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Figure 1: Dehazing based on a single input image and the corresponding depth estimate.

Abstract

In this paper we present a new method for estimating the optical
transmission in hazy scenes given a single input image. Based on
this estimation, the scattered light is eliminated to increase scene
visibility and recover haze-free scene contrasts. In this new ap-
proach we formulate a refined image formation model that accounts
for surface shading in addition to the transmission function. This
allows us to resolve ambiguities in the data by searching for a solu-
tion in which the resulting shading and transmission functions are
locally statistically uncorrelated. A similar principle is used to es-
timate the color of the haze. Results demonstrate the new method
abilities to remove the haze layer as well as provide a reliable trans-
mission estimate which can be used for additional applications such
as image refocusing and novel view synthesis.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.1 [Image Processing and
Computer Vision]: Digitization and Image Capture—Radiometry

Keywords: image dehazing/defogging, computational photogra-
phy, image restoration, image enhancement, Markov random field
image modeling

1 Introduction

In almost every practical scenario the light reflected from a surface
is scattered in the atmosphere before it reaches the camera. This
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is due to the presence of aerosols such as dust, mist, and fumes
which deflect light from its original course of propagation. In long
distance photography or foggy scenes, this process has a substan-
tial effect on the image in which contrasts are reduced and surface
colors become faint. Such degraded photographs often lack visual
vividness and appeal, and moreover, they offer a poor visibility of
the scene contents. This effect may be an annoyance to amateur,
commercial, and artistic photographers as well as undermine the
quality of underwater and aerial photography. This may also be the
case for satellite imaging which is used for many purposes includ-
ing cartography and web mapping, land-use planning, archeology,
and environmental studies.

As we shall describe shortly in more detail, in this process
light, which should have propagated in straight lines, is scat-
tered and replaced by previously scattered light, called the
airlight [Koschmieder 1924]. This results in a multiplicative loss
of image contrasts as well as an additive term due to this uniform
light. In Section 3 we describe the model that is commonly used
to formalize the image formation in the presence of haze. In this
model, the degraded image is factored into a sum of two compo-
nents: the airlight contribution and the unknown surface radiance.
Algebraically these two, three-channel color vectors, are convexly
combined by the transmission coefficient which is a scalar speci-
fying the visibility at each pixel. Recovering a haze-free image re-
quires us to determine the three surface color values as well as the
transmission value at every pixel. Since the input image provides us
three equations per pixel, the system is ambiguous and we cannot
determine the transmission values. In Section 3 we give a formal
description of this ambiguity, but intuitively it follows from our in-
ability to answer the following question based on a single image:
are we looking at a deep red surface through a thick white medium,
or is it a faint red surface seen at a close range or through a clear
medium. In the general case this ambiguity, which we refer to as
the airlight-albedo ambiguity, holds for every pixel and can not be
resolved independently at each pixel given a single input image.

In this paper we present a new method for recovering a haze-free
image given a single photograph as an input. We achieve this by
interpreting the image through a model that accounts for surface
shading in addition to the scene transmission. Based on this re-
fined image formation model, the image is broken into regions of a
constant albedo and the airlight-albedo ambiguity is resolved by de-



riving an additional constraint that requires the surface shading and
medium transmission functions to be locally statistically uncorre-
lated. This requires the shading component to vary significantly
compared to the noise present in the image. We use a graphical
model to propagate the solution to pixels in which the signal-to-
noise ratio falls below an admissible level that we derive analyti-
cally in the Appendix. The airlight color is also estimated using
this uncorrelation principle. This new method is passive; it does not
require multiple images of the scene, any light-blocking based po-
larization, any form of scene depth information, or any specialized
sensors or hardware. The new method has the minimal requirement
of a single image acquired by an ordinary consumer camera. Also
it does not assume the haze layer to be smooth in space, i.e., dis-
continuities in the scene depth or medium thickness are permitted.
As shown in Figure 1, despite the challenges this problem poses,
this new method achieves a significant reduction of the airlight and
restores the contrasts of complex scenes. Based on the recovered
transmission values we can estimate scene depths and use them for
other applications that we describe in the Section 8.

This papers is organized as follows. We begin by reviewing existing
works on image restoration and haze removal. In Section 3 we
present the image degradation model due to the presence of haze
in the scene, and in Section 4 we present the core idea behind our
new approach for the restricted case of images consisting of a single
albedo. We then extend our solution to images with multi-albedo
surfaces in Section 6, and report the results in Section 8 as well as
compare it with alternative methods. In Section 9 we summarize
our approach and discuss its limitations.

2 Previous Work

In the context of computational photography there is an increasing
focus on developing methods that restore images as well as extract-
ing other quantities at minimal requirements in terms of input data,
user intervention, and sophistication of the acquisition hardware.
Examples are recovery of an all-focus image and depth map using a
simple modification to the camera’s aperture in [Levin et al. 2007].
A similar modification is used in [Veeraraghavan et al. 2007] to re-
construct the 4D light field of a scene from a 2D camera. Given two
images, one noisy and the other blurry, a deblurring method with
a reduced amount of ringing artifacts is described in [Yuan et al.
2007]. Resolution enhancement with native-resolution edge sharp-
ness based on a single input image is described in [Fattal 2007].
In [Liu et al. 2006] intensity-dependent noise levels are estimated
from a single image using Bayesian inference.

