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ABSTRACT In order to solve the problem of image degradation in foggy weather, a single image defogging

method based on a multi-scale retinex with color restoration (MSRCR) of multi-channel convolution (MC)

is proposed. The whole defogging process mainly consists of four key parts: estimation of illumination

components, guided filter operation, reconstruction of fog-free images, and white balance operation. First,

the multi-scale Gaussian kernels are employed to extract precise features to estimate the illumination

component. After that, the MSRCR method is applied to enhance the global contrast, detail information,

and color restoration of the image. Second, the smoothing constraints of both illumination component and

reflected component are considered together by using the guided filter twice, thus the enhanced image

satisfies the smoothing constraint and the noise in the enhanced image is reduced. Third, the enhanced

image by the MSRCR and the image processed by the secondary guided filter are fused by linear weighting

to reconstruct the final fog-free image. Finally, in order to eliminate the influence of illumination on the

color of the defogged image, the final defogged image is processed by white balance. The experimental

results demonstrated that the proposed method can outperform state-of-the-art methods in both qualitative

and quantitative comparisons.

INDEX TERMS Image defogging, multi-channel convolution, guided filter, weighted fusion, MSRCR.

I. INTRODUCTION

A clear image is a key prerequisite for understanding real-

world scenarios in the field of digital imaging. In the out-

door environment, visibility and contrast of a photograph

will seriously reduce due to bad weather such as light, fog

and haze [1]–[3]. The main reason is that the quality of

the photo is highly susceptible to scattering, refraction, and

reflection of a large amount of small particles in the air

before the light reaches the camera lens. In order to effectively

remove dense fog and highlight the details of the image,

image restoration and enhancement are commonly used

methods [4]–[6]. Fig. 1 shows examples of dense fog images

and their corresponding defogged images. As shown in the

top row of Fig. 1, low-quality images greatly affect the per-

ceptions and recognition capabilities of the human eyes. It can

The associate editor coordinating the review of this manuscript and
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be seen from the bottom row of Fig. 1 that the defogged

images have better visual effects and clearer details, which

are more suitable for applications in expanding areas such as

space, transportation, meteorology, underwater detection, and

military technology. Therefore, image defogging has become

an important research direction, which has attracted more and

more attention of researchers [1]–[6].

In recent decades, image defogging based on image

enhancement and physical model has achieved good devel-

opment [7]. The defogging method based on physical model

could obtain the optimal estimation of fog-free images

is obtained by establishing an approximate atmospheric

scattering model and inversion degradation process [8].

It can be divided into three categories. The first cate-

gory means using depth information [9], [10]. For example,

Tarel et al. [9] and Kopf et al. [10] obtained the depth infor-

mation of the image, and then solved the image degradation

model to estimate the fog-free image. However, this kind of
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FIGURE 1. Examples of dense fog and defogged images. The top row
shows two fog images, the defogged images by our method on the
bottom row.

method is highly targeted with high hardware requirements

that limit its application in many fields. The second cate-

gory means using atmospheric light polarization [11], [12].

Schechner and Averbuch [11] and Shwartz et al. [12] cap-

tured images under different brightness through polarizer

to estimate polarization, ambient light intensity, and trans-

mittance distribution to achieved rapid defogging. However,

this kind of method has poor defogging effect in dense

fog and cannot process a single image automatically. The

third category means using prior information [13]–[15],

He et al. [13], Nishino et al. [14] and Chen et al. [15] pro-

posed to restore foggy images to fog-free images by acquiring

prior information. However, this kind of method is difficult

to acquire prior information and the time complexity is high.

In short, the defogging method based on physical model

needs some prior information of one or more images in the

same scene, or requires some physical equipment, which is

inconvenient in practical application [16].

The defogging method based on image enhancement can

be detached from the dependence on physical devices and

become the main research direction of current defogging

method, which includes histogram equalization [17], homo-

morphic filter [18], bilateral filter [19], guided filter [20],

and retinex method [21]–[23]. Histogram equalization [17]

may enhance the contrast of background noise and reduce

the contrast of usable signals because of it does not select the

processed data. The computational complexity of homomor-

phic filtering and bilateral filtering is high, and the efficiency

and practicability of the method are not satisfactory. As a

local linear image filter, guided filter [20] has good edge

preservation and smooth filtering performance. However,

when the original image is complex and noisy, the enhanced

image may appear noise enhancement. Image defogging

methods based on Retinex theory include Single-scale

Retinex (SSR) [21], Multi-scale Retinex (MSR) [22], Multi-

scale Retinex with color restoration (MSRCR) [23], and other

improved methods. In these defogging methods, the estima-

tion and elimination of illumination components are the key

steps, and Gaussian filtering is usually used to estimate the

illumination component. SSR [21] method was mainly used

to enhance grayscale images, but it was difficult to balance

the dynamic range compression and color constancy of the

image. The MSR [22] method is a linear weighted fusion

of multiple SSRs with different scales, which could enhance

the color image, but would produce the problem of color

degradation. MSRCR [23] introduced the color recovery fac-

tor on the basis of MSR, so that the enhanced image had

better color guarantee, but the color of the image would

deviate from the original color and the whole image tended

to white. Tare et al. [24] used MSR method to remove fog in

dense fog scenario for many objects. However, the defogging

image is far from the fog-free image when the fog in the sce-

nario was non-uniform, which indicated that MSR increased

some contrasts corresponding to fog and not to the scene.

Zhang et al. [25] employed the retinex to obtain the illumi-

nation component and used gamma correction to balance the

image brightness. However, since the attenuation of illumi-

nation light was not considered, the image after defogging

appeared local distortion and blurred details. Wang et al. [26]

proposed an efficient single image defogging method based

on physical model and MSRCR, which could be fast and

efficient, but the defogged image appeared over-exposed and

halo effect. Because of the good learning and representation

ability of deep network structure, the single image defogging

technology based on deep learning [27]–[29] has been widely

promoted and applied.

