can be shown [1] thatSw = E(x1−x2)TΣ−1(x1−x2) =
2trI = 2d. Note that each dimension contributes 2 toSw regardless of its original variance.
The influence of irrelevant features with large variance is therefore reduced. However, the
influence of irrelevant features with small variance (usually corresponding to noise) is in-
creased. This is a well-known problem with Mahalanobis distance, and in principle it
should be handled by removing features that correspond to noise. However, despite this
undesirable effect,Sw is bounded (unlike with nearest-neighbor classification in input
space). Therefore, using Mahalanobis distance for classification is in general preferable
to usingl2 norm on input patterns. However, this requires estimatingΣ from a sufficient
number of training examples.

Next, we show that the proposed cross-generalization scheme has favorable properties
similar to those of Mahalanobis distance. However, in contrast to Mahalanobis distance,
cross-generalization does not require explicitly estimatingΣ and can therefore be used
when the number of available training examples is limited.

The mapping used by the cross-generalization scheme isf (x) = CN
1 (x); the resulting

feature space will be called ‘similarity space’. We assume that the familiar classes are also
Gaussian with meansµ f i and covariancesΣ f i . We also assume that the classifier for the
i’th familiar class uses the Mahalanobis distance for classification. Larger Mahalanobis
distance indicates less similar patterns. To limit the influence of these dissimilar patterns,
their similarity should be close to 0. A simple way to achieve this is to use the inverted

Mahalanobis distance as similarity:Ci(x) =
[
(x−µ f i)TΣ−1

f i (x−µ f i)
]−1

. In this case,

Sw = E(‖ f (x1)− f (x2)‖2
2) = ∑i Ti , whereTi is the contribution of thei’th familiar class.

This contribution is given byTi = E(Ri), where

Ri =
[dMi(x1,µ f i)−dMi(x2,µ f i)]2

d2
Mi(x1,µ f i)d2

Mi(x2,µ f i)
.

HeredMi(x,y) = (x− y)TΣ−1
f i (x− y) is the Mahalanobis distance betweenx andy, mea-

sured using the covariance matrix of familiar classi.
The numerator and denominator ofRi are always non-negative. To estimate the

denominator, observe that it is proportional to the product of distances. The distance
dMi(x,µ f i) is of the order of magnitude of(µ − µ f i)TΣ−1

f i (µ − µ f i). Assuming that the
novel class is well separated from the familiar classes, this distance is bounded away from
zero. Then the denominator is also bounded away from zero. In this case, its exact value
is not important since the inequality

Ri ≤
[dMi(x1,µ f i)−dMi(x2,µ f i)]2

min(d2
Mi(x1,µ f i)d2

Mi(x2,µ f i))



can be used to obtain a bound. The ‘zeroth-order’ approximation is to assume that the
denominator is roughly constant and equal to its average value. The denominator can
then be moved outside the expectation sign. In this case [1],

Ti = 4·
tr(ΣΣ−1

f i )2 +2∆T
i Σ−1

f i ΣΣ−1
f i ∆i

[2tr(ΣΣ−1
f i )2 +4∆T

i Σ−1
f i ΣΣ−1

f i ∆i +(A+B)2]2
,

whereA = ∆T
i Σ−1

f i ∆i , B = trΣΣ−1
f i , ∆i = µ − µ f i . More accurate approximations should

take into account the higher-order moments of the denominator.
Assume first that the familiar classCi is similar to the novel classC . The similarity is

measured by∆i , the distance between their means. For similar classes,∆i is small, and the
terms involving it can be neglected. We assume that similar classes have similar structure,
as determined by their covariance matrices. To measure the similarity ofΣ andΣ f i , note
that for equal matrices,Σ = Σ f i impliesΣ−1

f i Σ = I . Therefore, trΣ−1
f i Σ = trΣΣ−1

f i = tr I = d.

Approximating trΣ−1
f i Σ' d for similar classes,Ti can be simplified toTi ' 4/d3.

Assume now thatCi andC are highly dissimilar, and the distance∆i is large. Since the
denominator contains terms of higher order in∆i than the numerator,Ti ' 0. Notice that
no explicit knowledge of dissimilarity betweenCi andC is required. The contributionTi

from dissimilar classes is automatically reduced in the similarity space.
The intuition behind these results is as follows. The familiar classifiers are trained to

ignore irrelevant within-class variability. Since similar classes have similar structure, this
capacity to ignore irrelevant variability can be generalized to the novel class. Therefore,
the contributionTi from similar classes is bounded. For dissimilar classes, the similarity
values are (by definition) small; therefore, their contribution is negligible.