Image dehazing is a very challenging problem and most of the pa-
pers addressing it assume some form of additional data on top of the
degraded photograph itself. In [Tan and Oakley 2000] assuming the
scene depth is given, atmospheric effects are removed from terrain
images taken by a forward-looking airborne camera. In [Schech-
ner et al. 2001] polarized haze effects are removed given two pho-
tographs. The camera must be identically positioned in the scene
and an attached polarization filter is set to a different angle for each
photograph. This gives images that differ only in the magnitude
of the polarized haze light component. Using some estimate for
the degree of polarization, a parameter describing this difference in
magnitudes, the polarized haze light is removed. In [Shwartz et al.
2006] this parameter is estimated automatically by assuming that
the higher spatial-bands of the direct transmission, the surface radi-
ance reaching the camera, and the polarized haze contribution are
uncorrelated. We use a similar but more refined principle to sepa-
rate the image into different components. These methods remove
the polarized component of the haze light and provide impressive
results. However in situations of fog or dense haze the polarized
light is not the major source of the degradation and may also be too
weak as to undermine the stability of these methods. In [Schechner
and Averbuch 2007] the authors describe a regularization mecha-

nism, based on the transmission, for suppressing the noise amplifi-
cation involved with dehazing. A user interactive tool for removing
weather effects is described in [Narasimhan and Nayar 2003]. This
method requires the user to indicate regions that are heavily affected
by weather and ones that are not, or to provide some coarse depth
information. In [Nayar and Narasimhan 1999] the scene structure is
estimated from multiple images of the scene with and without haze
effects under the assumption that the surface radiance is unchanged.

In [Oakley and Bu 2007] the airlight is assumed to be constant over
the entire image and is estimated given a single image. This is done
based on the observation that in natural images the local sample
mean of pixel intensities is proportional to the standard deviation.
In a very recent work [Tan 2008] image contrasts are restored from
a single input image by maximizing the contrasts of the direct trans-
mission while assuming a smooth layer of airlight. This method
generates compelling results with enhanced scene contrasts, yet
may produce some halos near depth discontinuities in scene.

Atmospheric haze effects also appear in environmental photogra-
phy based on remote sensing systems. A multi-spectral imaging
sensor called the Thematic Mapper is installed on the Landsats
satellites and captures six bands of Earth’s reflected light. The
resulting images are often contaminated by the presence of semi-
transparent clouds and layers of aerosol that degrade the quality
of these readings. Several image-based strategies are proposed to
remove these effects. The dark-object subtraction [Chavez 1988]
method subtracts a constant value, corresponding the darkest ob-
ject in the scene, from each band. These values are determined
according to the offsets in the intensity histograms and are picked
manually. This method also assumes a uniform haze layer across
the image. In [Zhang et al. 2002] this process is automated and re-
fined by calculating a haze-optimized transform based on two of the
bands that are particularly sensitive to the presence of haze. In [Du
et al. 2002] haze effects are assumed to reside in the lower part
of the spatial spectrum and are eliminated by replacing the data in
this part of the spectrum with one taken from a reference haze-free
image.

General contrast enhancement can be obtained by tonemapping
techniques. One family of such operators depends only on pixels
values and ignores the spatial relations. This includes linear map-
ping, histogram stretching and equalization, and gamma correction,
which are all commonly found in standard commercial image edit-
ing software. A more sophisticated tone reproduction operator is
described in [Larson et al. 1997] in the context of rendering high-
dynamic range images. In general scenes, the optical thickness of
haze varies across the image and affects the values differently at
each pixel. Since these methods perform the same operation across
the entire image, they are limited in their ability to remove the the
haze effect. Contrast enhancement that amplifies local variations in
intensity can be found in different techniques such as the Laplacian
pyramid [Rahman et al. 1996], wavelet decomposition [Lu and Jr.
1994], single scale unsharp-mask filter [Wikipedia 2007], and the
multi-scale bilateral filter [Fattal et al. 2007]. As mentioned earlier
and discusses below, the haze effect is both multiplicative as well
as additive since the pixels are averaged together with a constant,
the airlight. This additive offset is not properly canceled by these
procedures which amplify high-band image components in a mul-
tiplicative manner.

Photographic filters are optical accessories inserted into the optical
path of the camera. They can be used to reduce haze effects as they
block the polarized sunlight reflected by air molecules and other
small dust particles. In case of moderately thick media the electric
field is re-randomized due to multiple scattering of the light limiting
the effect of these filters [Schechner et al. 2001].



