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Abstract—Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor 

arrays and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence 

also exists for meaningful tactile property inference from brief, non-exploratory motions (e.g., a haptic “glance”). In this work we 

implement tactile object identification and feature extraction techniques on data acquired during a single, un-planned grasp with 

a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two 

cooperating schemes based on an advanced machine learning technique (random forests) and parametric estimations. The 

available data is limited to actuator positions (one per finger) and force sensors values (8 per finger). The schemes are able to 

work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method 

contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not 

require object exploration, re-grasping, grasp release or force modulation and works for arbitrary object start positions and 

orientations. Due to these factors the technique may be integrated into practical robotic grasping scenarios without adding time 

or manipulation overheads. 

Index Terms— Tactile Sensing, Object Classification, Object Feature Extraction, Underactuated Robot Hands 
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1 INTRODUCTION

HE extraction of object properties or class through 
both vision and haptic feedback is a natural sensory 

ability afforded to humans and other animals. In the field 
of robotics, both sensory modalities have been investigat-
ed. Though many properties of objects may be deter-
mined visually, common issues of occlusion and/or poor 
lighting conditions can limit the performance of vision 
based methods. Furthermore, other physical properties, 
such as stiffness, are difficult to visually ascertain, par-
ticularly without some kind of object manipulation. Re-
garding haptics, humans are known to make use of vari-
ous ‘exploratory procedures’ (EPs) [1], in order to glean 
object properties through active manipulation of objects 
by one or both hands. While there have been several ro-
botic approaches that have taken inspiration from this 
concept (e.g. [2]–[7]), such methods tend to rely on time-
consuming palpatory motion sequences and robot hand 
and/or arm dexterity. In various real-world application of 
robotics, such as industrial pick and place, time is a criti-
cal factor that would make such exploratory procedures 
inappropriate. Evidence has demonstrated that meaning-
ful (e.g. inferring more than just collision) knowledge 
related to objects is achieved by humans during minimal 
tactile object interactions, termed in [8] as a ‘haptic 
glance’. In turn, the ability of a robot to acquire meaning-
ful haptic knowledge of an object during purely function-
al actions may extend the usefulness tactile sensing into 

scenarios where time, computational capabilities or 
hardware specifications are limited.  
In a similar vein to the above objectives, adaptive under-
actuated grippers have proposed highly practical robot 
grasping solutions, compared to traditional approaches. 
Such systems rely on simple and compliant mechanics 
(e.g. flexure joints) to passively adapt to a wide variety of 
object shapes and sizes without prior object knowledge, 
hand modelling, grasp planning [9], actuator regulation 
or sensory feedback [10], [11]. These benefits result in a 
low cost, easily implementable solution to grasping in 
unstructured scenarios.  

In this work we seek to combine the benefits of simple 
adaptive robot grippers with methods of acquiring mean-
ingful haptic object properties during a functional grasp 
via low-cost, commercially available, tactile sensors. To-
wards this goal we use a two-finger underactuated hand 
equipped with 8 TakkTile barometric pressure sensors per 
finger (as illustrated in Fig 1). To maintain consistency 
with popular open source underactuated hand designs 
(e.g. [10]), the hand does not implement joint position 
sensing. Our proposed method achieves classification and 
feature extraction via tactile sensor outputs and actuator 
position, sampled at several instances during grasping of 
an unknown object in arbitrary pose. Notably, our ap-
proach does not modify the typical open-loop actuator 
behavior of such hands during the grasping process. All 
necessary computations are also designed to be complet-
ed within a short time frame (<100ms), to allow achieve-
ment of the aforementioned goals within a normal grasp-
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ing process. Overall, the presented process is designed to 
be executed during a single, typical, functional underactu-
ated grasp with no temporal or motor overhead. Of 
course, these constraints (which include uncertain hand 
kinematics, a single grasp action and unknown object 
pose) significantly reduce data breath, resolution and re-
dundancy compared to more traditional approaches (e.g. 
[3]). As a result some parameter estimation is accompa-
nied by some level of uncertainty. However, we believe 
that some uncertainty is acceptable, given the minimal 
influence of the method on the fundamental grasping 
activities carried out daily by thousands of real-world 
robots. Nevertheless, the classifier performance is excel-
lent, given the limited features. 

An example application for such a technique may be in 
the inspection, sorting and packaging of objects (such as 
fruit) as part of a production line. In this scenario, the 
proposed classification and feature extraction method 
could permit the class of object (e.g. apple, pear), stiffness 
(ripeness), size and pose within the hand to be deter-
mined as the object is being lifted from the conveyor belt 
(a functional and necessary manipulation action). 

2 METHOD 

Due to the limited available data and differing strengths 
of alternative approaches to tactile sensing, we have used 
a hybrid approach to data processing in this work. The 
structure of the approach is illustrated in Fig 2. This 
methodology makes use of a random forests classifier (a 
machine learning approach) and parametric estimators. 
The classifier is capable of high level recognition of differ-
ent objects based on training data. Conversely, the para-
metric method aims to provide low-level outcomes relat-
ed directly to physical properties of size and stiffness. The 
two schemes therefore address different aspects of the 
tactile sensing problem space. Additional cross communi-
cation between these two approaches leads to additional 
parameter determination (object pose within the grasp) 
and improved classification accuracy. In the latter case, 
parametrically determined object dimensions are used to 
either verify a class decision or dynamically retrain the 

system. This retraining process rejects the current class 
and improves subsequent classification accuracy. In pre-
vious work we presented some aspects of the classifier 
alone [12]. We now build upon this work with the para-
metric estimation and the collaborative hybrid frame-
work. Performance of the classifier is subsequently im-
proved via dynamic retraining features. 

