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Abstract—The method presented in this paper assumes that the
received signal is a linear combination of delayed and attenuated
uncorrelated replicas of the source emitted waveform. The set of
delays and attenuations, together with the channel environmental
conditions, provide sufficient information for determining the
source location. If the transmission channel is assumed known, the
source location can be estimated by matching the data with the
acoustic field predicted by the model conditioned on the estimated
delay set. This paper presents alternative techniques that do not
directly attempt to estimate time delays from the data but, instead,
estimate the subspace spanned by the delayed source signal paths.
Source localization is then done using a family of measures of
the distance between that subspace and the subspace spanned
by the replicas provided by the model. Results obtained on the
INTIMATE’96 data set, in a shallow-water acoustic channel
off the coast of Portugal, show that a sound source emitting a
300–800-Hz LFM sweep could effectively be localized in range or
depth over an entire day.

Index Terms—Broad-band, shallow water, source localization,
subspace methods.

I. INTRODUCTION

THE AIM OF single-hydrophone broad-band source local-

ization is to provide a range/depth localization approach

for coherently using the information contained in the time se-

ries received by a single hydrophone.

Classical matched-field processing (MFP) methods mostly

use vertical or horizontal hydrophone arrays with significant

apertures in order to obtain sufficient source location spatial dis-

crimination. The reader is referred to the pioneering work of

Hinich [1] and Bucker [2] and to Baggeroer et al. [3] and refer-

ences therein for a full overview of the classical work done in

MFP. Although many studies used MFP with single-frequency

data (tones), some do combine information at different frequen-

cies. Both incoherent and coherent forms have been studied pro-

viding what are effectively broad-band MFP (BBMFP) estima-

tors [4]–[6].
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Source localization in the time domain was first clearly sug-

gested by Clay [7]1 who used a time reversal of the channel

impulse response to reduce transmission distortion and (in sim-

ulation) localize a source. Li et al. [9] used the same technique

for localizing a source in a laboratory waveguide using air as

the medium of propagation. Single-hydrophone localization, in

particular, was studied by Frazer [10], who introduced several

Clay-like estimators and tested them on simulated data. In 1992,

Miller et al. [11] showed, using computer simulations, that it

is possible to localize short-duration acoustic signals in a real-

istic range-dependent environment, while the same method was

applied for range and bearing estimation using bottom moored

sensors in [12]. Time-domain source localization was actually

achieved by Brienzo et al. [13] using data received on a ver-

tical array in a deep-water area on the Monterey fan. In this

case, a generalized conventional beamformer was used for re-

combining the received data in the time domain (matched-filter),

and then between sensors in the space domain (beamformer).

In shallow water, arrival time estimation is in many prac-

tical situations compromised due to the low signal-to-noise

ratio (SNR) and/or to the difficulty in resolving individual

paths [14]. Furthermore, because of such factors as bottom

interaction and ocean variability, shallow water presents many

challenges for accurate acoustic modeling. Nevertheless, in a

more recent study, it has been demonstrated that, with suitably

robust processors, received and model-predicted waveforms

could be correlated at a single array sensor yielding practical

schemes for source tracking [15], [16]. In this case, the lack of

spatial information was “compensated” by coherent broad-band

processing.

Difficulties associated with single-hydrophone localization

are obviously related with the lack of spatial diversity. Thus, a

key point of interest is to understand the degree to which spa-

tial aperture can be compensated for using broad-band informa-

tion. The method proposed in this paper goes along the lines of

those being used in ocean tomography, where the features of in-

terest for ocean characterization are the time delays associated

with the different acoustic paths (or rays) [17]. Our approach

does not directly attempt to estimate time delays from the data

but, instead, searches for the source location for which the time

delay set maximizes a mean least squares criteria. In that sense,

it gives a mean least squares solution constrained to the given

acoustic model.

Making the further assumption that there are features (clus-

ters of acoustic arrivals) that are decorrelated allows us to extend

this approach to signal–noise subspace splitting. In that case, es-

timating the source location is equivalent to measuring the dis-

1However, source localization feasibility had been mentioned ten years earlier
by Parvulescu [8].
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tance between the estimated signal subspace and the subspace

spanned by the delayed source signal paths given by the acoustic

model. Such subspace-based distance measures are shown to

yield good source location estimates on real data.