3 Image Degradation Model

Light passing through a scattering medium is attenuated along its
original course and is distributed to other directions. This process
is commonly modeled mathematically by assuming that along short
distances there is a linear relation between the fraction of light de-
flected and the distance traveled. More formally, along infinites-
imally short distances dr the fraction of light absorbed is given
by βdr where β is the medium extinction coefficient due to light
scattering. Integrating this process along a ray emerging from the
viewer, in the case of a spatially varying β , gives

t = exp
(

−
∫ d

0
β

(

r(s)
)

ds
)

, (1)

where r is an arc-length parametrization of the ray. The frac-
tion t is called the transmission and expresses the relative por-
tion of light that managed to survive the entire path between the
observer and a surface point in the scene, at r(d), without be-
ing scattered. In the absence of black-body radiation the process
of light scattering conserves energy, meaning that the fraction of
light scattered from any particular direction is replaced by the same
fraction of light scattered from all other directions. The equa-
tion that expresses this conservation law is known as the Radiative
Transport Equation [Rossum and Nieuwenhuizen 1999]. Assum-
ing that this added light is dominated by light that underwent mul-
tiple scattering events, allows us to approximate it as being both
isotropic and uniform in space. This constant light, known as the
airlight [Koschmieder 1924] or also as the veiling light, can be
used to approximate the true in-scattering term in the full radiative
transport equation to achieve the following simpler image forma-
tion model

I(x) = t(x)J(x)+
(

1− t(x)
)

A, (2)

where this equation is defined on the three RGB color channels. I
stands for the observed image, A is the airlight color vector, J is
the surface radiance vector at the intersection point of the scene
and the real-world ray corresponding to the pixel x = (x,y), and
t(x) is the transmission along that ray. This degradation model is
commonly used to describe the image formation in the presence of
haze [Chavez 1988; Nayar and Narasimhan 1999; Narasimhan and
Nayar 2000; Schechner et al. 2001; Narasimhan and Nayar 2003;
Shwartz et al. 2006]. Similar to the goal of these work, we are in-
terested here in recovering J which is an image showing the scene
through a clear haze-free medium. By that we do not eliminate
other effects, the haze may have on the scene, such as a change
in overall illumination which in turn affects the radiant emittance.
Also, we assume that the input image I is given in the true scene ra-
diance values. These radiance maps can be recovered by extracting
the camera raw data or inverting the overall acquisition response
curve, as described in [Debevec and Malik 1997].

This model (2) explains the loss of contrasts due to haze as the result
of averaging the image with a constant color A. If we measure the
contrasts in the image as the magnitude of its gradient field, a scene
J seen through a uniform medium with t(x) = t < 1 gives us

‖∇I‖ = ‖t∇J(x)+(1− t)∇A‖ = t‖∇J(x)‖ < ‖∇J(x)‖, (3)

4 Constant Albedo Images

The airlight-albedo ambiguity exists in each pixel independently
and gives rise to a large number of undetermined degrees of free-
dom. To reduce the amount of this indeterminateness, we simplify
the image locally by relating nearby pixels together. This is done
in two steps which we describe next. In the first step we model the
unknown image J as a pixelwise product of surface albedo coef-
ficients and a shading factor, Rl, where R is a three-channel RGB
vector of surface reflectance coefficients and l is a scalar describing

the light reflected from the surface. We use this refined model to
simplify the image by assuming that R(x) is piecewise constant. In
this section we consider one of these localized sets of pixels x ∈ Ω
that share the same surface albedo, i.e., pixels in which R(x) = R
for some constant vector R. At these pixels, the standard image
formation model (2) becomes

I(x) = t(x)l(x)R+
(

1− t(x)
)

A. (4)

Instead of having three unknowns per pixel in J(x), we now have
only one unknown l(x) and t(x) per pixel plus another three con-
stants in R. We proceed by breaking R into a sum of two compo-
nents, one parallel to the airlight A and a residual vector R′ that lies

in the linear sub-space which is orthogonal to the airlight, R′ ∈ A⊥.
In terms of these normalized components, the equation above be-
comes

I(x) = t(x)l′(x)
(

R′/‖R′‖+ηA/‖A‖
)

+
(

1− t(x)
)

A, (5)

where l′ = ‖R′‖l and η = 〈R,A〉/(‖R′‖‖A‖) measuring the compo-
nent that is mutual to the surface albedo and the airlight. By 〈·, ·〉
we denote the standard three-dimensional dot-product in the RGB
space. In order to obtain independent equations, we project the in-
put image along the airlight vector, which results in a scalar given
by

IA(x) = 〈I(x),A〉/‖A‖ = t(x)l′(x)η +
(

1− t(x)
)

‖A‖, (6)

and project along R′, which equals to the norm of the residual that

lies within A⊥, i.e.,

IR′(x) =
√

‖I(x)‖2 − IA(x)2 = t(x)l′(x). (7)

The transmission t can then be written in terms of these two quan-
tities as

t(x) = 1−
(

IA(x)−ηIR′(x)
)

/‖A‖. (8)

In this equation the airlight-albedo ambiguity is made explicit; as-
suming for the moment that we have some estimate for the airlight
vector A, the image components IA(x) and IR′(x) give us two con-
straints per pixel x ∈ Ω while we have two unknowns per pixel l(x)
and t(x) plus an additional unknown constant η . A third equation
cannot be obtained from I since, according to our model, any vec-

tor in A⊥ yields the same equation as IR′ . Thus, this model (5)
reduces the pointwise ambiguity into a problem of determining a
single scalar η for all x ∈ Ω. Finding this number, that expresses
the amount of airlight in R′, allows us to recover the transmission
from (8) and ultimately the output image J according to (2).