The benefits of such approaches apply to alternative 
use cases. For example, remote exploration or disaster 
response robots may encounter objects with unique and 
previously unseen shape, such as an unusual stone or a 
fragment of a larger object. While raw parameters may be 
measured for such an object, machine learning approach-
es may have limited classification success, due to object 
novelty compared to training data. Conversely, the ma-
chine learning scheme can provide high level object iden-
tification in structured or semi-structured environments, 
such as a production line, grocery store or warehouse, 
where object picking tasks are important. Here, encoun-
tered objects will always be part of the company’s inven-
tory, though parameter variations in size, stiffness and 
pose are likely.   

The structure of the remainder of the paper is as fol-
lows. First, we will review related literature with focus 
first on biological then robotic systems, providing also a 
motivation for our approach. A detailed explanation of 
the experimental conditions (including hardware) will be 
described in Section 4. All methods and algorithms re-
quired to formulate the proposed schemes will then be 
presented in Section 5 with subsequent results for a varie-
ty of objects in section 6. Discussion, future work and 
conclusions will summarize the paper.  

3 RELATED WORK 

Roboticists have applied tactile sensing to robot hands for 
many decades, inspired by nature’s most versatile and 
dexterous end-effector, the human hand. The hand has 

Fig 2: The hybrid approach to data processing. The machine 
learning and parametric approaches execute simultaneously 
during an object grasp. Outputs are displayed with a double 
outline. 

 
Fig 1: The adaptive underactuated hand used in this work. Each 
finger has a proximal pin joint and distal flexor joint, both driven 
by a single tendon. TakkTile sensors are embedded in the grip 
pads of each finger. 
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approximately 17,000 mechanoreceptive units that in-
nervate its skin and provide a highly sophisticated sys-
tem for understanding the environment [13]. It has been 
noted that motion of the hand is crucial to fully exploit-
ing its perceptual qualities during physical interaction 
[1], [13], [14]. Such observations have been reflected in 
the active-touch approaches of many robot systems. A 
large proportion of such endeavors make use of com-
plex, high-density sensor systems, such as the multi-
modal BioTac [15] sensor (used in [3], [4], [6], [16], [17]). 
This >$10,000 sensor is capable of providing thermal, 
vibratory and multiple pressure readings over an an-
thropomorphic finger pad.  

Artificial tactile perception efforts generally focus on 
either deriving physical object properties or the higher 
level discrimination of an object’s class. In [13], it was 
considered that an object’s properties contribute to ma-
nipulation actions while the object class enables the exe-
cution of object specific strategies or plans. Aspects of 
human tactile object perception will now be discussed. 

3.1 Human Haptic Data Acquisition 

The ability to characterize and identify objects without 
reliance on vision is beneficial in a number of scenarios. 
In humans, such common tasks as reaching for computer 
mouse or cup while reading from a computer screen dis-
cretely employs complex tactile perceptual methods [8]. 
Such methods facilitate object understanding (e.g. deter-
mining the object class and its pose relative the hand) and 
subsequent motor action (orientating the hand to facilitate 
appropriate grasping) with limited physical interaction 
[18]. Studies on more elaborate exploration of objects 
have demonstrated the fast and accurate ability of hu-
mans to identify a large number of objects and properties 
through touch alone. This is via the use of exploratory pro-
cedures (EPs) [1], [14], stereotypical patterns of active hand 
motions that expose particular physical properties of hap-
tic objects. For example, rubbing an object permits textur-
al perception, while squeezing an object exposes its stiff-
ness. In medicine, such interaction permits identification 
of tissue type and underlying structure [19]. It was ob-
served in two finger palpation by surgeons that EPs were 
often combined [20], permitting multiple feature extrac-
tion with increased efficiency. 

Investigations have also been made into the capabili-
ties of humans to extract meaningful haptic information 
with limited active finger/hand motion, which is akin to 
single-grasp robotic approach taken in our work. In [8], 
perceptual accuracy was considered for a ‘haptic glance’, 
a brief and restrained contact between fingertips and an 
object. Similar investigations have been considered with 
reduced sensory and motor [14], [18], [21] capabilities. 
Lederman et al. noted that minimal haptic information is 
often informative enough to lead to object/feature identi-
fication and appropriate subsequent manipulation strate-
gies [18]. On these lines, the work presented in this paper 
explores what may be achieved by robots via minimal 
active touch sensing and minimal motor control. This is 
realized as data acquired during a non-exploratory, ‘func-
tional’ grasp with adaptive fingers. In [21] it was ob-

served that adaptive ‘molding’ of the human hand 
around objects facilitates improved haptic identification. 
Such ‘molding’ is fundamental to adaptive grippers, 
whose use in similar scenarios will be described next. 

3.2 Adaptive hands and Tactile Sensing 

As previously stated, adaptive underactuated grippers 
permit grasping of a wide variety of objects with little 
control or planning effort (Fig 3) [22]. In particular, com-
pliant flexure joints permit out-of-plane finger adaptation 
to various conditions while maintaining grasp stability 
[23]. The transmission mechanisms employed in such 
designs as [10], [11] have similarities to the mechanics and 
resulting adaptive behavior of the human finger [24].  