In summary, defogging method based on image enhance-

ment can be detached from the dependence on physical

devices and has good application value. In order to take full

advantage of the enhancements with the retinex and solve

the problem of missing image detail information, a defog-

ging model based on multi-channel convolutional MSRCR

(MC_MSRCR) is proposed, which is combined by guided

filtering and MSRCR, as well as introduces multi-channel

convolution and linear weighted fusion. The main contribu-

tions of this paper include four aspects:

1) For the enhanced image of MSRCR, the smoothing con-

straints of both illumination component and reflected compo-

nent are considered together by using guided filter twice, thus

the enhanced image satisfies the smoothing constraint and the

noise in the enhanced image is reduced.

2) In order to extract more precise features to estimate the

illumination component, six Gaussian convolution kernels

of different scales are used for multi-channel convolution.

Meanwhile, the Retinex operation is carried out, and the

quantization operation is introduced to ensure that the defog-

ging image has good color fidelity.

3) The final defogging image is a linear weighted fusion of

the image after secondary guided filtering processing and the

MSRCR-based enhanced.
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FIGURE 2. The framework of the proposed algorithm.

4) The final defogged image is processed by white balance

to improve the visual effect of defogged image.

The rest of the paper is organized as follows. The pro-

posed defogging method and its detail operation are shown

in section II. Along with experimental results and analysis

in section III, the performance of the proposed method in

different applications is evaluated. The conclusion and the

exploration of the future work are shown in section IV.

II. PROPOSED DEFOGGING MODEL

In this section, we will describe in detail the proposed defog-

ging model in detail, as shown in Fig. 2. In the following,

we describe the process and analyze the meaning of each

step in detail. Firstly, the guided filtering processing of the

original image preserves the edge information and overcomes

the noise. Secondly, in order to extract more precise fea-

tures to estimate the illumination component, the R, G and

B channels after the guided filtering are convolution by six

Gaussian convolution kernels of different scales, respectively,

and then the corresponding six feature maps of the same size

are obtained. Thirdly, the six feature maps corresponding to

each channel are enhanced by MSRCR and merged with the

linear weighting to improve the enhanced quality, and the

quantization operation is introduced to ensure that the defog-

ging image with good color fidelity. Meanwhile, the overflow

judgment is introduced to ensure that the pixel-value of the

defogged image is between 0 ∼ 255. Fourthly, since the first

guided filter only considers the smoothing constraints on the

illumination component, the final defogged image not only

preserves the noise of the original image, but also enhances

the estimation error of the illumination component. However,

the smoothing constraints of both illumination component

and reflected image are considered by using twice guided

filter, so that the enhanced image satisfies the smoothing con-

straint and the noise in the enhanced image is reduced. Fifthly,

the image enhanced by MSRCR and the image processed

by secondary guided filter are fused with linear weighting

to reconstruct the final fog-free image. Finally, in order to

enhance the appearance of the defogged image by white

balance processing.

A. FIRST GUIDED FILTER

The guided filter is a novel edge-preserving filter with edge

smoothing and detail enhancement. Its output is a local

linear transformation of the guided image. He et al. [20]

gave the definition and introduced the detailed solution

process of the guided filter, which is expressed as q =

guided_filter(p, I , r, ε ) where p is the input image of the

filter, I is the guiding image, r is the window size of the filter

ε > 0 is the regularization coefficient, and q is the filtered

image. As can be observed in Fig. 2, the original image

is divided into R, G, and B channels. The guided filtering

processing of R, G, and B channels are expressed as follows:

R1GF = guided_filter(R,R, r, ε) (1)

G1
GF = guided_filter(G,G, r, ε) (2)

B1GF = guided_filter(B,B, r, ε) (3)

where r = 32 and ε = 0.01, and they are determined by a

large number of experiments.

B. MULTI-CHANNEL CONVOLUTION

Different convolution kernels can obtain different Feature

maps of input image in CNN [27]–[29], and these Features

maps are a representation of feature information. However,

the complexity of the algorithm increases as the number of
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convolution kernel increases. Therefore, it is necessary to

determine the number of convolution kernel by weighing the

amount of feature information and the time complexity of

the algorithm. The estimation of illumination components

in Retinex is convolution operation on the input image by

Gaussian kernels of different scales. These images obtained

by convolution of the input image by Gaussian kernels of

different scales are like Feature maps in CNN. However,

the traditional MSRCR method uses Gaussian kernel func-

tions with three different scales to convolution R, G and

B channels. Based on this consideration, the idea of multiple

kernel convolutions is introduced into MSRCR method by

referring to the ability of multiple kernel convolutions to

extract precise features in CNN [27]–[29]. Firstly, six Gaus-

sian convolution kernels of different scales were used for

convolution of R, G, and B channels in order to extract precise

features to estimate illumination components. Then, in order

to enhance the detail information and global contrast of the

image by a multi-scale linear weighted retinex operation is

performed on the illumination component. The framework of

multi-channel multi-scale convolution is shown in the second

phase of Fig. 2, the estimation formula of the illumination

component is expressed as follows:

Lni (Gfi (x, y)) = S (Gfi (x, y)) ∗ Gn (x, y) (4)

where G(x, y) = 1
2πσ 2 exp(−

x2+y2

2σ 2 ) is a Gaussian kernel

function, n is the number of filter radius scales of theGaussian

filter and
∫∫

G(x, y)dxdy = 1, we use six scales in actual

applications (n = 6). Typically, two small scales are 0 ≤

σ1 ≤ σ2 < 50, two medium scales are 50 ≤ σ3 ≤ σ4 < 100,

and two large scales are 100 ≤ σ5 < σ6. Gfi(x, y) is a

guiding filter function of the original image. Lni (Gfi(x, y)) is

the illumination component corresponding to the nth scale of

the ith channel.