Now we are ready to present the key idea which we use to resolve
the airlight-albedo ambiguity in this reduced form. The transmis-
sion t depends on the scene depth and the density of the haze, β (x),
while the shading l depends on the illumination in the scene, sur-
face reflectance properties, and scene geometry. Therefore it is rea-
sonable to expect that the object shading function l and the scene
transmission t do not exhibit a simple local relation. This leads us to
the assumption that the two functions are statistically uncorrelated
over Ω, meaning that C

Ω
(l, t) = 0, where the sample covariance C

Ω

is estimated in the usual way

C
Ω
( f ,g) = |Ω|−1 ∑

x∈Ω

( f (x)−E
Ω
( f ))(g(x)−E

Ω
(g)), (9)

and the mean by

E
Ω
( f ) = |Ω|−1 ∑

x∈Ω

f (x). (10)
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Figure 2: Synthetic example. Left to right are: the input image, the recovered transmission t and shading l, and the recovered J. The last
three image show the results obtained using a wrong η , where the correlation between t and l is apparent.

A simpler formulation is obtained by expressing this lack of corre-

lation between t and 1/l′ instead1, where the latter is given by

(

l′(x)
)−1

=
(

1−
(

IA(x)−ηIR′(x)
)

/‖A‖
)

/IR′(x)

=
1− IA(x)/‖A‖

IR′(x)
+η/‖A‖.

(11)

If we define a new variable

h(x) = (‖A‖− IA)/IR′ , (12)

substitute (8) and (11) into the covariance operator, and extract η ,
we finally get that

η =
C

Ω
(IA,h)

C
Ω
(IR′ ,h)

. (13)

This function is easily computed given the input image and, as ex-
plained earlier, η allows us to compute the transmission from (8)
and recover the unknown image J according to (2). The proce-
dure described here is, in essence, an independent component anal-
ysis [Hyvrinen and Oja 2000]. Unlike certain models, equation (13)
fully determines η and decorrelates l and t. This is true as long as
the denominator C

Ω
(IR′ ,h) is non-zero, which we describe how this

is ensured in the next section. As we mentioned in the beginning,
independent component analysis is used in [Shwartz et al. 2006]
to determine a certain parameter, the degree of polarization, that is
required for polarization-based multi-image dehazing.

In Figure 2 we show a synthetic example where the shading l con-
sists of vertical ripples and the transmission t is made of radial ones.
When estimating η from (13) these functions are accurately recov-
ered, whereas the ones computed based on a false η appear to be
mixed together, i.e., correlated.

5 Noise Estimation

Unfortunately no measurement comes free of noise, including the
input image I. This error or lack of data in the input plays a critical
role in this inverse problem of recovering a faint signal masked by
haze. This noise introduces an uncertainty into the estimation of
η by (13) and therefore into t as given by (8). In order to use the
estimated transmission later, with the right amount of confidence,
we must be able to assess the amount of error it contains. This is
done by modeling the error present in I as an additive white Gaus-
sian noise. More specifically, we assume that I = Ĩ + ξ , where ξ
is a three dimensional vector of random Gaussian variables, which
is independent both componentwise and pixelwise, with zero mean

and variance σ2. In the Appendix we follow the propagation of ξ ,
starting from I through the calculation of η up to t, and obtain an
expression that is linear in ξ . This linearity means that at the end

we are left again with a Gaussian noise whose variance σ2
t can be

computed. In the next section we describe how this information is
factored into the estimation of the final t.

1If X and Y are two independent random variables then so are f (X) and

g(Y ) for every pair of continuous functions f and g.

Along the derivation of the error estimate, given in detail in the
Appendix, several conditions which allow us to truncate Taylor ex-
pansions are assumed to hold. Here we list these conditions and
briefly explain why we believe that they are truly unavoidable and
not merely artificial byproducts of the error formulation or analy-

sis. The first condition requires the noise variance σ2 to be less
than the three components of I/10 and also less than IR′/6 which
is the haze-free component of the input. These are basic signal-
to-noise requirements stating that data must be available and that
pixels which are too opaque, compared to σ , contain little or no
information about J. The second condition requires the variance

of the noise term ξCR′ to be less than (C
Ω
(IR′ ,h)/5)2, where ξCR′

is the noise present in C
Ω
(IR′ ,h) which is defined in the Appendix.