Despite the benefits of adaptive grippers, there has 
been relatively limited use of such systems in haptic ap-
plications. This is likely to be due to kinematic uncertain-
ty of the fingers, after encountering unknown objects in 
arbitrary poses. The authors of [25] determined contact 
with underacted grasper based on motor current models. 
Grasp force regulation and some object shape distinction 
was achieved in [26] through tactile sensors and closed 
loop control. The use of tactile contact sensing to further 
enhance grasping performance through individual finger 
control was proposed in [23]. In [27], tactile sensing of 
finger contacts with an object during workspace explora-
tion led to more optimal object/hand positioning prior to 
grasping. Closer to feature extraction, underactuated fin-
gers, equipped with joint sensors in [28], re-constructed 
the contours of immobile rigid objects based on finger 
positions, while physically exploring a workspace.  

3.3 Tactile Feature Extraction in Robotics 

Tactile perception techniques in robotics generally fall 
into categories of feature extraction and object classifica-
tion, both of which are explored by our hybrid methodol-
ogy. The majority of techniques rely on active tactile sen-
sor motion via fully actuated robotic systems with pre-
dictable parameters. Such approaches have aimed to ex-
pose object parameters such as texture [6], [29], stiffness 
[4], [7], [30], [31] surface contours [28], [32], [33] and 
thermal properties [7]. In some cases, a direct subset of 
human inspired exploratory procedures (EPs) were im-
plemented [3], [6], [7], [34].  In [35], a series of non-human 

 
Fig 3: A T42 OpenHand robotic gripper securely grasps a variety 
of object shapes and sizes using open loop motor control with 
compliant adaptive fingers. 
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EPs were executed with a parallel jaw gripper improve 
force regulation during manipulation. In [6], human in-
spired EPs facilitated information gathering from a Bio-
Tac sensor mounted on an anthropomorphic robot finger. 
Limitations in finger motor resolution limited textural / 
vibration sensing, compared to precision positioning plat-
forms. Four EPs were implemented in early work by Da-
rio et al. in [7]. A series of six EPs (variations of pushing 
and sliding) permitted attribution of properties to 34 
‘haptic adjectives’ [3], interpreted by a classifier. 

Though EPs permits significant extension of the spatial 
and dynamic range of tactile sensors, the procedures are 
often associated with significant time overheads. The rel-
atively extensive repertoire of 6 motions in [3] takes over 
85 seconds, while the reduced motions  of [35] resulted in 
a grasping process of 30 seconds. In industrial processes, 
this time demand can be considered excessive. 

3.4 Robotic Tactile Classification  

Tactile data is often vast, interconnected and noisy. 
Machine learning approaches have been used to relate 
such complex data to object class. Following a process of 
training, such systems aim to identify objects from new 
data. Machine learning approaches have been used both 
for high-level object class distinction in addition to classi-
fying specific feature properties. In [36] pressure data ac-
quired from gripping vegetables facilitated categorization 
into three classes of ripeness. Unfortunately, the gripping 
method destroyed the vegetables, via the combination of 
open loop control with a fully actuated gripper. In [33], a 
classifier determines surface features (edge, face, empty 
space) in order to construct an overall spatial object mod-
el. Active sliding of a 6-axis force/torque sensor generat-
ed data for neural network based distinction into classes 
of materials in [37]. The popular vision based object 
recognition technique ‘bag-of-features’ was applied to 
tactile based classification in [38]. This method construct-
ed a ‘vocabulary’ of tactile images based on a several 
grasp locations. Tactile array ‘images’ gathered during 
squeezing and releasing objects are used as the basis of a k 
nearest neighbors’ approach in [39], though only slight ob-
ject pose variations were implemented. Unsupervised 
learning techniques have also been applied to this prob-
lem space. Incremental online learning was applied to 
tactile and joint sensor data in [40] to improve classifier’s 
efficiency. In [41] spatial and temporal data was obtained 
for a variety of hands following data acquisition via a 
sequence of five squeezing actions followed by releasing 
of an object. In this work an unsupervised hierarchical 
feature learning methodology was employed and a 1-vs-
all classifier obtained. Reinforcement learning techniques 
were also utilized in [6], [17], to cluster BioTac data result-
ing from exploratory finger motion in order to report 
stiffness, texture and thermal properties of objects. The 
work of Chu et al. [3] classified data resulting from 6 EPs 
into adjectives via machine learning approaches. Classifi-
cation of the fullness of plastic bottles was achieved in 
[30] based on a single grasp. Unlike our approach, the 
bottles do not vary in size or orientation and closed loop 
force and velocity control of the robot gripper is em-

ployed. These control modes were required for achieving 
‘safe’ container grasping with the PR2 parallel gripper. 
Such a concern is avoided in our setup via the adaptive 
gripper. 

Note that approaches such as [3], [39] only permit ob-
ject classification once an object has been released. Pre-
sumably, any actions related to object classification (for 
example sorting) would then require re-grasping. 

In previous work we presented some aspects of the 
classifier alone [12], but we now build upon this work 
with the parametric methods and collaborative efforts.   

3.5 Literature Overview 

The review of existing work has demonstrated trends in 
tactile identification that favor dense sensory data and 
extended exploration of objects. It has also been illustrat-
ed that though humans make use of EPs, useful haptic 
object knowledge is also often extracted via minimal, non-
exploratory, active haptic interaction [8], [18]. In this work 
we strive for an equivalent robotic approach based on 
such minimal interaction. By negating motion, pro-
cessing, hardware and time overheads, we hope for a so-
lution that is practically implementable. Added to this, 
we distinguish ourselves from previous work via the ro-
bustness of the system to perturbations in object pose 
(position and orientation) within the grasp of the hand.  