C. MSRCR

The basic idea of retinex [21] is that the intensity of the

reflected light is not a decisive factor in the color of an

object, whereas it is determined by the ability of an object

to reflect the light of a long, medium and short wave. That

is, the reflection property of the object is preserved, and

the influence of the illumination light on the original image

is removed. According to retinex theory, an idea image is

defined as follows:

S(x, y) = L(x, y) ∗ R(x, y) (5)

where S(x, y) is an image observed in the real word or gener-

ated by other imaging devices, and L(x, y) is an illumination

component and R(x, y) is a reflected image. Then, taking

logarithm of both sides of equation (5)

log(S(x, y)) = log(L(x, y)) + log(R(x, y)) (6)

R(x, y) can be expressed as follows:

log(R(x, y)) = log(S(x, y)) − log(L(x, y)) (7)

the detailed solution process of L(x, y) is shown in section B,

L(x, y) = S(x, y) ∗ G(x, y) and G(x, y) = 1
2πσ 2 exp(−

x2+y2

2σ 2 )

when n = 1. From (5), (6), and (7), we redefine log(Ri(x, y))

as follows:

log(Ri(x, y)) = log(Si(x, y)) − log(Si(x, y) ∗ G(x, y)) (8)

where i is a channel of the image. Equation (8) is actually

a SSR algorithm, in order to compensate for shortcomings

of the SSR, the MSR [22] improves the color image by lin-

ear weighting fusion of multiple SSRs with different scales,

which is expressed as follows:

RMSRi (x, y)=

N
∑

n=1

wn
[

log(Si(x, y)) − log(Si(x, y) ∗ Gn(x, y))
]

(9)

where N is the number of scales RMSRi (x, y) is the result of

MSR processing on the ith channel, Gn(x, y) is the Gaussian

kernel function corresponding to the nth scale, and wn is the

weight corresponding to the nth scale.

Based on the research of image enhancement code

in GIMP, mean and variance are introduced in the process of

adjusting color deviation by directly starting from the quanti-

tative operation. Meanwhile, a parameter D that controls the

dynamic of the image is introduced to achieve the adjustment

of colorless deviation, which significantly improves the color

fidelity and better adaptation to a variety of images. Then the

improved MSRCR [23] is defined as follows:

Min = Mean
(

RMSRi
)

− D · Var
(

RMSRi
)

(10)

Max = Mean
(

RMSRi
)

+ D · Var
(

RMSRi
)

(11)

RMSRCRi = 255 ∗
RMSRi −Mean(RMSRi ) + D ∗ Var(RMSRi )

2∗D∗Var(RMSRi )

(12)

where Mean and Var are the functions of mean and variance,

respectively. In the GIMP source code, the researchers point

out that enhanced images have a better dynamic compression

range D with is 2∼3. We verify through experiments that

whenD is set to 2 MSRCR enhanced images can better retain

detail and restore the color of the image. For equation (12),

an overflow judgment is added to ensure that all pixel values

are between [0, 255], that is:

RMSRCRi (x, y) =











255 RMSRCRi (x, y) > 255

0 RMSRCRi (x, y) < 0

RMSRCRi (x, y)0 ≤ RMSRCRi (x, y) ≤ 255

(13)

D. SECONDARY GUIDED FILTER

The first guided filtering only takes into account the smooth

constraint on the illumination component. The result of the

final defogged image preserves the noise of the original

image and enhances the estimation error of the illumination

component. However, the secondary guided filtering takes
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into account both the smoothing constraints of the illumina-

tion component and the reflected image together, so that the

image after secondary guided filtering processing satisfies the

smoothing constraint condition and the noise in the enhanced

image is reduced. The secondary guided filter of RMSRCR,

GMSRCR and BMSRCR channels is expressed as follows:

R2GF = guided_filter(RMSRCR,RMSRCR, r, ε) (14)

G2
GF = guided_filter(GMSRCR,GMSRCR, r, ε) (15)

B2GF = guided_filter(BMSRCR,BMSRCR, r, ε) (16)

where r = 32 and ε = 0.01 , and they are determined by a

large number of experiments.

E. LINEAR WEIGHTED FUSION

The detailed fusion steps are as follows.

Step 1: According to subsection C , we can know that

RMSRCR,GMSRCR, and BMSRCR are enhanced images by multi-

channel convolutional MSRCR.

Step 2: According to subsection D, we can know that R2GF ,

G2
GF , and B

2
GF are detailed images by secondary guided filter.

Step 3: Enhanced images and detailed images are obtained

according to Step 1 and Step 2 respectively, then R, G and

B channels are fused. From the linear weighted fusion

formula [30], [31], it can be concluded that:

R (i, j) = λRMSRCR (i, j) + (1 − λ)R2GF (i, j) (17)

G (i, j) = λGMSRCR (i, j) + (1 − λ)G2
GF (i, j) (18)

B (i, j) = λBMSRCR (i, j) + (1 − λ)B2GF (i, j) (19)

it can be seen from Step 3 that the R, G, and B channels are

fused by linear weighted fusion rules, and the fused R, G and

B are synthesized into the final defogging image. We define

the final fusion image can be expressed as follows. where

λ is the weighted coefficient and 0 ≤ λ ≤ 1. In this paper,

the fusion image has a better visual effect λ with is 0.9∼0.96,

and the final λ is set to 0.95.

RGB (i, j)

= R (i, j) + G (i, j) + B (i, j)

=
∑

I∈{R,G,B}

(

IR2GF
(i, j) + λ

(

IMSRCR (i, j) − IR2GF
(i, j)

))

(20)

F. WHITE BALANCE

In order to eliminate the influence of illumination on the color

of the defogged image, it will obtain the color characteristics

of the surface of the object independent of the illumination.

Finlayson and Trezzi [32] proposed a Shades-of-Greymethod

by introducing Minkowski-norm into the Gray-World.

van de Weijer et al. [33] proposed the Gray-Edge hypothesis

by analyzing the color derivative distribution of images in

opposing color spaces. However, these methods do not solve

the problem better. We consider that the foggy environment

is similar to the underwater environment, our method refers

to white balance method that proposed in Ancuti et al. [34]

to correcting the color casts caused by different color illumi-

nation on the defogged image.

Therefore, in our method, the value of the illumination µI

is estimated by calculating the average of the scene µr and

the adjustment of the parameter α.

µI = 0.5 + αµr (21)

where µr is used to estimate the color of the illumination

color, and α is employed to adjust µr . Although it is simple,

this white balance method effectively eliminates the color

casts and also restores the white and grays shades of the

defogged image.