This condition breaks down when |Ω| is too small and there is not
enough averaging to reduce the variance in ξCR′ or when there is
not enough variation in l which appears both in IR′ and h. Intu-
itively, these conditions ensure the stability of the statistics E

Ω
and

C
Ω

over Ω and the availability of enough multiplicative variation
in IR′ which is needed to resolve airlight-albedo ambiguity. These
conditions are essential to the way we make our predictions and are
explicitly quantified by this noise model.

By the above we do not mean to justify or assume that any of these
conditions actually hold. On the contrary, every pixel that does not
meet these error estimation criteria is omitted. And as the discus-
sion above suggests, these pixels are discarded for not containing a
reliable information on top of violating conditions needed to eval-
uate the error they contain. We denote the set of these discarded
pixels by B. As we show in the Appendix, the estimate of t at the
rest of the pixels x /∈ B contains zero-mean Gaussian noise with a

variance σ2
t , defined in the Appendix. This error estimate is used

in the next section to extrapolate t for all x, needed for computing
the output image J, when we extend our approach to handle images
with multiple albedo values.

Given an input image we must supply σ that best approximates the
variance of the noise present in the input image. We leave this to
be set by the user and used σ = 1/100−1/200 in our experiments
(for images with pixel values ranging between zero and one). Pixels
with low signal-to-noise ratios are either discarded or receive a high

σ2
t , meaning that this parameter need not be precise. Recently [Liu

et al. 2006] proposed an automated method to estimate the noise
level based on a single image.

6 Multi-Albedo Images

In the previous section we considered the restricted case in which
we assume that all the pixels correspond to the same surface, i.e.,
a constant albedo value R(x) = R, and hence result in a con-
stant airlight-albedo mutual component η . In order to handle gen-
eral images, containing surfaces with different reflectance values,
we perform these evaluations on a pixel basis using robust esti-
mators defined on neighboring pixels. For that we relate pixels
based on their similarity in albedo using the following shading and
airlight invariant measure. We compute a naive haze-free image by
I′ = I −AIA/‖A‖ (which may contain negative values) and project
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Figure 4: Random graph model illustrated in 1D. This model links
the unknown transmission variables t to the estimated values t̂ as
well as to neighboring ones. Unreliable pixels for which we cannot
assess the error are not linked. The airlight image IA, from which
the spatial dependencies are derived, is depicted by the lower blue
strip.

it onto the two chroma channels U and V of the YUV color space.
Since we are not interested in differentiating pixels based on their
shading, we extract a single chroma channel based on the ratio of
these projections

θ(x) = tan−1
(

〈I′,U〉/〈I′,V 〉
)

. (14)

This maps pixel color into angles where we measure distances by
the length of the shortest arc, i.e.,

d(θ1,θ2) = min{|θ1 −θ2|,2π −|θ1 −θ2|}. (15)

We use this similarity measure to define the weights of the follow-
ing w-estimators [Andrews et al. 1972]

Cx( f ,g) =
1

Wx
∑

y∈Ωx

(

f (y)−Ex( f )
)(

g(y)−Ex(g)
)

w(x,y),

and Ex( f ) =
1

Wx
∑

y∈Ωx

f (y)w(x,y),

(16)

where the weighting function w(x,y) is given by

exp(−d(θ(x),θ(y))2/σ2
θ ), the normalizing weight

Wx = ∑y∈Ωx
w(x,y), and Ωx is the window of pixels cen-

tered around x excluding pixels from B. In our testings we set
σθ = 1/8 and use windows of 24-by-24 pixels which can be
enlarged in case of noisy images. We replace E

Ω
and C

Ω
in (13)

with these robust estimators and compute η(x) at every pixel
x /∈ B. We compute the transmission at these pixels according
to (8) and denote this primary estimate by t̂. As noted earlier, in

the Appendix we compute the estimated noise variance σ2
t present

in these estimated transmission values.

We proceed with a statistical smoothing to account for the noise
present in t̂ and in order to fill in the transmission values at pixels
x ∈ B. The airlight contribution is fully contained in IA and can
therefore be used as a prior to derive the spatial regularity of t. We
assume independe between these dependencies and formalize them
using a Gauss-Markov random field model [Pérez 1998], defined
by

P(t) ∝ ∏
x/∈B

e−(t(x)−t̂(x))2/σ 2
t (x) ∏
∀x, y∈Nx

e−(t(x)−t(y))2/(IA(x)−IA(y)))2/σ2
s ,

(17)
where Nx is the set of pixel x’s four nearest-neighbors in the lattice
and use σs = 1/5. The links defined by this model are illustrated
in Figure 4. We maximize this model by solving the linear system
resulting from d logP/dt = 0 and take this optimum to be our final t
which we use to recover the final haze-free output image J from (2).