4   EXPERIMENTAL SETUP 

4.1 Underactuated Robot Hand 

The robot hand used in this study (illustrated in Fig 2) 
consists of two prototype fingers of the Reflex Hand (man-
ufactured by Right Hand Robotics, Boston, USA) mounted 
on a modified model T42 base from the Yale OpenHand 
project [10]. Each Reflex Hand finger (shown in Fig 4) con-
sist of two phalanges with a distal urethane flexure joint 
and a proximal pin joint with torsional spring. The bene-
fits of this arrangement are described in [10]. Each finger 
is actuated by a single tendon, wound via a pulley at-
tached to a Dynamixel MX-28 actuator. Unlike other 
models of the Reflex Hand fingers, the fingers used in this 
work (like similar open source designs [10][11]) do not 

 
Fig 4: An underactuated prototype Reflex Hand finger, equipped 
with barometric Takktile sensors. The finger has no position sen-
sors.  
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feature position sensing.  

4.2 Tactile Sensors 

A row of ‘TakkTile’ force sensors [42] are embedded in the 
compliant, high-friction grip pads of each link of the robot 
finger. The grip pads are cast from ‘VytaFlex 40’ material 
from Smooth-On Inc. The robust and inexpensive 
TakkTile sensors are based on urethane encased MEMS 
barometers, mounted on a printed circuit board with 
8mm separation. A 5 sensor ‘Takkstrip’ may be purchased 
for $150. Each robot finger features 8 sensors mounted on 
two such strips; 3 sensors on the distal phalanx and 5 on 
the proximal phalanx. Each sensor outputs a single pres-
sure value at 100Hz, with resolution of <0.01N [42]. Prior 
to the experiments, the embedded tactile sensors were 
calibrated using a series of weights (10g to 100g) applied 
via a passive linearly constrained motion platform 
(weighing 10.1g) and custom finger clamp. Calibration 
illustrated primarily linear responses. This allowed linear 
sensor equalization for the parametric mode. Sensor 3 of 
the left finger showed significantly reduced sensitivity 
and was negated from the parametric processes.   
 
4.2 Objects 

The experiments were conducted with two sets of ‘model 
objects’ and a set of ‘everyday’ (i.e. household) objects 
(Fig 5). The model objects were custom fabricated to con-
strain parameter variation and validate the parametric 

estimation methods. The everyday objects were selected 

from the YCB object set [43] to represent a diverse range of 
size, shape, stiffness and weight parameters. The set is a 
recent benchmarking standard for robotic manipulation 
that facilitates replication of test equipment and proce-
dures between research groups. The model objects con-
sisted of two sets, each of which contained circular and 
cubic objects. The first set were fabricated from 3D print-
ed ABS (wall thickness 4mm) to maintain stiffness but 
varied in size. The second set maintained the same size 
but varied stiffness, by the use of different foam materials. 
Characteristics of the model object and everyday sets are 
presented in, Table I, II and III. Set 1 stiffness corresponds 
to the ‘Hardest’ measure of set II. Stiffness in all cases was 
measured via a load cell (10mN accuracy) mounted on a 
linear actuator (0.01mm resolution). 

 

5 METHODS 

5.1 Data Collection 

Data was collected by grasping each object with the robot 
hand twenty times, in various positions and orientations. 
As our method currently involves no post-grasp manipu-
lation (e.g. lifting), the hand was mounted (via clamps) to 
a table. During each trial (grasp), the actuators were 
commanded to move 270deg over 3.25seconds with a 
constant target velocity. The final target position was 
maintained for 250ms at the end of the motion before the 
actuators returned to 0deg, releasing the object. Actuator 
target and actual positions, plus force sensor data were 
measured at 100Hz. Images from a webcam, mounted 
over the hand, were also logged for validation purposes. 
All logging and control was performed via ROS. 
In each trial, the object was placed on the table surface, in 
an arbitrary pose (position and planar orientation) within 
the workspace of the gripper. For some classifier tests, 

Table I: Sizes (mm) of set 1 model objects. 

 

Table I: Stiffness (N/m) of set 2 model objects. 

 

Table III: Characteristics of the everyday objects. 

 

 
Fig 6: Examples of object pose variation and resulting grasp 

 
Fig 5: The three sets of objects used in this work. Product logos 
have been obscured for copyright considerations. 
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planar orientation of the object was constrained to per-
turbations of ±45deg (these will be discussed in Section 
6.1). The same object surface rested on the table in all cas-
es. An example of such pose variation is illustrated in Fig 
6, from the logged webcam data. An additional 7 empty 
grasps (with no object present) were also recorded. An 
example of the actuator and force data resulting from a 
single grasp is demonstrated in the first three plots of Fig 
7. Other features of this figure will be further described in 
subsequent sections, as will the methods used to process 
the data. The objects were not constrained after place-
ment. It was observed that objects placed in a pose with a 
horizontal offset would be ‘pushed’ into the center of the 
hand during grasping.  

5.2 Machine Learning Scheme 

In this section we present the machine learning scheme, 
which aims to identify objects from the data acquired dur-
ing a single grasp. To achieve this goal an ensemble classi-
fier was employed based on the random forests classifica-
tion technique.  

5.2.1. Random Forests Classifier 

Random forests (RF) were originally proposed by Ho [44] 
and Breiman [45] and are an ensemble classifier based on 
different decision trees. The output is the most popular 
class between the decisions of the individual classifiers. 
The RF technique provides high classification accuracy, 
does not overfit and handles multiclass problems (such as 
distinguishing between multiple object). Furthermore, the 
method is fast and efficient when dealing with large data-
bases and has the capability to handle high numbers of 
input variables. A diagram of the RF classification proce-
dure for n trees is presented in Fig 8. Each tree of the RF is 
constructed from a different out-of-bag (oob) sample set 
from the classifier training data. This training data com-
prises two thirds of the recorded grasps data. The remain-
ing data is used for validation. Classification accuracy, 
and comparison of RF technique to various state-of-the-

art classifiers, will be presented in Section 5. 