III. EXPERIMENTAL RESULTS

The proposed method is implemented on a PC-Windows

10 platform with an Intel (R) Core (TM) i9-9900K CPU @

3.6 GHz processor and 16GB RAM, and running software

is MATLAB R2014a. In this paper, natural images in foggy

conditions are randomly selected for testing, and the images

are derived from NASA’s open image, dataset and a previous

standard dataset [5], [21], [26], [29]. The analysis of the

experiment results mainly includes implementation details

and overall performance analysis of this method including

qualitative and quantitative comparisons, while outputting a

defogged image with a better natural appearance.

A. SELECT THE NUMBER OF GAUSSIAN KERNELS

In section B, we explained in detail that the key step of the

MSRCRmethod is the estimation of the illumination compo-

nent. In order to verify the effect of the enhanced performance

of MSRCR with different scales and numbers of Gaussian

kernel functions. The foggy image, defogged image, and local

amplification effect as shown in Fig. 3. The parameters and

results of the MSRCR method are shown in Table 1. In terms

of subjective analysis, the MSRCR method not only achieves

better defogging, but improves brightness and contrast as

shown in the first row of Fig. 3. When kernel ≥ 6, the

MSRCR method has good detail enhancement ability, and it

is difficult to see the difference from subjective effect with the

increase of Gaussian kernels. In terms of objective analysis,

when kernel ≥ 6, the qualitative metrics of average gradi-

ent(AG) [35], information entropy(IE) [35], and edge preser-

vation index(EPI) [36] of the MSRCR method are greatly

improved. As the number of kernel increases, the qualitative

metrics of MSRCR is rises slowly and tends to be stable,

but the running time (RT) is also increasing. The effect and

running time of MSRCR are considered comprehensively,

and kernel = 6 is finally determined.

B. MULTI-CHANNEL CONVOLUTION

In this paper, the multi-channel convolution is mainly to

extract the precise feature to estimate the illumination com-

ponent. To evaluate the performance of the multi-channel

convolution, the three scales of the MSRCR are σ1 = 40,

σ2 = 80 and σ3 = 160, respectively. And the six scales of the

MC module are σ1 = 40, σ2 = 80, σ3 = 60, σ4 = 80,
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TABLE 1. Average gradient, information entropy, edge preservation index, and running time of the MSRCR method when the number of kernels
is 3, 6, 9 and 12, respectively.

FIGURE 3. The first row is the original image, and the defogged images of MSRCR when the number of kernels is 3, 6, 9 and 12, respectively. The second
row is the local amplification effect of the red box area in the first column.

FIGURE 4. From left to right: the original images A and B, and the defogged images are obtained by MSRCR, multi-channel convolution, the local
amplification effect of the red box of the original images, the local amplification effect of the red box of the defogged images are obtained by MSRCR,
and multi-channel convolution.

σ5 = 120 and σ3 = 160, respectively. The dense fog

images A and B of two different scenes are selected as test

sample, as shown in the first column of Fig. 4. For both

A and B scenarios, MSRCR and MC module have better

defogging effects than the original image in the second and

third columns. However, the car, road surface, and trees are

clearer in the A scene of the third column, and the reflected

lights of the car are bright. The billboard and car are clearer

in the B scene of the third column, and the billboard with

better color fidelity. In terms of detail enhancement, the road

signs and words are clear and the details are prominent in

the red area of the A and B scenes of the sixth column. The

experimental results show that the MC module effectively

enhances the detail and contrast, and improves the overall

visual effect of the image.

C. SECONDARY GUIDED FILTER

In this part, in order to verify the performance of the sec-

ondary guided filter, the dense fog images A and B of two

different scenes are selected as test sample, as shown in the

first column of Fig. 5. Here, r = 32 and ε = 0.01 of

first guided filter operation and secondary guided filter, and

the detailed solution in He et al. [20]. For both A and B

scenarios, MSRCR, MC module, and secondary guided filter

have better defogging effects than the original image in the

A and B scenes of the second, third, and fourth columns.

And, the results of the MSRCR and MC operation have been

given in section B. In terms of the overall defogging effect,

it is difficult to see from the visual effect that the secondary

guided filter module is superior to the MC module. However,

in terms of detail enhancement, it can clearly see that the road
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FIGURE 5. From left to right: the original images A and B, and the defogged images obtained by MSRCR, multi-channel convolution operation, secondary
guided filter, the local amplification effect of the red box of the original images, the local amplification effect of the red box of the defogged images are
obtained by MSRCR, multi-channel convolution, and secondary guided filter.

FIGURE 6. From left to right: the original images A and B, and the
defogged images are obtained by secondary guided filter,
white balance operation.

signs and words of the eighth column are significantly better

than the sixth and seventh columns in the A and B scenes,

and the contrast enhancement of the road signs and words

are clearer in the eighth column. The experimental results

show that the secondary guided filter effectively enhances the

image detail, the noise in the enhanced image is reduced and

improves the overall visual effect of the image.

D. WHITE BALANCEING OF THE DEFOGGED IMAGES

In this part, in order to verify the performance of the white

balance, the dense fog images A and B of two different

scenes are selected as test sample, as shown in the first

column of Fig. 6. We have described the effect of Secondary

guided filter in detail in Section C, this section mainly intro-

duces the effect of white balance. In the third column of the

A scene, we can clearly see that the defogged image pro-

cessed by white balance is better eliminate red color and

improves the visual effect of the defogged image. In the third

column of the B scene, we can clearly see that the defogged

image has better visual effects and sharpness.

E. QUALITATIVE COMPARISON

We first analyze the qualitative results of the proposed defog-

ging method. The defogged images can be divided into five

categories based on different scenarios, including airport,

factory, highway, billboard and underwater.

We compare the performance of the proposed method

with state-of-the-art methods: Zhuet al. [5], Chenet al. [15],

Heet al. [20], Renet al. [27], Caiet al. [29], and

Wanget al. [26], the results are shown in Fig.7-Fig.10. It can

be clearly seen that all of these defogging methods get good

defogged results, and these fog-free images can achieve better

defogging effects, and the fog-free images achieve contrast

enhancement with more detail information. The following is

a comparison and analysis of Fig.7-Fig.11, from two aspects

of overall vision and local details, respectively.