This paper is organized as follows. Section II presents

the linear data model and the assumptions that underline the

methods being developed. Section III presents the classical

time-delay estimation (TDE) problem. Section IV extends TDE

methods to source localization by including the environmental

information. The resulting algorithm is then tested, with

simulated data, in Section V. Section VI shows the results

obtained on a data set recorded in a shallow-water area off the

west coast of Portugal, during the INTIMATE’96 experiment

in June 1996. Finally, in Section VII, we discuss the results and

draw some conclusions.

II. LINEAR DATA MODEL

According to the linear data model, the received acoustic

signal due to a source at location is given by

(1)

where is the noise sequence, assumed spatially and temporally

white, zero-mean and uncorrelated with the signal,

is the discrete-time index within each -index time snapshot,

and is the noise-free signal given by

(2)

Here, is the source-emitted waveform and is the channel im-

pulse response. Under the assumption that the medium between

the source and the receiver behaves as a multiple time-delay at-

tenuation channel, its impulse response can be written

(3)

where the

are, respectively, the signal attenuations and

time delays along the acoustic paths at time snapshots

.

To proceed with the estimation of the

time delays, it is necessary to

assume that the variation in time delays is small within each

snapshot data set, i.e., that where

and where is the observation

time ( , where is the sampling interval). This

additional assumption allows one to write

(4)

where is the mean arrival time of path within the

observation time . With the assumptions made in (4), one can

now rewrite (1) as

(5)

with the following matrix notations:

(6a)

(6b)

(6c)

(6d)

and

(6e)

where is the number of time samples on each snapshot and

is the number of signal replicas at the receiver. Equation (5)

forms a linear model on the amplitude vector , where further

assumptions on the relative dimensions and rank of matrix and

noise distributions allow for different solutions for the estima-

tion of . For simplicity, the dependence of and on the source

location parameter will be omitted in the next two sections.

III. TIME DELAY AND AMPLITUDE ESTIMATORS

In model (5), both the amplitude and the time-delay vectors

are unknown. However, as discussed in the introduction, we

prefer to focus on the time-delay vector for localization which

should be a more stable feature and therefore yield a more ro-

bust processor. There are two possible approaches for solving

this problem: the first is to consider that the amplitude vector is

deterministic and therefore both and are to be estimated; the

second considers that can also be random, and then one has

to resort to second-order statistics for estimating the time-delay

vector . These two approaches will be formulated in the next

subsections.

A. Deterministic Amplitudes

To begin, one needs some estimate of the amplitude vector .

This is a classical problem and may be easily addressed using

the least squares (LS) method or, under the Gaussian white noise

assumption, treated as a generalized maximum likelihood (ML)

problem. In either case, one obtains the following:

(7)

whose solution is well known as

(8)

where indicates complex conjugate transpose. Inserting of

(8) into (5), the problem now becomes that of estimating a known

signal in white noise (for each assumed ). The optimal solution

is given by the well-known matched filter. That can be seen by in-

serting (8) into (7) to obtain a new function to be maximized

(9)

which is now only a function of delay vector . Passing from

(7) to (9), requires the additional assumption that the matrix

is orthogonal, i.e., that . In terms of propagation,

that assumption is equivalent to assuming that signals traveling

along different paths suffer uncorrelated perturbations. Whether

this occurs in practice depends on a variety of factors.
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The description above assumes that only a single measure-

ment is available. If, instead, there are randomly distributed

vectors inserted into a matrix as , of dimen-

sion , the problem is formulated as the minimization of

(10)

where is now a matrix containing the signal am-

plitudes at times. In this case, the solution for is analogous

to (8) as

(11)

Substituting (11) into (10) gives the new function for as

(12)

In this case, and for an infinite observation time, one can esti-

mate the time delays from the highest peaks of function

(12), i.e.,

(13)

and then replace the time-delay estimates obtained from (13)

into matrix of the amplitude estimator (11) and iterate. In prac-

tice, for a finite observation time, (12) may not exhibit clear

peaks, and a complex -dimensional search may be required to

solve (13). As it will be seen below, such a complex search pro-

cedure is not needed here since only the value of the functional

(12), at model predicted values of , is necessary for source lo-

calization.