7 Estimating the Airlight Color

We can apply the principle of uncorrelation, described in Section 4,
once again in order to estimate the airlight color vector A. One
possibility is to restrict to small windows of constant albedo and

search for a vector A that yields the least correlated t and l. This is
based on a requirement for consistency between the equations de-
rived and the input pixels; the airlight vector used in equations (8),
(11), and (12) must be identical to the airlight present in the input
pixels so that the t and l resulting from our computations will indeed
be uncorrelated. If this is not the case the η , computed from (13)
and meant to achieve zero correlation, is meaningless. Thus given

an initial guess for A, we minimize C(J, t)2 by updating A’s compo-
nents using the steepest descent method. This process is done only
within small windows of 24-by-24 pixels and takes a few seconds
to perform. Similarly to [Narasimhan and Nayar 2003], the most
haze-opaque pixel can be used as an initial guess.

This three-dimensional minimization can be reduced to a one-
dimensional search if two or more regions that correspond to differ-
ent but uniform albedos are selected. As indicated by (4), in such
regions all the pixels lay within a two-dimensional linear sub-space
spanned by the vectors R and A. A principal component analysis
will not extract the directions of these vectors since their coeffi-
cients tl and −t are not independent. Nevertheless, we use this
analysis in order to find the sub-spaces themselves by omitting the
least-active component of the three. This is applied in each of the
given regions, indexed by i, and we denote the two spanning com-

ponents by vi
1 and vi

2. Since we expect A to be contained in each
of these sub-spaces, its direction can be recovered by intersecting
these planes. We do this by searching for a vector with the highest
projection onto all these sub-spaces, i.e.,

max
A

∑
i

〈A,vi
1〉2 + 〈A,vi

2〉2 such that ‖A‖2 = 1. (18)

The solution to this problem, according to the Lagrange-multipliers
rule, is given by the eigenvector that corresponds to the highest

eigenvalue of the 3-by-3 matrix given by ∑i vi
1(v

i
1)

⊤ + vi
2(v

i
2)

⊤.

The search described above, where we minimize C(J, t)2, can now
be used to find the magnitude of A. This is a one-dimensional op-
timization problem which we solve using a naive search and takes
less than one second.

8 Results

In Figure 3 we show an input image and the output produced by
our approach. We also show the scene depth values computed by
d = − log t/β which follows from (1) when assuming a spatially-
uniform extinction coefficient β (r) = β . These depth values are
defined up to an unknown multiplicative constant 1/β . In Figure 1
we show the result for a more complicated image with surfaces of
distinct albedos. As mentioned earlier, aerial and underwater pho-
tography are also prone to scattering artifacts, and in Figure 5 we
show the results for these types of images.

In Figure 7 we compare our method with existing techniques.
The result obtained by our method given the best-polarized image
from [Schechner et al. 2001] is comparable to the ones they ob-
tain using two registered and differently polarized images. The re-
sults obtained by the dark-object subtraction method [Chavez 1988]
shown in this figure correspond to two different choices of dark
object values. The outcome depends greatly on this choice and
demonstrates the limited ability of this method to cope with images
that contain multiple layers of haze depth. Tonemapping methods
such as histogram equalization and gamma correction achieve some
enhancement of contrast, yet most of the additive airlight compo-
nent remains unchanged. The same is true for filtering-based en-
hancement such as unsharp masking and the multi-scale bilateral
filter [Fattal et al. 2007].

In Figure 8 we show the results on a real scene where the ground-
truth solution is known. This example is synthesized from an im-
age and its corresponding disparity map which we used to create
the scene transmission. This image is taken from [Hirschmller and
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Figure 3: Wheat cones. The estimated airlight is shown at the top-left corner of the input image. Source image courtesy of Jason Hill.
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Figure 5: Aerial and underwater photography.

Scharstein 2007]. The result is overall quite satisfactory yet shows
some inaccuracies. The mean absolute error in transmission and
haze-free image J are both less than 7%. In another test, shown in
Figure 9, we show two images: left image has its middle square
masked by a thicker haze, and in the right image the square is
slightly brighter exactly in the direction of the airlight. It is hard to
tell this difference visually, yet the method is able to disambiguate
the two scenarios and provide near perfect decompositions.

Additional Applications. We use the predicted transmission func-
tion t(x) for other applications on top of haze removal. In Figure 6
we show an image simulating a denser medium by multiplying the
extinction coefficient β by a factor of λ = 2. According to (1) this
is achieved by applying the following simple power law transfor-
mation of the transmission values

e−
∫

λβ (s)ds = e−λ
∫

β (s)ds =
(

e−
∫

β (s)ds
)λ

= tλ . (19)

In this figure we also show a scene rendered with an altered haze
layer, where the fog layer is modulated by random noise at different
scales and recolored.

Estimated depth maps are shown in figures 1 and 3. Based on these
maps we change the viewpoint and arbitrarily refocus the image, as
shown in Figure 6. Animated examples of these effects are shown in
the supplementary video, which contains more examples and offers
a better viewing experience.