Therefore,Sw ≤ 4N/d3 (whereN is the total number of familiar classes), i.e.Sw is
bounded by a constant independent of the class parameters. This implies that instances
of the novel class become clustered tightly in the similarity space no matter how broadly
they are distributed in the input space. Therefore, the similarity between an instance of the
novel class and a familiar class is indeed preserved across different instances of the novel
class, and novel class instances can be classified reliably in the similarity space. Since the
transformation to similarity space does not require explicit estimation of the novel class
parameters (such asΣ), the scheme can be trained using a limited number of examples.

Note that the scatterSw was used only to estimate the difficulty of the classification
task. In the similarity space the scatter is automatically reduced, and therefore algorithms
that use representation by similarity need not minimize scatter explicitly. (Such explicit
minimization of scatter would require hundreds of training examples.)

4 Results

In this section, we present the empirical evaluation of the proposed cross-generalization
algorithm.

To train classifiers for the familiar classes, we used a scheme similar to [12]. In
this scheme, objects are represented using a set of selected sub-images, called fragments.
These fragments are extracted from training images and combined in a linear classifier
trained to discriminate between class and non-class images based on presence or absence
of particular fragments.



Note that the baseline classifiers used for the familiar classes represent the spatial con-
figuration explicitly. Since the cross-generalization classifier relies on the baseline classi-
fiers to calculate similarity, it incorporates the spatial configuration implicitly. Therefore,
explicit representation of spatial configurations is not necessary in the cross-generalization
classifier.

4.1 Empirical scatter analysis

In this section, the within-class scatter in the similarity space was compared to scatter in
the input space to empirically verify the conclusions of section 3.2. The experiment was
performed using images from the ETH database [8]. Five familiar classes (cows, cups,
horses, pears, and tomatoes) were used. The familiar classifiers were trained as described
above and were used subsequently to evaluate similarities in the cross-generalization al-
gorithm. The class of dogs was used as the novel class. The within-class scatter,Sw, was
calculated for this class in the similarity space. As mentioned above, the scatter should be
normalized by some measure of overall scale. For this, the between-class scatterSb, de-
fined as the average squared distance of a positive example from a negative example, was
calculated. The ratio of the within-class to between-class scatter wasSw/Sb = 0.18. The
scatters were also measured in the input space, by using thel2 norm to evaluate similarity
of input images directly. In this case, the ratio of scatters was 0.83. The conclusion is
that the input patterns are better clustered in the similarity space than in the input space,
as predicted in section 3.2.

4.2 Classification experiments

In this section, the classification performance of cross-generalization is evaluated and
compared to the baseline method described in [12]. The experiments were performed
using a database of 107 widely varying classes. Of these, 101 classes were from the Cal-
tech database [7], and six additional classes were incorporated. These additional classes
included animals and animal faces. The images were obtained and preprocessed as de-
scribed in [7]. All images were scaled to a height of 45 pixels. Most classes contained
between 40 and 100 examples. In addition, non-class images, which did not contain any
of the familiar classes, were used as negative examples. A set of 400 non-class images was
used for training. A separate set of 324 non-class images was used for testing. Example
images are shown in Figure 1; more examples can be found in [7].

Cross-generalization performs classification in the similarity space, and it is natural
to compare it to input-space classification. However, input-space classification in our
case corresponds to direct matching of images. It is well-known that this method gives
poor classification performance. Our experiments confirmed that input-space classifica-
tion produced essentially random results (data not shown due to space limitations). The
more interesting comparison with the baseline algorithm is reported below.