B. Random Amplitudes

Once model (5) has been adopted, an additional assumption

on the mutual decorrelation of the multipath amplitudes (as-

sumed now as random and zero mean) allows one to extend the

least squares or maximum likelihood (LS/ML) method above to

subspace separation-based methods.2 In fact, the linear model

(5) allows one to characterize the signal part as covering a

-dimensional subspace where is the number of uncorre-

lated paths (or groups of paths) in the received signal—this is

the signal subspace.

In general, a number of uncorrelated time snap-

shots are available which is a requirement for estimating the

signal subspace. Let us consider the data matrix and its SVD

. Since has a maximum rank of

. Taking into account the linear model (5) with the assump-

tions made on the decorrelation of noise, signal, and ampli-

tude components, it can be shown [18] that the eigenvectors

associated with the largest singular values

provide the optimal estimate (in the

sense of LS and ML) of the signal subspace. Indeed, the vectors

span the same (signal) subspace as the

signal replicas . Therefore, considered as a

function of search delay , the projection of the signal replicas

onto the subspace spanned by the first eigenvectors will be

2Subspace methods do not require random amplitudes that can be either
random or deterministic.

a maximum for . Thus, we seek the

maxima of the functional

(14)

where . Using (14), the associated signal

subspace (SS) based time-delay estimator can be written as

(15)

Similarly, knowing that and its complement

split the whole space into two orthogonal subspaces,

the projection of the signal replicas onto the signal sub-

space complement (denoted in the sequel) will tend to

zero for the same true values of . Therefore, the noise sub-

space-based time-delay estimator is given by

(16)

where the matrix is formed from the

data eigenvectors associated with the to smallest sin-

gular values. These eigenvectors span the subspace containing

the nonsignal components, so the estimator is generally called

the noise subspace or signal subspace orthogonal estimator.

IV. SOURCE LOCALIZATION

The source localization problem can be readily deduced from

the last sections both for the LS/ML and the subspace separa-

tion-based methods. Until now, only the received signal was

used for analysis but source localization requires data inver-

sion for source properties. That means, in particular, that the

medium where the signal is propagating has to be taken into ac-

count using a specific propagation model to solve the forward

problem. The propagation model determines a set of time delays

at the receiver for the given environment and for each hypothet-

ical source location.

Let us define as the model-calculated time delay vector

for source location , conditioned on a given environmental sce-

nario. For all possible values of in a set , the vector

will cover a continuum on an -dimensional space as does the

source replica vector. In other words, the source replica vectors

span a subspace that has dimension under the assump-

tion of uncorrelated paths

(17)

As explained in the previous section, an estimate of the actual

subspace associated with the true source location can be

obtained as the span of the eigenvectors contained in :

(18)

Those two subspaces share the same dimension . An esti-

mator of could, in principle, be derived from the notion of

distance between subspaces. This is usually based on respective

projections, but alternatively one may use the CS decomposition

theorem [19, Theorem 2.6.1] and define the distance measure

(19)

where is the minimum singular value of matrix . The

distance measure (19) demonstrates poor performance for esti-
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mating the source location parameter , since it mainly depends

on the estimation of the smallest eigenvalue of a matrix that is

itself highly dependent on the SNR. In practice, is not known

and varies with , which introduces further sensitivity into .

Alternatively, a constrained LS/ML based estimate of

source location will be, according to (12) and (13), given by

the value of that satisfies

(20)

The resulting source location estimator can therefore be written

as

(21)

Similarly, using (15) and (21) for the SS approach, the source

location estimate corresponds to the maximum of the sum over

paths of the projections of the replica signal for each time delay

set onto the estimated signal subspace

(22)

Finally, for the approach, the function is searched for the

minimum of the sum over paths of the projections onto the noise

subspace estimate

(23)

V. SIMULATION RESULTS

In order to test the methods presented in the previous section,

and to have a feeling of their performance on real data, the en-

vironmental and geometry scenario used for simulation was the

same as that of the real data in the next section. Let us consider

the case of an LFM sweep with a duration s and a fre-

quency band from 200 to 400 Hz. The signal is transmitted in

a 135-m-deep waveguide with a slightly downward refracting

sound speed profile (Table I) over a sandy bottom characterized

by a 1750-m/s sound speed, a density of 1.9 g/cm , and a com-

pressional attenuation of 0.8 dB/ (Fig. 1). The ray-arrival times

and amplitudes predicted with Bellhop [20] for a sound source

and a receiver at depths of 92 and 115 m, respectively, 5.6 km

away from each other, are shown in Fig. 2. The arrivals are ar-

bitrarily ordered in accordance with their takeoff angle at the

source. The intermediate angles correspond to rays which are

launched nearly horizontally, therefore, with smaller amplitude

loss as seen in Fig. 2(a). Their path lengths are shorted, yielding

a bowl-shaped arrival time pattern seen in Fig. 2(b).