We implemented our method in C++ and it takes it about 35 seconds
to process a 512-by-512 pixel image on a 1.6GHz Intel Pentium

Altered hazeRefocused

OutputInput Denser Fog

Figure 6: In the left image we simulate a virtual focus plane. The
right image is rendered with a recolored haze layer multiplied by a
random noise.

Dual-Core Processor.

9 Conclusions

We presented a new method for estimating the transmission in hazy
scenes based on minimal input, a single image. This new approach
is physically sound and relies only on the assumption that the trans-
mission and surface shading are locally uncorrelated. The use of
robust statistics allows us to cope with complicated scenes contain-
ing different surface albedos and the use of an implicit graphical
model makes it possible to extrapolate the solution to pixels where
no reliable estimate is available. Despite the challenges in resolving
the ambiguities involved in this problem, the images produced by
this method offer a lucid view of the scene and regain contrast that
is typical to haze-free scenes.

In its essence this method solves a non-linear inverse problem and
therefore its performance greatly depends on the quality of the in-
put data. We derive an estimation for the noise present in the input
and use statistical extrapolation to cope with large errors. Neverthe-
less, insufficient signal-to-noise ratio or the absence of multiplica-
tive variation in significant portions of the image will cause our
method to fail. These scenarios are easy to find and in Figure 10 we
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Figure 7: Comparison with other approaches. Image taken from Schechner et al. 2001.

show one such example. Also, when too few pixels are available
the accuracy of the statistical estimation is undermined such as in
the case of the white flowers in Figure 1.

Haze removal from images provides a clearer view of the scene,
but we do not regard it as a default preference. On the contrary,
the presence of haze can be desired for many reasons, for example
it is known to be an important monocular depth cue [Coon 2005].
Painters use a technique called atmospheric perspective where they
wash out regions of the painting using white paint to create an illu-
sion of depth.

Recent theories of perceptual transparency [Singh and Anderson
2002] suggest that we, the human observers, perceive the medium
transmission based on the contrast ratio of a pattern seen through a
semi-transparent filter and through a clear medium. Although we
do not assume here that any haze-free data is available to us, we
also rely on variations in surface shading in order to disambiguate
and require a significant C(IR′ ,h).

Atmospheric scattering causes some amount of blurriness in the
captured image [Grewe and Brooks 1998]. As a future work we
intend to investigate the possibility of incorporating a debluring
mechanism that is regulated by our estimated transmission. This
idea can be pushed even further where the blurriness itself is used
as an additional source of information when estimating the trans-
mission function.
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Appendix: Derivation of the Noise Estimates

Here we derive our estimation for the noise present in the trans-
mission t, given by (8). As described in Section 5, this analysis is
based on modeling the noise present in the input data I as an addi-

tive white Gaussian noise with zero mean and variance σ2, given
by

I = Ĩ +ξ , (20)

where Ĩ is the true image and the noise ξ is a three-dimensional
vector (corresponding to the RGB color channels) with each com-
ponent at each pixel being an independent Gaussian variable ξ ∼
N(0,σ2). This breaks IA into signal and noise terms,

IA = 〈Ĩ +ξ ,A〉/‖A‖ = ĨA +ξA, (21)

with ĨA = 〈Ĩ,A〉/‖A‖ and ξA = 〈ξ ,A〉/‖A‖. Similarly, for IR′ we get

I2
R′ = ‖I‖2 − I2

A = ‖Ĩ‖2 +2〈Ĩ,ξ 〉+‖ξ‖2 − Ĩ2
A −2ĨAξA −ξ 2

A

= Ĩ2
R′ + 〈2Ĩ −ξ ,ξ −ξAA〉,

(22)

where

ĨR′ =
√

‖Ĩ‖2 −〈Ĩ,A〉2,

and by assuming that the noise ξ is less than Ĩ we neglect the
quadratic noise terms. This leaves us

IR′ =
√

Ĩ2
R′ +2〈ξ , Ĩ − ĨAA〉, (23)

and since Ĩ2
R′ = ‖Ĩ − ĨAA‖2 we need ξ to be less than ĨR′ (and not

than Ĩ2
R′ ) in order to use a first-order Taylor approximation for

√
x

centered around ĨR′ . This gives us

IR′ ≈ ĨR′ +
(

〈Ĩ,ξ 〉− ĨAξA

)

/ĨR′ = ĨR′ +ξR′ , (24)

where ξR′ can be written more explicitly as

ξR′ = 〈ξ , Ĩ −AĨA/‖A‖〉/ĨR′ . (25)

Based on the same assumption, ξ < ĨR′ , we use a first-order Taylor
approximation for 1/x around ĨR′ in order to remove the noise term
from the denominator of h

h ≈ (‖A‖− IA)/ĨR′ −ξR′(‖A‖− IA)/Ĩ2
R′ = (‖A‖− ĨA)/ĨR′

−ξA/ĨR′ −ξR′(‖A‖− ĨA)/Ĩ2
R′ +ξR′ξA/Ĩ2

R′

= h̃+ξh +O
(

‖ξ‖2
)