In term of overall vision, the results of the defogged

images are shown in the Fig.7 (a-h). The images defogged by

He et al. [20] and Cai et al. [29] are shown in the

Fig.7 (d) and (f). It can be observed that the enhanced images

have color distortion and halo artifacts. Fig.7 (b) is defogged

image result by Zhu et al. [5]. It can be seen that the defog-

ging effect is bad and the defogged image detail informa-

tion is missing. Fig.7 (c) and (e) are defogged images by

Chen et al. [15] and Ren et al. [27]. It can be seen that the

dark channel over-enhancement occurs and the image detail

information is missing. Fig.7 (g) and (h) are defogged images

by Wang et al. [26] and our method. It can be observed

that these methods achieved better defogging effect, effec-

tively suppressing halo artifacts and enhancing color, but the

Wang et al. [26] has a slightly worse defogging effect on the

airport’s prospect area. Fig.7 (h) show the image defogged

by the proposed method, which is clear and removes color

distortion phenomenon. In terms of local detail, the road sign

is clearer, colorful, and the contrast between the light and dark

areas is more obvious by our method. It can be seen that the

image defogged by the proposed method shows more detail

information compared to Wang et al. [26].

In Fig.8, the images defogged by Zhu et al. [20],

He et al. [20], and Cai et al. [29] are shown in the

Fig.8 (b), (d) and (f). It can be seen that the enhanced images

have color distortion and halo artifacts. Fig.8 (c) and (e) are

defogged images by Chen et al. [15] and Ren et al. [27]

methods. It can be seen that these methods have better defog-

ging effect, but the fog was not completely removed in the

forest area, and the defogging result is bad in the factory

area of Fig. 8 (f). Fig.8 (g) and (h) are defogged images by

Wang et al. [26] and our method. It can be seen that

these methods can effectively suppressing halo artifacts and

enhancing color. However, our method has better color

fidelity, and the defogging effect of our method is superior
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FIGURE 7. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

FIGURE 8. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

to Wang et al. [26] in the forest area. In terms of local detail,

the building contour is clear, the forest is colorful, and the

contrast between the bright and dark areas in more obvious

by our method. It can be seen that the image defogged by our

method has more detail information and better visual effects

than other methods.

In Fig.9, the image defogged by Chen et al. [15] and

He et al. [20] are shown in the Fig.9 (c) and (d). It can be

seen that the dark channel over-enhancement occurs and the

image detail information is missing. Fig.9 (b) and (f) are

defogged images by Zhuet al. [5] and Cai et al. [29]. It can

be observed that the defogging effect of these methods is not

significant, but Cai et al. [29] is better than the Zhu et al. [5].

Fig.9 (e), (g) and (h) are defogged images by Ren et al. [27],

Wang et al. [26] and our method. It clearly shows that

these methods can effectively remove fog, and the contrast

of images Fig. (g) and Fig. (h) is significantly improved

compared to Fig. (e). In terms of local detail, the car, road
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FIGURE 9. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

FIGURE 10. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

surface, and trees are clearer by our method, the defogging

effect of our method is superior to Wang et al. [26] in the

prospect area.

In Fig.10, the images defogged by Zhu et al. [5],

Chen et al. [15], He et al. [20], and Ren et al. [27] are shown

in the Fig.9 (b-e). It can be seen that these methods have

poor defogging effect, the dark channel of Fig. 10 (c) and

Fig. 10 (e) over-enhancement and the image detail infor-

mation is missing. Fig.10 (g) and (h) are defogged images

by Wang et al. [26] and our method. It can be seen that

these methods can effectively suppressing halo artifacts and

enhancing color, but the red color distortion in Fig. 10 (g).

However, our method better suppresses red distortion,

the words are clearer by our method, the defogging effect of

our method is superior to Wang et al. [26] in the billboard

area. However, our defogged image also has shortcomings.

For example, our method cannot effectively remove fog from

the sky, and the words are blurred at the signpost.
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FIGURE 11. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

In Fig.11, the images defogged by Zhu et al. [5],

He et al. [20], and Cai et al. [29] are shown in the

Fig.11 (b), (d) and (f). It can be seen that these methods have

poor defogging effect and the enhanced images have color

distortion and halo artifacts. Fig.11 (c) and (e) are defogged

images by Chen et al. [15] and Ren et al. [27] It can be

observed that the method has better defogging effect, but

it has color distortion and dark channel over-enhancement.

Fig.11 (g) and (h) are defogged images by Wang et al. [26]

and our method, they all have better defogging and visual

effects. However, in terms of local detail, the needles of

seaweed are clear, with better color fidelity and the con-

trast between the bright and dark areas is obvious by our

method.

Generally, the qualitative comparisons in Fig.7-Fig.11 show

that the proposed can effectively remove fog from various

types of fog images and obtain more detail information of

defogged images. Moreover, our method has also achieved

good results for underwater image enhancement.

F. QUANTITATIVE COMPARSION

In this section, we first introduce quantitativemetrics and then

provide an analysis of the defogging images.

1) QUANTITATIVE METRICS

In order to avoid the bias caused by qualitative analysis,

we qualitatively evaluate analyze our method and six other

methods. In terms of quantitative evaluation, we compare

different methods from three objective metrics: AG, IE, and

EPI. AG reflects small changes in the details of the image,

and the richness of the image information. For an input

image F (i, j), AG is defined as follows.

AG

=
1

(M−1) (N−1)

M−1
∑

i=1

N−1
∑

j=1

√

(∇xF (i, j))2 + (∇yF (i, j))2

(22)

where ∇xF (i, j) and ∇yF (i, j) are the difference of F (i, j)

along the x and y directions,M andN represent the width and

height of the input image, respectively. Therefore, the larger

the value of the AG that more detail information is obtained

for the defogged image.

IE reflects the average amount of information, which can

quantitatively describe the richness of image color. When an

image is not uniform, the probability of any gray-scale value

in the image is equal, that is to say, the dynamic range of the

image is broader. Therefore, the value of IE is the maximum,

but in areas where the fog and grayscale are consistent,

the value of IE is minimal. IE is defined as follows.