A number of snapshots were generated according

to model (5) with a high SNR ( 20 dB), and the decorrelation

between multipath amplitudes was simulated by generating a

Gaussian vector with its mean equal to the value given by the

model [Fig. 2(a)], and its standard deviation .

The corresponding arrival pattern, based on (13), is shown in

Fig. 3. Note that there are many more arrivals in Fig. 2 than we

TABLE I
MEASURED SOUND SPEED PROFILE USED IN THE SIMULATION EXAMPLE

Fig. 1. INTIMATE’96 real data environmental scenario used for the
simulation.

see as peaks in Fig. 3. This indicates that there are many unre-

solved paths. (With increased bandwidth, these paths would be

resolved.)

Fig. 4 shows the arrival pattern for the same data set but using

the signal subspace estimator (15) with the number of arrivals

set to the true number, i.e., . Notice that the higher reso-

lution allows one to distinguish many more arrivals. The ampli-

tudes are not proportional to the received signal correlation since

no eigenvalue weighting was used to project the source signal

onto the signal subspace. Fig. 5 shows the arrival pattern ob-

tained with the noise subspace estimator (16). The path resolu-

tion is the same as that of the signal subspace method. However,

it is much less sensitive to the actual subspace dimensionality

since an underestimation of would result in a misprojection

onto the signal subspace. Numerically, this is a large number

and therefore a small contribution to the inverse function in the

noise subspace estimator. On the other hand, an overestimation

of would result in a few unobserved directions among several

thousand (depending on the value of ) which, in practice, has

little effect on the result. The main practical difficulty is simply

the computational cost of manipulating matrices of high dimen-

sion. For that reason, the estimators were implemented in the

frequency domain for the real data analysis of the next section.

VI. REAL DATA ANALYSIS

The INTIMATE’96 sea trial was primarily designed as an

acoustic tomography experiment to observe internal tides and

details of the experimental setup has appeared elsewhere [21].

However, for the sake of completeness, a brief description of
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Fig. 2. Ray-model predicted arrival (a) amplitudes and (b) times.

Fig. 3. Arrival pattern with LS/ML estimator [see (13)].

the experiment follows. The experiment was conducted in the

continental platform near the town of Nazaré, off the west coast

of Portugal, during June 1996 and consisted of several phases

during which the acoustic source was either stationnary or being

towed along predetermined paths. This paper is concerned with

the data acquired in phase 1 during which the scenario is as

shown in Fig. 1 and is identical to that used for the simulations

in Section V. The only difference is that the source signal used

during INTIMATE’96 was a 300–800-Hz LFM sweep with

2-s duration repeated every 8 s. The signal received at 5.5-km

range on the 115-m-depth hydrophone is shown in Fig. 6. At that

range, the time–frequency source signature could be clearly seen

[Fig. 6(a)], while the time series shows a strong multipath effect

[Fig. 6(b)]. The SNR has been estimated to be approximately

10 dB within the frequency band of interest. As a first test of

the match between the predicted arrival times and the estimated

arrival patterns, Fig. 7 shows an example of a received data

arrival pattern using (13). The corresponding predicted arrival

times are represented by the vertical lines on the time axis. The

agreement between the two patterns is almost perfect for this

case. In order to establish a localization statistic, the algorithms

described above were used to estimate the source range at a given

correct source depth. Separately, we have estimated the source

depth using a given (correct) range during a 20-h run (phase 1)

where the source was held at approximately a constant range and

depth and the environment was nearly range-independent with a

135-m-depth channel and a slightly downward refracting sound

speed (as explained in Section V and in detail in [21]).

The first problem encountered when processing the real data

using the subspace-based methods was the estimation of the

number of existing paths in (22) and (23). In principle, can

be predicted by the acoustic model for each source range and

should be equal to the rank of matrix . However, in practice, it

was found that the matrix was largely rank deficient, and the

number of estimated uncorrelated paths (or path groups) was

much smaller than the number of predicted paths . Fig. 8 shows

the number of estimated paths for a 20-h run using the classical

Akaike Information Criterion (AIC) and Minimum Description
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Fig. 4. Arrival pattern with an SS estimator [see (15)] andM = 48.