5.2.2. Feature Selection  

The feature space used for discriminating between the 
objects is defined by the actuator and force sensor data at 
two different time instances of the grasping process. The 
first instance (t1) is taken when the sum of actuator target 
positions (AT) exceeds the sum of actual actuator positions 
(AP) by a given threshold, (TStall = 20deg) via |AT – AP |> 
TStall. This deviation indicates a stall in actuator motion 
due to finger /object interaction. The second instance (t2) 
occurs when actuator target positions (AT) have reached 
steady state (this occurs at time t=3.25s). Here, the object 
is being held with constant tendon exertion. These in-
stances are indicated as ‘Deviation’ and ‘Target Motion 
End’ on Fig 7. Actual actuator positions (2 values) and 
force sensor readings (16 values) are extracted at these 
two instances, giving a feature space of 36 variables. This 
raw data is obtained without a-priori information regard-
ing the robot model or actual joint angles, making the 
machine learning methodology model-free. Another ben-
eficial characteristic of the classifier is that it does not nec-
essarily require calibrated force values, as classification is 

 
Fig 7: Actuator position and force sensor data during a single object grasp. Triangular markers denote events identified by the methodology. 
The bottom plot shows the number of sensors in contact during a grasp. The stable grasp start may occur before or after actuator deviation, 
depending on grasp conditions.  

 
Fig 8: The random forests (RF) classifier with n trees. 
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based on the differentiation in input data. 

5.2.3. Features Importance Calculation 

The RF technique has an inherent capability of computing 
the importance scores for all feature variables and com-
paring these relatively. Such a calculation is useful for 
optimizing future hand designs, by minimizing the num-
ber of sensors required to achieve a certain level of classi-
fication accuracy. When fewer sensors are used, their loca-
tions on the fingers become more critical. 

Importance calculation is based on manipulations of a 
subset of the training data, that is called out-of-bag (oob) 
samples. These oob samples are given as an input to all 
decision trees and the number of correct votes counted. 
Then, the oob samples values of a feature variable m are 
randomly permuted. The modified samples are once 
again “fed” to each of the n decision trees. Importance of 
the feature variable m is then calculated by the operation 
Im = VP – VU. Where Vp is the number of correct votes cast 
with the m-variable permuted oob data and VU is the same 
metric with untouched oob data. The overall/raw im-
portance score (Im) for each feature variable m, is the aver-
age of the importance scores computed for all trees of the 
RF. The process is described in Fig 9.  

In this work, we normalize importance scores to facili-
tate comparisons of the different feature variables, even 
for different classification problems. 

5.3 Parametric Method 

The parametric method estimates physical object parame-
ters of size and stiffness based on data acquired during 
the grasp. Size is related to a contact polygon constructed 
from force and actuator data. Additionally, some measure 
of grasp stability is provided. The parametric method 
makes use of several processes, as illustrated in Fig 10. 
These processes will now be described in more detail. 

5.3.1 Forward Kinematics Estimator 

To estimate the size and shape of an object, the paramet-
ric method relies on knowledge of the kinematic posi-
tion of the robot fingers once a secure grasp has been 
made. Predicting the kinematic behavior of mechanical-
ly compliant underactuated fingers is non-trivial. In ad-
dition to the complexities of modelling flexure joints 
[46], multiple joint position solutions exist for each actu-

ator position. Actual finger kinematics result from finger 
and transmission dynamics, which is modulated during 
different stages of an adaptive grasp by interaction with 
unknown objects [22]. In the case of the fingers used in 
this work, the inclusion of tactile sensors permits interac-
tion detection on each phalange. Based on this data, a 
computationally efficient kinematics estimator (Fig 11) 
was constructed that uses force sensor information to 
switch between different grasping ‘modes’, as illustrated 
in Fig 12. In each mode, a different set of transmission 
gains (G) converts actuator position (AP) to motion of the 
proximal and distal joint (θP and θD). AP is also equivalent 
to tendon length from fingertip anchor to actuator. For 
simplicity, θD is considered as a pin joint in the kinematic 
structure of the finger. Mode selection is based on FP and 
FD, which are the sum of individual force sensor values on 
the proximal and distal phalanges respectively. The force 
value thresholds required to halt link motion on each joint 
are defined independently as TD and TP. These values were 
determined experimentally and are higher than the 
threshold used for contact detection (TC). This allows the 
kinematics to deal with the common case of a single fin-
ger pushing an object into the center of the hand (as illus-
trated in the left example of Fig 4), prior to a grasp being 
made. The different modes may be explained as follows: 
• Mode 1 - Pre-contact: ‘Free motion’ of the finger prior 

to object contact. Actuator motion generates a large 
change in θP and small change in θD. 

• Mode 2 – Proximal Contact: If FP> TP motion of the θP 
stops. Actuator motion is transferred to θD. 

• Mode 3 – Proximal & Distal Contact: If FD > TD mo-
tion of both joints stop. 

• Mode 3a – Distal Only Contact: Mode 3a in Fig 12 
denotes a distal only grasp (no proximal contact). 
This is also recognized by FD > TD (same as Mode 3) 
but without precedence by a proximal contact. 

 
Fig 10: Processes within the parametric estimator. Outputs are 
shaded boxes. Classifier dependent components (such as object 
class, C) have dotted lines. 