IE = −

255
∑

i=0

p(i) log2 p(i) (23)

where i is the pixel value, p(i) is the probability of the occur-

rence of pixels with a pixel value of i in the entire picture.

Hence the larger the IE value, the richer the color information

contained in the image, that is, the better the visual effect of

the image.

EPI reflects the change in the gradient at the edge,

which can quantitatively describe the sharpness of the edge

of the image. EPI represents the ability of an enhanced

image to maintain the horizontal or vertical edges of the

original image. Therefore, the higher the value of EPI,

VOLUME 7, 2019 72501



W. Zhang et al.: Single Image Defogging Based on MC MSRCR

TABLE 2. AG, IE, and EPI of the proposed algorithm with six other algorithms in Fig. 7, 8, 9, 10 and 11.

the better the edge preservation capacity. EPI is defined as

follows.

EPI =

m
∑

i=1

|F1 − F2|filter

m
∑

i=1

|F1 − F2|original

(24)

where m is the number of pixels of the image, F1 and F2
are the grayscale values of the left and right or up and down

adjacent cells, respectively.

2) EVALUATION RESULTS AND ANALYSIS

The three quantitative metrics of the defogged images

in Table 2. As shown in Table 2, we can clearly see that the

three quantitative metrics of Zhu et al. [5], He et al. [20],

Ren et al. [27], Cai et al. [29], Wang et al. [26], and

our method are higher than the original images. Although,

the three quantitative metrics after Fig. 7 (c), Fig. 8 (c),

Fig. 10 (c), and Fig. 11 (c) are enhanced by Chen et al. [15]

are larger than the original image, the three quantitative met-

rics are slightly lower than the original image in Fig 9 (c).

The results show that Chen et al. [15] is not suitable for

application to images with rain and fog. In subsection E, it can

clearly see that themethods of Zhu et al. [5] and Cai et al. [29]

have poor defogging effect and the defogged images have

color distortion and halo artifacts. Since information entropy

is determined by the richness of the colors, the information

entropy of these two methods is generally lower than other

methods. He et al. [20] and Ren et al. [27] have better

defogging effect, but in terms of quantitative metrics is lower

than Wang et al. [26]. In order to improve the color fidelity

of enhanced images, MSRCR introduces color restoration

based on MSR. This paper employs quantization operation to

restore color and increase overflow judgment. Our proposed

method is higher thanWang et al. [26] in terms of three objec-

tive metrics. In a word, our method has a great improvement

on the average gradient, information entropy and sharpness

of the original image, and is superior to other methods. These

results show that our method has good defogging ability.

G. RUNNING TIME

Running time is an important indicator for the real applica-

tion of a method. The running time for each method from

the beginning to the end of defogging is shown in table 3.

TABLE 3. Time consumption with zhu et al. [5], chen et al. [15],
he et al. [20], ren et al. [27], cai et al. [29], and wang et al. [26],
and our method.

Our method is much faster than Chen et al. [15],

Ren et al. [27], Cai et al. [29], and Wang et al. [26], and

is slightly slower than Zhu et al. [5], and He et al. [20].

Chen et al. [15] introduced Gradient Residual Minimiza-

tion, which required multiple iterations to obtain the opti-

mal solution, so the running time is longer. Ren et al. [27]

and Cai et al. [29] are deep learning methods. When

the model parameters are well trained, their tested time

still has no advantage. Wang et al. [26] introduced bilat-

eral filtering, which results in a longer running time.

With the increase of image resolution, the running time

of Chen et al. [15], Ren et al. [27], Cai et al. [29], and

Wang et al. [26] increases significantly, while the running

time of Zhu et al. [5], He et al. [20], and our method increases

slowly. However, the defogging effect of our method is better

than Zhu et al. [5] and He et al. [20].

IV. CONCLUSION

In this paper, a single image defogging method based on

multi-channel convolutional MSRCR proposed. Our method

mainly consists of four parts: illumination component esti-

mation, guided filter operation, reconstruction of fog-free

images, and write balance operation. The proposed method

not only ensures the quality of the illumination component,

but also the noise in the enhanced image is reduced. In par-

ticular, our method improves both qualitative and quantitative

performances when compared with the six state-of-the-art

methods. However, our method also has two shortcomings.

1) The complexity of the method is increased due to the

introduction of multi-channel convolution and guided filter.

2) Since the colors of the fog and the sky are similar, it is

difficult to remove fog effectively in the sky area. These

issues will be our future work.

72502 VOLUME 7, 2019



W. Zhang et al.: Single Image Defogging Based on MC MSRCR

REFERENCES

[1] Y. Gao, H.-M. Hu, B. Li, and Q. Guo, ‘‘Naturalness preserved nonuniform

illumination estimation for image enhancement based on retinex,’’ IEEE

Trans. Multimedia, vol. 20, no. 2, pp. 335–344, Feb. 2018.

[2] Y. Xu, J.Wen, L. Fei, and Z. Zhang, ‘‘Review of video and image defogging

algorithms and related studies on image restoration and enhancement,’’

IEEE Access, vol. 4, pp. 165–188, Dec. 2016.

[3] Z. Tufail, K. Khurshid, A. Salman, I. F. Nizami, K. Khurshid, and B. Jeon,

‘‘Improved dark channel prior for image defogging using RGB and YCbCr

color space,’’ IEEE Access, vol. 6, pp. 32576–32587, Jun. 2018.

[4] H.-M. Hu, Q. Guo, J. Zheng, H.Wang, and B. Li, ‘‘Single image defogging

based on illumination decomposition for visual maritime surveillance,’’

IEEE Trans. Image Process., vol. 28, no. 6, pp. 2882–2897, Jun. 2019.

[5] Q. Zhu, J. Mai, and L. Shao, ‘‘A fast single image haze removal algorithm

using color attenuation prior,’’ IEEE Trans. Image Process., vol. 24, no. 11,

pp. 3522–3533, Nov. 2015.

[6] A. Alajarmeh, R. A. Salam, K. Abdulrahim, M. F. Marhusin, A. A. Zaidan,

and B. B. Zaidan, ‘‘Real-time framework for image dehazing based

on linear transmission and constant-time airlight estimation,’’ Inf. Sci.,

vols. 436–437, no. 8, pp. 108–130, Apr. 2018.