Fig. 5. Arrival pattern with a SS estimator [see (16)] andM = 48.

Length (MDL) [22]. It can be seen in Fig. 8 that the estimated

number of paths varies from 4 to 5 for AIC and from 3 to 4 for

MDL (while the model predicted number of paths is ).

It is known that AIC tends to give higher estimates than

MDL and, in many practical situations, to overestimate the

model order so these results are anticipated. In our case,

the AIC and MDL order estimates inserted into (22) and

(23) yield approximately the same results, so we will only

present the former. In Fig. 9, we estimated source range

and in Fig. 10 we estimated source depth. In these figures,

the three estimators (21), (22), and (23) are, respectively,

shown in ambiguity plots (a), (b), and (c). Taking the peak

locations from those plots yields corresponding subplots (d),

(e), and (f), showing the estimated location (either range or

depth) versus time. A statistic of the estimated mean and

MSE of the proposed estimators is summarized in Table II.

The data singular-value decomposition was performed on 35

consecutive data snapshots every 5 min, with each snapshot

containing a single received source waveform. Therefore, the

data shown has 231 samples along the time axis and, since the

samples are 5 min apart, the whole data set represents 19.25

h worth of data. Fig. 9(a) and (b), given by the LS/ML and

SS estimators, are very similar and show a relatively stable

and well-defined estimate with a mean source range of 5.48

km (Figs. 9(d) and (e) and Table II), which coincides with

the mean DGPS range estimate recorded during the cruise.

The waving effect seen in time is mainly due to the surface

tide (Fig. 11). The phase coincidence between tide height and

the range estimate is striking and simply shows the influence

of water depth variation on the multipath time-delay structure

between the source and the receiver. Fig. 9(c), obtained

with the signal subspace orthogonal projector, shows a more

ambiguous surface—larger mean square error (MSE)—with,

however, the same mean source range estimate than for the

other estimators (Fig. 9(f) and Table II). This poorer result is

possibly due to the signal subspace rank deficiency mentioned

above. The first impression from Fig. 10, when compared to

Fig. 9, is that the results are poorer for source depth than

for source range. This is mainly a function of the axis scales

since we localize in range over a wide sweep while depths
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Fig. 6. Received signal at 115-m depth and 5.5 km range: (a) time–frequency plot and (b) time series.

Fig. 7. Arrival pattern using the LS estimator for a sound source at 5.5-km
range and 92-m depth received on a sensor at 115-m depth. Vertical lines on the
time axis represent Bellhop-predicted arrival times.

of interest are limited to the channel depth. There is also

a dependence on the basic variation of the acoustic field;

however, in terms of intensity, the characteristic scale is a

few wavelengths in both range and depth. Among the three

estimators shown in Fig. 10(a)–(c) is the signal subspace

that provided the best mean result with 92 m, very close to

the true nominal value and also the lowest estimated MSE.

However, all the methods perform well and there is little

practical basis for choosing one over the other. The authors

also believe that, if a broad-band random source signal was

used, the results would be similar to those obtained with the

LFM deterministic signals provided that the emitted signal

replicas were known at the receiver and that the frequency

band was identical.

VII. DISCUSSION AND CONCLUSIONS

The discussion of the results can be separated into two distinct

aspects: one is the estimation of the arrival times—which is a

question of time-delay estimation—and the other is the usage of

the estimated pattern to match the predicted arrival times and its

impact on source localization. Time-delay estimation has been

intensively studied in the underwater acoustic multipath context

Fig. 8. Estimated number of uncorrelated paths with (a) AIC criterion and (b)
the MDL criterion. The start time is 17:20, June 14, 1996.

(see, for example, [23]–[26] and references therein). Three dif-

ferent methods were presented here only to emphasize the im-

portance of the high resolution of time delays in the presence

of limited bandwidth signals. The source localization aspect is

much more central to the paper and, in that respect, the results

shown should be compared with those obtained by Porter et al.