Fig 9: RF feature importance calculation procedure. 

Fig 11: Kinematic estimation via actuator positions (AP) with prox-
imal (FP) and distal (FD) force sensor values. 
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The forward kinematics method is iterative and as such, 
determination of joint angles for a specific instance neces-
sitates calculation of all joint angles up until that instance. 
Due to a lack of typical kinematic matrix operations, this 
process has very little computational overhead. Kinemat-
ics estimation for a complete grasp (e.g. the data in Fig 8) 
takes less than 30ms on an Intel i7 3.6Ghz PC. 

Motion gains and threshold values were determined via a 
calibration process in which joint angles were visually 
observed from ten overhead video frames recorded dur-
ing a single empty grasp and a single grasp of a rigid 
70mm cylinder. Joint angles were determined by locating 
the spatial centroid of small yellow markers attached to 
the finger phalanges. These markers are visible in Fig 6 
and Fig 13. Interpolation of these co-ordinates with syn-
chronized actuator data led to linear transmission models 
and three gains. These gains (for both fingers) are (proxi-
mal) GP = (3.58, 3.38), (distal during mode 1) GD1 = (0.26, 
0.11) (distal during mode 2) GD2 = (5.29, 5.06). A limitation 
of this method is that different gains are required for dif-
ferent orientations of the hand relative to gravity. We pre-
dict that performing calibration for a small number of 
orientations would allow interpolated gain estimation. 

5.3.3 Stable Grasp Location and Analysis 

The hand kinematics may be combined with force data to 
establish the spatial co-ordinates of contact points on the 
finger pads for any instance of grasp data. A suitable time 
instance for such a task would be when maximum stabil-
ity has been achieved for a grasp. For the purpose of this 
work we associate grasp stability with number of contacts 
of the hand with the object. Counting the number of sen-
sors whose values exceed a given contact threshold (TC) at 
each time instance (t) of the grasp produces the following 
‘sensors-in-contact’ array SC(t): 

����� � 	� 	�����
���

���


	� ������
���

���

					 (1) 

����			�� � �1,			�	� � ��	0,			�	� � ��	 ,			��� � �1,			��� � ��	0,			��� � ��	 
(2) 

Where LC and RC are binary array of the sensors in 
contact, derived from the force values FL and FR. The SC 
array may be searched to locate the first instance of 
max(SC), the maximum sensors in contact. This instance is 
indicated on Fig 7 as ‘Maximum Contacts’. The process is 

highly efficient and may be computed at the ‘Target Mo-
tion End’, t2, with no requirement to release the grasp. 

The value of max(SC) may be used to give an indication 
of  grasp stability (GS), when combined with grasp type 
determination (proximal, distal or caging, as illustrated in 
Fig 13). Grasp type may be determined by counting the 
number of proximal (CD) and distal (CP) contacts. 
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(3) 

Each grasp type is represented by a gain (��) associated 
with the stability of that grasp. The number of sensors in 
contact SC, is scaled by �� to give the GS score. 

�� � ��	�����,			����	�� � � 1, 			�� � 0,1.2, 			�� � 0,2, 			�� � 1	⋀	�� � 1		 
(4) 

The highest gain (2) is associated with a caging grasp, 
where the object is secured by both proximal and distal 
links. The proximal only grasp is rated slightly higher 
(1.2) than a distal only grasp (1), due to a tendency for an 
object that slips from a distal grasp to become secured by 
a proximal grasp. Example GS scores will be provided for 
different example cases in Section 6.  

5.3.4 Grasp Polygon Construction 

The kinematics estimator also permits the location of con-
tact points to be established at max(SC). At this point, the 
co-ordinates of in-contact sensors may be determined 
from finger joint angles (established in Section 5.3.1) and 
the arrays LC and RC. These co-ordinates may then be 
connected to construct convex grasp polygons, as will be 
later illustrated and discussed in Section 6.2.1 and Fig 17. 

The grasp polygon provides various aspects of the ob-
ject and grasp. One easily extractable feature is the grasp 
aperture (polygon width), which may be used as a simple 
dimensional output. We use this metric for verification of 
classifier results. Further results pertaining to this will be 
given in Section 6. 

 
Fig 12: Kinematic mode progression based on finger adaptation to object contact 

 
Fig 13: Examples of the three grasp types. 
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5.3.5 Stiffness Estimation 

Estimation of object stiffness is achieved by observing the 
change in all measured forces between two intervals in 
the grasp. Due to the limits of available data, it is not pos-
sible to fulfill the stiffness equation	� � 	 ∆�	/	∆�, where 
stiffness, S, is measured by observing a change in force ∆� 
for a change in surface displacement ∆�. This is because 
the change in finger position after a grasp has been estab-
lished cannot be accurately measured. However, we have 
found that a metric related to object stiffness (SM) may be 
achieved by considering the average reaction force per 
tactile sensor at two instances of the grasping process. 
These intervals are the same as those used for feature se-
lection (defined in Section 5.2.2), i.e. the actuator stall in-
stance (t1) and the steady state condition of AT (t1). This 
capability results from the open-loop nature of the grasp, 
which maintains some consistency between conditions. 

���� � � 	������	���� 
 ������������
���

���

 
(5) 

���� � |�����|������ 
	 |�����|������ 

(6) 

Where LC, RC and SC were defined in equations (1) and 
(2). FL and FR are force sensors measurements on left and 
right fingers. By combining FL, FR with LC, RC the values 
of non-contact sensors are set to zero, reducing noise. 
Other methods of stiffness estimation that incorporated 
difference in actuator error and time were evaluated, but 
led to large error margins with variations in grasp type 
and pose, particularly for stiffer objects. Results for stiff-
ness estimation of model object set 2 will be presented in 
Section 6. 

