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ABSTRACT 
 

Rain removal from a video is a challenging problem and has 

been recently investigated extensively. Nevertheless, the 

problem of rain removal from a single image has been rarely 

studied in the literature, where no temporal information 

among successive images can be exploited, making it more 

challenging. In this paper, to the best of our knowledge, we 

are among the first to propose a single-frame-based rain 

removal framework via properly formulating rain removal 

as an image decomposition problem based on morphological 

component analysis (MCA). Instead of directly applying 

conventional image decomposition technique, we first 

decompose an image into the low-frequency and high-

frequency parts using a bilateral filter. The high-frequency 

part is then decomposed into “rain component” and “non-

rain component” via performing dictionary learning and 

sparse coding. As a result, the rain component can be 

successfully removed from the image while preserving most 

original image details. Experimental results demonstrate the 

efficacy of the proposed algorithm. 
 

Index Terms— Rain removal, sparse coding, dictionary 

learning, image decomposition, morphological component 

analysis (MCA). 

 

1. INTRODUCTION 
 

Different weather conditions such as rain, snow, haze, or fog 

will cause complex visual effects of spatial or temporal 

domains in images or videos [1][4]. Such effects may 

significantly degrade the performances of outdoor vision 

systems relying on image/video feature extraction, such as 

object detection, tracking, recognition, indexing, and 

retrieval. Removal of rain streaks has recently received 

much attention. The first work for detecting and removing 

rain from videos was proposed in [1], where the authors 

developed a correlation model capturing the dynamics of 

rain and a physics-based motion blur model characterizing 

the photometry of rain. Then, the same authors [2] also 

showed that the camera parameters, such as exposure time 

and depth of field can be selected to mitigate the effects of 

rain without altering the appearance of the scene. Moreover, 

an improved video rain removal algorithm incorporating 

both temporal and chromatic properties was proposed in [3]. 

On the other hand, a model of the shape and appearance of a 

single rain or snow streak in the image space was developed 

in [4], which can be fit to a video and used to detect rain or 

snow streaks. Then, the amount of rain or snow in the video 

can be reduced or increased. 

     So far, the research works on rain removal found in the 

literature have been mainly focused on video-based 

approaches that exploit information in multiple successive 

frames. Nevertheless, when only a single image is available, 

such as an image captured from a digital camera or 

downloaded from the Internet, a single-frame based rain 

removal approach is required, which was rarely investigated 

before. In this paper, we propose a single-frame-based rain 

removal framework via formulating rain removal as an 

image decomposition problem based on morphological 

component analysis (MCA) [5]-[6]. The major contribution 

of this paper is three-fold: (i) our scheme is among the first 

to formulate the single image rain removal problem as an 

image decomposition problem; (ii) the learning of the 

dictionary for decomposing rain steaks is self-contained, 

where no extra training samples are required in the 

dictionary learning stage; and (iii) no temporal or motion 

information among successive images is required. 

The rest of this paper is organized as follows. In Sec. 2, 

we briefly review the concepts of MCA-based image 

decomposition, sparse coding, and dictionary learning, 

respectively. Sec. 3 presents the proposed single-image-

based rain removal framework. In Sec. 4, simulation results 

are demonstrated. Finally, Sec. 5 concludes this paper. 

 

2. MCA-BASED IMAGE DECOMPOSITION, SPARSE 

CODING, AND DICTIONARY LEARNING 
 

2.1. MCA-based Image Decomposition 

Suppose that an image I of N pixels is a linear combination 

of S layers (called morphological components), denoted by 
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 , where Is denotes the s-th component, such as 

geometric or textured component of I. To decompose the 

image I into  
1

S

s s
I


, the MCA algorithms [5], [6] iteratively 

minimize the energy function defined as: 
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where 
s  denotes the sparse coefficients corresponding to Is 

with respect to the dictionary Ds described later, μ is a 
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regularization parameter, and Es is the energy defined 

according to the type of Ds (global or local). For a global 

dictionary R sN M
sD


 , N ≤ Ms, R sM

s   is the sparse 

coefficients of Is with respect to Ds. The energy function Es 
for global dictionary is defined in [6] as 
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where λ is a regularization parameter. Usually, to 

decompose an image into its geometric and textured 

components, traditional basis, such as wavelet or curvelet, is 

used as the global dictionary for representing the geometric 

component of the image. 