[15], [16], in which a method similar to (21) is used but the

correlation is made between the log of the received signal and

the log of the predicted arrival signal. The output is the peak

of the correlation function. The motivation for that processor

is discussed more extensively in those papers. Briefly, the log

processor brings into balance the strong early arrivals with the

weak late arrivals. The resulting estimator accentuates the basic

arrival pattern (in terms of arrival times) rather than the arrival

amplitude. However, as the processor is based on a correlation

of the complete time-series, it is sensitive to both the peaks and

valleys of the data. In the present study, even greater emphasis

is placed on the arrival times of the individual paths. In fact, the

match function given by (21) is made only for the predicted ar-

rival times. In other words, only the peaks of the arrival pattern

(assuming the correct prediction of time delays) are used. Ob-

viously, the result will be optimal if the peak locations are cor-

rectly predicted and resolved, and this is why subspace methods
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Fig. 9. Time-range localization plots for INTIMATE’96 phase 1 data set with (a) LS/ML method,(b) signal subspace, and (c) noise subspace projection. (d)–(f)
The range estimate obtained as the max on each surface (a)–(c), respectively. The start time is 17:20, June 14, 1996.

Fig. 10. Time-depth localization plots for INTIMATE’96 phase 1 data set with (a) LS/ML method, (b) signal subspace, and (c) noise subspace projection. (d)–(f)
The depth estimate obtained as the max on each surface (a)–(c), respectively. The start time is 17:20, June 14, 1996.

have been introduced for time-delay resolution enhancement.

Conversely, errors on the prediction of arrival times would di-

rectly impact on the quality of the localization. In terms of the

required computation effort, the methods presented here gen-

erally take approximately five times the computation time than

that required by Porter’s method under the same conditions.

This paper has presented a comprehensive method for source

localization using broad-band signals received on a single hy-
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TABLE II
SOURCE LOCALIZATION IN RANGE AND DEPTH: ESTIMATED MEAN AND MEAN

SQARE ERROR (MSE) FOR THE THREE METHODS: LS/ML, SS AND SS

Fig. 11. Surface tide prediction for the receiver location. The start time is
17:20, June 14, 1996.

drophone. The method assumes a classical model of the re-

ceived data as a linear combination of time-delayed replicas of

the emitted waveform with unknown but uncorrelated random

amplitudes. The received signal is assumed to be corrupted by

white Gaussian noise and in all cases the emitted signal is sup-

posed to be known at the receiver. First, classical TDE methods

for estimating the time-delay set are presented and tested on

simulated data. Then subspace-based methods are obtained, in

a classical way, for estimating the signal subspace spanned by

the received paths and its orthogonal complement.

It is shown that time delays can be derived from the intersec-

tion of the signal subspace estimate and the subspace spanned

by the replica signals. For computing the replica signals, there

are now a variety of well-developed acoustic models suitable

for this application including normal mode, PE, wavenumber

integration, and ray models. Ray models have a clear speed ad-

vantage for these broad-band applications since the ray approxi-

mation produces broad-band information (arrival times and am-

plitudes) for no additional cost. Of course, ray models are also

generally the least accurate; however, they were found fully ad-

equate for our application.

The source location estimatorsare then computed as the sumof

the contributions of the match between the received and replica

signals at the predicted arrival times. The match itself is per-

formed in three different ways using: 1) the full received signal;

2) the projection of the received signal onto the signal subspace;

and 3) its complement projection onto the noise subspace.

These source location estimators have been applied to lo-

calize a sound source emitting a 300–800-Hz, 2-s-long LFM

sweep recorded in a shallow water area off the coast of Por-

tugal. The source range or depth have been successfully tracked

during a 20-h time period. The results obtained show the fea-

sibility of single sensor source localization at a known depth

or at a known range: source range can be estimated within a

few meters from the true range of 5.5 km, while, for source

depth, the results show some persistent biais and estimation er-

rors varying between a few meters up to several tens of meters

from the expected true source depth of 92 m. Comparison of the

methods presented here with the results obtained in the same

data set by Porter et al.. [15], [16] show that rather different

approaches gave very similar results with, however, a signifi-

cant advantage in terms of computer time requirements for the

latter. The methods presented here, in particular those that are

subspace-based, should have an advantage relative to that of

Porter when the signal has a narrower band that only allows for

a few paths to be resolved at the receiver. The results obtained

with real data show that the correlation and interaction between

acoustic paths plays an important role in source localization

giving new insights into the understanding of how their com-

bination and (re)combination forms complex arrival patterns.
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