The cross-generalization algorithm was tested using the leave-one-out method. Each
of the 107 classes was tested. With each class, the remaining 106 classes were used
as the familiar classes for cross-generalization. This is similar to experiments in [7, 6].
Each familiar classifier was trained using 2/3 of the available class images as positive
examples and the training non-class images as negative examples. (The same negative
examples were used for all classes.) For each familiar class, 25 fragments were selected



Airplane Ball Cat face Crocodile Cup Lamp

Mandolin Pig Pizza Non-class

Figure 1: Examples of images used in the experiments.
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Figure 2: Comparison of cross-generalization to the baseline. Trained with two positive
examples. (a), (b): Sample ROC curves. (a): cars class. (b): helicopter class.X axis:
false alarm rate.Y axis: hit rate. Solid line: cross-generalization. Dashed line: baseline
algorithm. (c): Difference of ROC curves averaged over all 107 classes.X axis: false
alarm rate.Y axis: difference of hit rates. Positive values indicate advantage of cross-
generalization.

and a linear classifier was trained [12]. Next, a cross-generalization classifier was created
for the novel class. Only a single example of the novel class was selected at random
for training. Experiments were repeated 10 times with different random choices. No
negative examples have been used in training. Following training, the cross-generalization
classifier was tested using the remaining class images and the testing set of non-class
images.

Classifier performance for each class can be characterized by the area under the ROC
curve. However, since random guessing would give an area of 0.5, we use insteadper-
formance margin, defined as 2· (Area− 0.5), whereArea is the area under the ROC
curve. Perfect classification would give a margin of 1, while random guessing would
give a margin of 0. The average margin obtained by the cross-generalization algorithm
was 0.46±0.03. This margin corresponds to average area under ROC of 0.73, which is
slightly better than the average area of 0.71 reported in [7]. (Note that the experiments
described here were more challenging than those in [7] due to the reduced resolution of
the images.) As mentioned in section 2, [7] uses a highly model-specific scheme. In



contrast, cross-generalization is a general scheme, not tuned to some particular model.
Therefore, cross-generalization could in principle fail to exploit some information avail-
able to the model-specific scheme. The comparable performance of cross-generalization
and the model-specific scheme indicates that this did not happen. The conclusion is that
cross-generalization managed to extract a significant amount of information from the fa-
miliar classifiers without detailed information about these classifiers.

Next, the performance of cross-generalization was compared to the baseline algo-
rithm. Since the baseline algorithm requires multiple positive and negative examples to
operate, it was supplied with a minimal set of two positive examples per class. In addi-
tion, two of the training non-class images were used as negative examples. The cross-
generalization algorithm was also supplied with two positive examples (no negative ex-
amples have been used). The performance of the learned classifiers was subsequently
tested on a data set containing images of the novel class (except for the training images)
and the testing non-class images. Example ROC curves for two classes are shown in
Figure 2. To compare performance across all 107 classes, the difference between the
cross-generalization and baseline ROC curves was calculated for each class. This differ-
ence is a curve which, for every false alarm rate, gives the difference of hit rates. Positive
difference indicates advantage of cross-generalization. The difference curves of the 107
classes were averaged. The average difference curve is shown in Figure 2(c).

The average performance margin of cross-generalization algorithm in this experiment
was 0.52±0.02. On average, the margin of cross-generalization was 38 %± 10 % higher
than that of the baseline algorithm. The difference is highly significant (pairedt test,p <
0.001). The conclusion is that cross-generalization significantly outperforms the baseline
algorithm.

5 Discussion

We have described an object classification scheme in which the past effort expended for
learning is reused to facilitate learning of novel classes. This approach is called cross-
generalization, and it allows to obtain useful classification performance from a single
training example. The implementation of the proposed scheme is particularly simple
because each familiar classifier is treated as a black box and only the output values of
these classifiers are used.

The similarity between the novel class and the familiar classes in the proposed method
can be evaluated using a wide variety of existing classification schemes. Cross-generalization
can therefore combine the merits of many different classification methods. Despite this
generality, the scheme is competitive with highly classifier-specific methods.

A limitation of the proposed scheme is its inherent slowdown caused by using multi-
ple classifiers. When 106 familiar classifiers are used (section 4.2), it takes∼ 1.8 seconds
to classify an image on a 1.5 GHz Centrino laptop. If only a single classifier was used,
the classification time would reduce to 0.025 seconds. However, it should be noted that
the individual classifiers used in the scheme do not interact, and therefore the scheme can
easily be implemented on massively parallel architectures. In particular, biological im-
plementation seems plausible. In the future, we plan to investigate how the computational
complexity of the scheme could be reduced. One possible direction is to select only the
most relevant familiar classifiers and discard the rest. Preliminary results indicate that 10



familiar classifiers are sufficient to obtain performance comparable to using all 106 fa-
miliar classifiers. Alternatively, the computational complexity of the ensemble of familiar
classifiers could be reduced by sharing features among different familiar classifiers [10].
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