[7] W. Wang, F. Chang, T. Ji, and X. Wu, ‘‘A fast single-image dehazing

method based on a physical model and gray projection,’’ IEEE Access,

vol. 6, pp. 5641–5653, Jan. 2018.

[8] S. G. Narasimhan and S. K. Nayar, ‘‘Vision and the atmosphere,’’ Int. J.

Comput. Vis., vol. 48, no. 3, pp. 233–254, Aug. 2002.

[9] N. Hautière, J.-P. Tarel, and D. Aubert, ‘‘Towards fog-free in-vehicle vision

systems through contrast restoration,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2007, pp. 1–8.

[10] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen,

M. Uyttendaele, and D. Lischinski, ‘‘Deep photo: Model-based photo-

graph enhancement and viewing,’’ ACM Trans. Graph., vol. 27, no. 5

pp. 116-1–116-10, Dec. 2008.

[11] Y. Y. Schechner and Y. Averbuch, ‘‘Regularized image recovery in scat-

tering media,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 9,

pp. 1655–1660, Sep. 2007.

[12] S. Shwartz, E. Namer, and Y. Y. Schechner, ‘‘Blind haze separation,’’ in

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2.

Jun. 2006, pp. 1984–1991.

[13] K. He, J. Sun, and X. Tang, ‘‘Single image haze removal using dark

channel prior,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,

pp. 2341–2353, Dec. 2011.

[14] K. Nishino, L. Kratz, and S. Lombardi, ‘‘Bayesian defogging,’’ Int. J.

Comput. Vis., vol. 98, no. 3, pp. 263–278, Jul. 2012.

[15] C. Chen, M. N. Do, and J. Wang, ‘‘Robust image and video dehazing with

visual artifact suppression via gradient residual minimization,’’ in Proc.

Eur. Conf. Comput. Vis., vol. 9906, 2016, pp. 576–591.

[16] A. L. da Cunha, J. Zhou, and M. N. Do, ‘‘The nonsubsampled contourlet

transform: Theory, design, and applications,’’ IEEE Trans. Image Process.,

vol. 15, no. 10, pp. 3089–3101, Oct. 2006.

[17] M. Shakeri, M. H. Dezfoulian, H. Khotanlou, A. H. Barati, and

Y. Masoumi, ‘‘Image contrast enhancement using fuzzy clustering with

adaptive cluster parameter and sub-histogram equalization,’’ Digit. Signal

Process., vol. 62, pp. 224–237, Mar. 2017.

[18] L. Xiao, C. Li, Z. Wu, and T. Wang, ‘‘An enhancement method for X-ray

image via fuzzy noise removal and homomorphic filtering,’’ Neurocom-

puting, vol. 195, pp. 56–64, Jun. 2016.

[19] N. H. Kaplan and I. Erer, ‘‘Bilateral filtering-based enhanced pansharp-

ening of multispectral satellite images,’’ IEEE Geosci. Remote Sens. Lett.,

vol. 11, no. 11, pp. 1941–1945, Nov. 2014.

[20] K. He, J. Sun, and X. Tang, ‘‘Guided image filtering,’’ IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[21] Y. Wang, H. Wang, C. Yin, and M. Dai, ‘‘Biologically inspired image

enhancement based on Retinex,’’ Neurocomputing, vol. 177, no. 177,

pp. 373–384, Feb. 2016.

[22] C. Zhou, X. Yang, B. Zhang, K. Lin, D. Xu, Q. Guo, and C. Sun, ‘‘An adap-

tive image enhancement method for a recirculating aquaculture system,’’

Sci. Rep., vol. 7, no. 1, p. 6243, Jul. 2017.

[23] Q. Fu, C. Jung, and K. Xu, ‘‘Retinex-based perceptual contrast enhance-

ment in images using luminance adaptation,’’ IEEE Access, vol. 6,

pp. 61277–61286, Oct. 2018.

[24] J. P. Tare, N. Hautière, A. Cord, D. Gruyer, and H. Halmaoui, ‘‘Improved

visibility of road scene images under heterogeneous fog,’’ in Proc. IEEE

Intell. Vehicles Symp. (IV), Jun. 2010, pp. 478–485.

[25] J. Zhang, Y. Cao, and Z. Wang, ‘‘Nighttime haze removal based on a

new imaging model,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),

Oct. 2014, pp. 4557–4561.

[26] J. Wang, K. Lu, J. Xue, N. He, and L. Shao, ‘‘Single image dehazing based

on the physical model and MSRCR algorithm,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 28, no. 9, pp. 2190–2199, Sep. 2018.

[27] W. Ren, S. Liu, H. Zhang, J. Pan, M.-H. Yang, and X. Cao, ‘‘Single image

dehazing via multi-scale convolutional neural networks,’’ in Proc. Eur.

Conf. Comput. Vis., 2016, pp. 154–169.

[28] Y. Song, J. Li, X. Wang, and X. Chen, ‘‘Single image dehazing using

ranking convolutional neural network,’’ IEEE Trans. Multimedia, vol. 20,

no. 6, pp. 1548–1560, Jun. 2018.

[29] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, ‘‘DehazeNet: An end-to-

end system for single image haze removal,’’ IEEE Trans. Image Process.,

vol. 25, no. 11, pp. 5187–5198, Nov. 2016.

[30] H. Y. Zhao, J. Liu, Z.-J. Zhang, H. Liu, and S. H. Zhou, ‘‘Linear fusion

for target detection in passive multistatic radar,’’ Signal Process., vol. 130,

pp. 175–182, Jan. 2017.

[31] Y. Yang,W.Wan, S. Huang, F. Yuan, S. Yang, andY.Que, ‘‘Remote sensing

image fusion based on adaptive IHS and multiscale guided filter,’’ IEEE

Access, vol. 4, pp. 4573–4582, Aug. 2016.

[32] G. D. Finlayson and E. Trezzi, ‘‘Shades of gray and colour constancy,’’ in

Proc. 12th Color Imag. Conf. Final Program, 2004, pp. 37–41.