,

(26)

where h̃ = (‖A‖− ĨA)/ĨR′ , and

ξh = −(ξA +ξR′ h̃)/ĨR′ = 〈ξ ,A(h̃ĨA/ĨR′ −1)/‖A‖− Ĩh̃/ĨR′〉/ĨR′ .
(27)

The covariance terms gives

C
Ω
(IR′ ,h) = C

Ω
(ĨR′ +ξR′ , h̃+ξh)

= C
Ω
(ĨR′ , h̃)+C

Ω
(ξR′ , h̃)+C

Ω
(ĨR′ ,ξh)+O

(

‖ξ‖2
)

≈ C
Ω
(ĨR′ , h̃)+E

Ω
(ξR′ h̃+ξh ĨR′)−E

Ω
(ξR′)E

Ω
(h̃)−E

Ω
(ξh)EΩ

(ĨR′)

= C
Ω
(ĨR′ , h̃)+ξCR′ ,

(28)

where by taking into account that ξR′ h̃+ξh ĨR′ =−ξA the noise term
becomes

ξCR′ = −E
Ω
(ξA)−E

Ω
(ξR′)E

Ω
(h̃)−E

Ω
(ξh)EΩ

(ĨR′). (29)

Similarly, we get

C
Ω
(IA,h) ≈ C

Ω
(ĨA, h̃)+ξCA

, (30)

where

ξCA
= E

Ω
(ξAh̃+ξh ĨA)−E

Ω
(ξA)E

Ω
(h̃)−E

Ω
(ξh)EΩ

(ĨA). (31)

Finally, under the assumption that C
Ω
(ĨR′ , h̃) is larger than ξCR′ , we

use again a first-order Taylor expansion of 1/x around C
Ω
(ĨR′ , h̃)

and get

η =
C

Ω
(ĨA, h̃)+ξCA

C
Ω
(ĨR′ , h̃)+ξCR′

≈ η̃ +ξη , (32)

where

ξη =
ξCA

C
Ω
(ĨR′ , h̃)−ξCR′ CΩ

(ĨA, h̃)
(

C
Ω
(ĨR′ , h̃)

)2
, (33)

and η̃ is the the noiseless CΩ(ĨA, h̃)/CΩ(ĨR′ , h̃) that we are estimat-
ing. Note that E

Ω
and C

Ω
are the mean and variance of the pixels

sample in Ω and have nothing to do with the moments of ξ . Finally,
from (8) we get

t = t̃ +(ξA − η̃ξR′ − ĨR′ξη −ξη ξR′)/‖A‖ = t̃ +ξt , (34)

where t̃ = 1− (ĨA − η̃ ĨR′)/‖A‖ and ξt = (ξA − η̃ξR′ − ĨR′ξη )/‖A‖.
Here we drop the quadratic noise term, under the assumption that
ξR′ < ĨR′ , i.e., ξ is small.

Along this derivation, we made several assumptions which we

quantify now. In order for aξ + ξ 2 to still behave like a Gaus-
sian, i.e., have a distribution with a similar shape and a variance of

≈ a2σ2, we need σ < a/10. In our derivation (23) this condition

requires that σ < Ĩ/10 ≈ I/10 for each of the RGB components
and at each pixel. This is also the case in (34) where σ must be less

than 1/10. Similarly, in order to remove the noise from
√

a+ξ
and still maintain an approximately Gaussian distribution, we need
that σ < a/3. In our derivation this condition arises in (24) and

requires σ < ĨR′/6 ≈ IR′/6. The ratio between a and ξ that allows
us to move the noise from the denominator in 1/(a + ξ ) and still
end up with approximately a Gaussian variable is σ < a/5. This
applies to the two cases that we encountered above, the first in (26)
which gives a less restrictive condition σ < (Ĩ − ĨAA)/5 than what
we already have and the second case in (32) that requires

Varξ (ξCR′ ) <
(

C
Ω
(ĨR′ , h̃)/5

)2 ≈
(

C
Ω
(IR′ ,h)/5

)2
, (35)

where Varξ is the variance with respect to the noise randomness.

In Section 5 we summarize these conditions and in Section 6 we
explain how this uncertainly is accounted for in the estimation of t.

The estimated transmission noise term ξt is now a linear combina-
tion of ξ . Therefore its variance is computed according to the fol-
lowing arithmetic rules for Gaussian variables: (i) aξ (x)+bξ (x)∼
N(0,(a + b)2σ2), and (ii) aξ (x)+ bξ (y) ∼ N(0,(a2 + b2)σ2) for
any scalars a,b. The variance of ξA,ξR′ and ξh are computed ac-
cording to the first rule as no different pixels get mixed together.
Mixing occurs in ξCR′ and ξCh

where the second rule is applied. We
use the first rule also to calculate the variance of the intermediate
noise terms ξAh̃+ξh ĨA in (31) and for ξA − η̃ξR′ , found in ξt .