For a local dictionary R sn m
sD


 , n ≤ ms, R smk

s   is the 

sparse coefficients of the patch Rk n
sb  , k = 1, 2, …, N, 

extracted from Is, with respect to Ds. Each patch 
k
sb can be 

extracted centralized with a pixel of Is and overlapped with 

adjacent patches. The energy function Es for the local 

dictionary can be defined as [6] 
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where the weight 1/n compensates for the redundancy factor 

introduced by the overlap between patches k
sb . Usually, the 

local dictionary for representing the textured component of 

an image is constructed from the dictionary learning 

procedure described in Sec. 2.2. 

To decompose the image I into  
1

S

s s
I


, the MCA 

algorithm [6] solves (1) by iteratively performing the two 

steps for each component Is, as follows: (i) update of the 

sparse coefficients: this step performs sparse coding via 

solving a convex non-smooth optimization to solve 
s  or 
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 to minimize  ,s s sE I   while fixing Is; and (ii)  

update of the components: this step updates Is or  
1

Nk
s k
b


 

while fixing s  or  
1

Nk
s k




. 

 

2.2. Sparse Coding and Dictionary Learning 

Sparse coding is the technique of finding a sparse 

representation for a signal with a small number of nonzero 

or significant coefficients corresponding to the atoms in a 

dictionary [5]-[7]. Recall from Sec. 2.1, it is required to 

construct a dictionary Ds containing the local structures of 

textures for sparsely representing each patch k
sb  extracted 

from the textured component Is of an image I. In some 

applications, we may use a set of available training 

exemplars (similar to the patches extracted from the 

component we want to extract) Rk ny  , k = 1, 2, …, p, to 

learn a dictionary Ds sparsifying y
k
 via solving the following 

optimization problem [7]: 
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where k  denotes the sparse coefficients of y
k
 with respect 

to Ds and λ is a regularization parameter, which can be 

efficiently solved via performing the K-SVD dictionary 

learning algorithm [7]. Finally, the image decomposition is 

achieved via iteratively performing the MCA algorithm to 

solve Is (while fixing Ds) and the dictionary learning 

algorithm  to learn Ds (while fixing Is) until convergence [6]. 
 

3. PROPOSED RAIN REMOVAL FRAMEWORK 
 

As shown in Fig. 1, in the proposed framework rain removal 

is formulated as an image decomposition problem. It can be 

observed from Fig. 2(b) that directly applying the MCA-

based image decomposition algorithm described in Sec. 2 [6] 

by treating rain streaks as the textured component in an 

image will seriously blur the image even if the rain streaks 

can be removed. To prevent original image details from 

being removed together with rain streaks, we propose to first 

roughly decompose an image into the low-frequency (LF) 

part and the high-frequency (HF) part, as illustrated in Figs. 

2(c) and 2(d), respectively. Obviously, the most basic 

information will be included in the LF part while the rain 

streaks and the other edge/texture information will be 

included in the HF part of an image. Then, the HF part is 

further decomposed into the “rain component” and “non-

rain component,” as illustrated in Figs. 2(e) and 2(f), 

respectively, where the training exemplars are extracted 

from the image itself in the dictionary learning stage. The 

details and the problem formulation of the proposed scheme 

are elaborated in the following subsections. 
 

 
 

Fig. 1. Proposed rain removal framework. 
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3.1. Preprocessing and Problem Formulation 

For an input rain image I, in the preprocessing stage, we 

apply an edge-preserving smoothing filter, called bilateral 

filter [8] to obtain the LF part ILF of I and roughly 

decompose I into the LF part (ILF) and HF part (IHF), i.e., I = 
ILF + IHF. Similar to the MCA algorithm proposed in [6], we 

select the curvelet basis DCurvelet as the global dictionary for 

representing the geometric component of IHF. For 

representing the rain component of IHF, we use a dictionary 

DRain learned from the training exemplars of rain streaks 

extracted from IHF (described in Sec. 3.2). Hence, we 

formulate the problem of rain removal for image I of N 

pixels as an image decomposition problem to minimize the 

energy function defined as 
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where 
HF  denotes the sparse coefficients of IHF with respect 

to the dictionary     [               ]   
   , n ≤ m, 

Rk n
HFb   represents the k-th patch extracted from IHF, k = 1, 

2, …, N, Rk m
HF   is the sparse coefficients of k

HFb  with 

respect to    , and λ is a regularization parameter. 

 

3.2. Detection of Rain Streaks and Dictionary Learning 

In the dictionary learning stage, different from the MCA 

algorithm, where several training patches are usually 

collected in advance, in the proposed scheme, we extract the 

rain patches from IHF, to be the training exemplars. First, we 

detect and extract all the patches containing rain streaks 

from IHF. Based on the fact that the edge directions of rain 

streaks in a patch should be almost consistent, rain patches 

can be well distinguishable from other texture patches. To 

detect the rain streaks in a patch, we derive the two criteria: 

(i) the intensity of each pixel in a rain streak is larger than 

those of the neighboring pixels outside the streak; and (ii) 

the pixels in a rain streak can be projected onto a single 

position if the projection direction is correct. 