5.3.6 Pose Estimation 

Pose estimation is a feature extraction process that allows 
the location of objects within a grasp to be estimated. 
Such a technique is useful for determining subsequent 
manipulation of an object. For example, placing a grasped 
object at a target location will require different hand posi-
tioning depending on the location of the object in the 
hand. The technique is facilitated by collaboration with 
the random forests classifier, which provides the estima-
tor with the object class (C). This leads to recall of a sim-
ple object polygon for known objects, based on size and 
shape. For example, the apple object’s polygon would be 
a circle with a diameter of 75mm. The centroid of the ob-
ject polygon is then matched to the Y (distal) component 
of the centroid of the grasp polygon. Currently this meth-
od functions only for circular objects.  

6 RESULTS 

6.1 Classification Accuracy 

For the training of the random forest classifiers, a 10-fold 
cross-validation procedure [47] was used to assess their 
efficiency and avoid overfitting. The classification accura-
cies are reported in Table IV. These results were computed 
by averaging multiple rounds of the cross-validation 

method. In all cases, two thirds of the acquired grasping 
data for each set (20 grasps per object) was used for train-
ing, with the remainder used for validation. All classifica-
tion accuracy results are given in Table IV. 

Table IV: Classification results for all experiments 

Objects Case Accuracy 

Model 1 Size & Shape 93.57% (SD: 3.25%) 
Model 2 Shape & Stiffness 93.01% (SD: 3.02%) 

Everyday Constrained  
Orientations 

100%    (SD: 0%) 

Everyday Free Orientations 94.32% (SD: 3.09%) 

6.1.1. Model Objects Classification Results 

The first classification problem involved discrimination 
between the model objects of set 1 and 2 (see Section 3.2). 
The trained classifier is slightly better at discriminating 
between objects with different shapes and sizes rather 
than objects of different shapes and stiffness.  

6.1.2. Everyday Objects Classification Results 

The second classification problem involved discrimina-
tion between the various everyday objects. This was first 
attempted for a constrained orientations case, in which 
the objects were positioned in an arbitrary manner but 
orientations were constrained within ±45 degrees of the 
principal axis. In the unconstrained case, objects were 
positioned with arbitrary positions and orientations (±180 
degrees). As expected the classification accuracy is higher 
for the constrained orientations case, though the free ori-
entation result also demonstrates excellent accuracy. 

6.1.3. Comparison of Various Classifiers 

To test the suitability of the RF machine learning ap-
proach to this problem, the classification of everyday ob-
jects in constrained orientations was repeated with a 
number of alternative state-of-the-art classifiers. 

The methods used were a Linear Discriminant Analy-
sis (LDA), a Naïve Bayes classifier, a Neural Network 
(NN), a binary Support Vector Machines classifier (SVM) 
and the random forests (RF) technique. The SVM classifi-
er was trained using different kernels (linear, RBF etc.) 
and the best results were acquired. The NN classifier was 
constructed using a single hidden layer with fifteen hid-
den units trained with the Levenberg-Marquardt back-
propagation algorithm. RF forests were grown with ten 
trees for processing speed (two times faster) and one 
hundred trees for accuracy. All classifiers were compared 
for the task of discriminating between the everyday life 
objects with constrained orientations (±45deg) and arbi-

Table V: Comparison of different classifier accuracy on every-
day life objects with constrained orientations 
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trary positions. The classification accuracies for the differ-
ent techniques are reported in Table V. 

Random forests outperform all other classification 
methods, but all methods provide high classification ac-
curacies. Thus, the proposed method could have been 
used with other classifiers with similar results.  

6.1.4. Sensor Placement Optimization  

Feature variable importance was implemented to de-
termine optimal force sensor locations for different quan-
tities of force sensors. The feature variables importance 
scores for all 36 features (18 features at two time instances 
- Section 4.2.2) are presented in Fig 14, for cases of every-
day objects with constrained and free orientations. The 
height of the bars represents the importance scores of the 
features for 10 sets. Each set is a distinct random splitting 
of the training data. It may be observed that all scores are 
robust along the different training data splitting.  To eval-
uate this approach, the most important feature variables 
were selected and the classifier was re-trained after re-
moval of redundant features. Three different cases were 
examined, performing retraining for the 4, 6 and 8 most 
important sensors of the hand, rather than using the ini-
tial 16 force sensors. The classification results are reported 
in Table VI. These results illustrate a significant redun-

dancy in the initial feature space, with respect to the cho-
sen classification method. In this respect, future hands 
could be constructed with less sensors, in optimal posi-
tions Designs suggested by this approach, which all fea-
ture asymmetrical sensor placement, are shown in Fig 15. 

6.2 Parametric Results 

The parametric method resulted in a number of outputs 
for each grasp. To provide reliable benchmarks, results 
are presented for the model objects.  

6.2.1 Dimension Estimation 

Estimation of dimension was performed for the 50, 70 and 
90mm diameter cylindrical model objects in set 1 (Fig 5) 
and an empty grasp. These were based on the width of 
grasp polygons, derived from estimated finger kinemat-
ics. Examples of determined grasp polygons for an eve-
ryday object (box of sugar) are illustrated in Fig 15. Each 
example is also annotated with a measure of grasp stabil-
ity GS, as defined in Section 5.3.3. 