[33] J. van deWeijer, T. Gevers, and A. Gijsenij, ‘‘Edge-based color constancy,’’

IEEE Trans. Image Process., vol. 16, no. 9, pp. 2207–2214, Sep. 2007.

[34] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, ‘‘Color

balance and fusion for underwater image enhancement,’’ IEEE Trans.

Image Process., vol. 27, no. 1, pp. 379–393, Jan. 2018.

[35] N. He, J.-B. Wang, L.-L. Zhang, and K. Lu, ‘‘An improved fractional-order

differentiation model for image denoising,’’ Signal Process., vol. 112,

pp. 180–188, Sep. 2015.

[36] W. Dan, Z. Li, L. Cao, V. E. Balas, N. Dey, A. S. Ashour, P. McCauley,

S.-P. Dimitra, and F. Shi, ‘‘Image fusion incorporating parameter estima-

tion optimized Gaussian mixture model and fuzzy weighted evaluation

system: A case study in time-series plantar pressure data set,’’ IEEE

Sensors J., vol. 17, no. 5, pp. 1407–1420, Mar. 2017.

WEIDONG ZHANG received the B.S. degree in

computer science and technology from the Xinke

College of Henan Institute of Science and Tech-

nology, Xinxiang, China, in 2015, and the M.S.

degree in computer science and technology from

the Guilin University of Electronic Technology,

Guilin, China, in 2018., He is currently pursuing

the Ph.D. degree in information and communica-

tion engineering with Dalian Maritime University,

Dalian, China. He has authored (coauthored) four

research papers. His main research interests include image enhancement and

defogging, and target recognition.

LILI DONG was born in Qi Tai He City, Hei

Long Jiang, China, in 1980. She received the

B.S. degree in mechanical design manufactur-

ing and automation, the M.S. degree from the

College of Information Science and Technology,

Dalian Maritime University (DLMU), and the

Ph.D. degree in instrument science and technology

from the Harbin Institute of Technology, Harbin,

China, in 2002, 2004, and 2008, respectively. From

2005 to 2008, she was a Teaching Assistant with

the College of Information Science and Technology, DLMU, Dalian, China.

From 2008 to 2012, she was a Lecturer with the College of Information

Science and Technology, DLMU. Since 2012, she has been an Assistant

Professor with the Mechanical Engineering Department. She has authored

13 articles and three inventions. Her research interests include multispectral

target recognition, tunnel lighting, and photoelectric detection.

VOLUME 7, 2019 72503



W. Zhang et al.: Single Image Defogging Based on MC MSRCR

XIPENG PAN received the B.S. degree in

automation and the M.S. degree in pattern recog-

nition and intelligent system from the Guilin Uni-

versity of Electronic Technology, Guilin, China,

in 2007 and 2013, respectively. He is currently

pursuing the Ph.D. degree in control science and

engineering with the Beijing University of Posts

and Telecommunications, Beijing, China. He has

authored (coauthored) seven research papers. His

main research interests include machine learning

and digital image processing.

JINGCHUN ZHOU received the B.S. degree in

computer science and technology from Daqing

Normal College, Daqing, China, in 2012, and

the M.S. degree in software engineer from the

Beijing University of Posts and Telecommunica-

tions, Beijing, China, in 2016. He is currently

pursuing the Ph.D. degree in technology of com-

puter application with Dalian Maritime Univer-

sity, Dalian, China. His current research interests

include image enhancement and fusion.

LI QIN received the B.S. degree in electronic

information science and technology, and the Ph.D.

degree in information and communication engi-

neering from Dalian Maritime University, Dalian,

China, in 2013 and 2019, respectively. From

2017 to 2018, she continued her research with

the University of Houston, Houston, TX, USA,

as a Joint Ph.D. student. Since 2019, she has been

a Lecture with the College of Information Sci-

ence and Engineering, Ningbo University. She has

authored (coauthored) eight research papers. Her research interests include

photoelectric detection, sensors control, and digital image processing.

WENHAI XU received the B.S. and M.S. degrees

in precision instrument and the first Ph.D. degree

in imprecision instrument from the Harbin Insti-

tute of Technology, Harbin, China, in 1982, 1984,

and 1991, respectively, and the second Ph.D.

degree in manufacturing machine from the Tokyo

Institute of Technology, Tokyo, Japan, in 1993.

From 1986 to 1988, he was a Lecturer with the

Harbin Institute of Technology and an Assistant

Professor, from 1992 to 2001. He was a Professor

with the Harbin Institute of Technology for four years, since 2001. He was

the Project Director with Cannon Inc., Tokyo, Japan, from 1993 to 2003. He

was also a Research Scientist with System Engineers Company Ltd., Yamato

City, Japan, from 1995 to 1997. He is currently a Professor of Opt-Electric

Information Science and Engineering with Dalian Maritime University,

Dalian, China. In the last ten years, he has directed over 30 research projects

and applied 10 national patents. He has authored over 80 research papers. His

research interests include infrared detection, digital image processing, design

of high-resolution optical imaging systems, and opt-electronic information

processing.

72504 VOLUME 7, 2019


	INTRODUCTION
	PROPOSED DEFOGGING MODEL
	FIRST GUIDED FILTER
	MULTI-CHANNEL CONVOLUTION
	MSRCR
	SECONDARY GUIDED FILTER
	LINEAR WEIGHTED FUSION
	WHITE BALANCE

	EXPERIMENTAL RESULTS
	SELECT THE NUMBER OF GAUSSIAN KERNELS
	MULTI-CHANNEL CONVOLUTION
	SECONDARY GUIDED FILTER
	WHITE BALANCEING OF THE DEFOGGED IMAGES
	QUALITATIVE COMPARISON
	QUANTITATIVE COMPARSION
	QUANTITATIVE METRICS
	EVALUATION RESULTS AND ANALYSIS

	RUNNING TIME

	CONCLUSION
	REFERENCES
	Biographies
	WEIDONG ZHANG
	LILI DONG
	XIPENG PAN
	JINGCHUN ZHOU
	LI QIN
	WENHAI XU