      After extracting a set of rain patches Rk ny  , k = 1, 

2, …, p, from IHF as training exemplars for learning the 

dictionary DRain, we formulate the dictionary learning 

problem as: 
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where k  denotes the sparse coefficients of y
k
 with respect 

to Drain. Similar to [6], we also apply the K-SVD algorithm 

[7] to solve (6) to obtain the optimized DRain that consists of 

the atoms of rain streaks, as illustrated in Fig. 2(g). 

 

3.3. Removal of Rain Streaks 

Based on the dictionary DHF, we can perform sparse coding 

via applying the OMP (orthogonal matching pursuit) 

algorithm [9] (also applied in [6]) for each patch k
HFb  

extracted from IHF via minimizing (5) to find its sparse 

coefficients k
HF . Different from the MCA algorithm [6], 

where the sparse coding and dictionary learning will be 

iteratively performed, we perform sparse coding only once 

for each patch with respect to DHF. Then, each reconstructed 

       
(a)                                               (b)                                                 (c)                                               (d) 

       
(e)                                                   (f)                                                (g)                                                 (h) 

Fig. 2. Illustrations of rain removal for a single image: (a) the original rain image; (b) the rain-removed version of (a) with the image 

decomposition via MCA [6]; (c) the low-frequency part (separated by the bilateral filter [8]) of (a); (d) the high-frequency part of (a); (e) 

the rain component of (d); (f) the non-rain component of (d); (g) the learned dictionary for decomposing (d); and (h) the rain-removed 

version of (a) with the proposed scheme. 



patch    
  can be used to recover either geometric 

component    
         or rain component    

     of IHF based 

on the sparse coefficients  ̃  
  as follows. We let the 

coefficients corresponding to DCurvelet in  ̃  
  to zeros to 

obtain  ̃       
 , while the coefficients corresponding to DRain 

in  ̃  
  to zeros to obtain   ̃           

 . Therefore, each 

patch    
  can be re-expressed as either  ̃           

  

           ̃           
  or  ̃       

         ̃       
 , 

which can be used to recover    
         or    

    , 

respectively, by averaging the pixel values in overlapping 

regions. Finally, the rain-removed version of I can be 

obtained via 
Non RainI 

=ILF+
Non Rain
HFI

 , as illustrated in Fig. 2(h). 

 

4. SIMULATION RESULTS 

 

To evaluate the performance of the proposed rain removal 

algorithm, we compared the proposed scheme with the 

bilateral filter proposed in [8] and the MCA-based image 

decomposition scheme [6]. The rain removal results 

obtained from the three evaluated schemes for the three test 

images are shown in Figs. 2-4, respectively, which 

demonstrate that the proposed scheme significantly 

outperforms the other two schemes. 
 

 
(a)                                               (b) 

  
(c)                                                  (d) 

Fig. 3. Comparison of rain removal results: (a) the original rain 

image; the rain-removed versions via: (b) the bilateral filter [8]; (c) 

the MCA-based image decomposition [6]; and (d) the proposed 

scheme. 
 

As illustrated in Fig. 2(c), although the bilateral filter [8] 

can remove most rain streaks, it simultaneously removes 

other image detail as well. With the MCA-based image 

decomposition scheme [6], most image details, together 

with rain streaks, will be always filtered out in all the three 

test cases. The proposed scheme successfully removes most 

rain streaks while preserving most original image details 

(e.g., the bubbles in the red box in Fig. 3(d)). More test 

results can be found in [10]. 

  
(a)                                                (b) 

  
(c)                                                   (d) 

Fig. 4. Comparison of rain removal results: (a) the original image; 

the rain-removed versions with: (b) the bilateral filter [8]; (c) the 

MCA-based image decomposition [6]; (d) the proposed scheme. 

 

5. CONCLUSION 

 

In this paper, we have proposed a single-frame-based rain 

removal framework via formulating rain removal as an 

image decomposition problem solved by performing sparse 

coding and dictionary learning algorithms. Our experimental 

results show that the proposed scheme can effectively 

remove rain steaks without significantly blurring the 

original image details. For future work, the performance 

may be further improved by enhancing the sparse coding 

and dictionary learning steps. Moreover, the proposed 

scheme may be extended to remove other kinds of repeated 

textures. 
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