Fig 17 provides histograms of estimated dimensions 
(based on the width of the contact polygon) for all grasps 
(with unconstrained object positions). Clear distinctions 
are illustrated between the different objects sizes with 
Gaussian distribution and median values following a 
trend consistent with the actual diameters of the objects, 
though a linearly increasing offset between estimated and 
actual values may be observed. It may be seen that sizable 
error bounds are present, particularly for the smaller, 
50mm diameter cylinder. A further breakdown of dimen-
sion estimations into grasp types Fig 17 illustrates persis-
tent errors for the 50mm object with the caging grasp (Fig 
13). Conversely, little variance is indicated overall for 
proximal grasps. It is likely that the uncertainty of finger 
motion in different grasps is being reflected here, with the 
kinematics estimator faring better for finger interaction 

 
Fig 14: Feature variables importance bar plots for dis-

crimination of everyday objects with a) constrained orientations, 
b) free orientations.  

 

Fig 16: (Top row) Grasp polygon construction and finger kine-
matics estimation. GS shows grasp stability score. (Middle row) 
corresponding video frame of the most stable grasp instance, 
based on max(SC). (Bottom row) Object starting pose. 

Table VI: Effect of feature variables selection (sensor reduction) 
on classification accuracy for everyday objects. 

 

 
Fig 15: Optimal sensor placement for 6 and 8 sensor setups 
based on features variables importance.  
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for certain cases. Indeed, in some grasps it was observed 
that a distal only grasp could lead to further object mo-
tion (such as pulling the object towards the palm). Of 
course, the grasp does not always occur at the widest 
point of the object, which is represented by the negative 
offset in some many cases. 

6.2.2 Stiffness Estimation 

Parametric stiffness estimations for set 2 of the model ob-
jects (Fig 5) are illustrated in Fig 19 for all cases. The out-
puts of the stiffness metric, SM were scaled between values 
of 0-100. The results indicate excellent distinction between 
three different stiffness objects (in the range 156 to 2100 
N/m) with some larger distribution of errors for the most 
rigid object (where sensor output would often saturate 
during the grasp). Inspection of SM distribution in Fig 20 
illustrates that the results do not overlap within each 
grasp type. Therefore, by determining the grasp type GS 
via equation (4), it is possible to automatically categorize 
each result into an appropriate stiffness value.  

6.3. Collaborative Results  

The following two brief results are based on collaboration 
between the parametric estimator and machine learning 
approach. Sharing data between processes in this way is 
demonstrated to be highly beneficial.  

 

6.3.1 Dynamic Classifier Retraining  

After the parametric method has estimated the dimension 
of the object (a process that takes less than 15ms after kin-
ematic computation), the measured dimension is passed 
to the machine learning algorithm. This parameter pro-
vides an extra level of validation of the classification deci-
sion. For example, say the classifier were to mistakenly 
classify a soup can as a coffee can (from Fig 5). However, 
the estimated object dimension from the parametric 
method indicates that the grasped object is too small to be 
a coffee can, given the known dimensions from Table III. 
In such a case, the classification decision is verified as 
false, and the classifier is dynamically retrained, exclud-
ing all the objects that have dimensions that are signifi-
cantly different from the estimated dimensions. Essential-
ly, this is an a-posteriori filtering and correction of the 
classification decisions that increases the machine learn-
ing approach’s efficiency. Due to the efficiency of the 
method, the retraining (which takes less than 65ms) may 
also be completed during an object grasp.  

This synergistic approach was tested on a variety of 
objects with real and simulated errors. In all cases, retrain-
ing of the classifier led to subsequently improved classifi-
cation accuracy to 100%. 

 

 
Fig 17: Histogram of parametrically estimated diameters of three 
stiff cylinder objects and an empty grasp. Gaussian distribution 
curves are also shown. 

Fig 18: Diameter estimation of stiff cylinders, categorized by 
grasp type. 

 

Fig 19: Histogram of estimated stiffness (scale 0-100) with 
Gaussian distributions for various stiffness cylinders. Data has 
been grouped across grasp types. 

Fig 20: Stiffness estimation results, categorized by grasp type 
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6.3.2 Pose Estimation 

Collaboration between elements also occurs by passing of 
class data from the machine learning approach to the par-
ametric estimator, as described in Section 5.3.6. This ena-
bles estimation of pose for round (orientation free) ob-
jects. Sample results of this approach are illustrated in Fig 
21 for proximal, distal and caging grasps of a 70mm rigid 
cylinder. Accurate kinematic estimation of finger pose is 
also shown in Fig 21. The geometric model of the cylinder 
was reported to the parametric approach by the classifier.  

8 CONCLUSION 

In this paper we have presented a hybrid methodology 
for performing tactile classification and feature extraction 
during a single grasp with a simple underactuated robot 
hand. Such robot hands provide highly practical and easi-
ly implementable grasping solutions for robotics. Similar-
ly, our work has aimed to provide a system with low mo-
tion, time, complexity and cost overheads for haptic sens-
ing applications in practical robotics.  

Promising results have been presented, showing high 
classification accuracy and the ability to extract features 
(with error bounds) of an object’s dimension, stiffness and 
pose. While more accurate parameter identification has 
been carried out by other robotic approaches, these have 
tended to focus on a single parameter as part of a more 
extensive exploration process. Though the systems ma-
chine learning and parametric methods are capable of 
working independently, a novel collaborative technique 
allows each method to contribute its outcomes to the oth-
er. This improves classification accuracy and allows esti-
mation of object pose.  

The various aspects of the proposed methodology are 
highly suited to dynamic, semi-structured environments 
where the time or dexterity necessary for detailed haptic 
object exploration is not available.  
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