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ABSTRACT Image haze removal is essential in autonomous driving as the outdoor images captured

during unfavorable weather conditions, such as haze or snow, are affected by poor visibility. Much

research has been done to overcome image degradation such as low contrast and faded color due to

haze. However, in the traditional model, a phenomenon is neglected that several particles simultaneously

involved in light acquisition. To address this problem, we propose a novel single image dehazing method

based on the spatially adaptive atmospheric point spread function (APSF). We developed a module that

estimates the APSF to overcome the limitations of the spatially invariant APSF which used in existing

dehazing algorithms. The key factor in the estimation is that road scenes with haze have different statistical

characteristic from common hazy images in color and resolution. Furthermore, the APSF on the traffic

signs or lights is estimated by generating superpixels to prevent halo artifacts around the sharp edges

of the images. We adopted the total variation model as a regularization functional to reduce halo and

unnatural artifacts that may occur during deconvolution. The haze-free images from the proposed method

tested whether the proposed method can enhance the performance of vision algorithms for autonomous

driving. The experimental results demonstrate that the proposed method outperforms state-of-the-art image

dehazing methods enhancing the performance of the vision algorithms. Moreover, additional experiments

demonstrated the effectiveness of the proposed method for quantitative and qualitative comparison with the

state-of-the-art algorithms.

INDEX TERMS Haze removal, single image dehazing, atmospheric point spread function, multiple

scattering model, road scenes, deconvolution

I. INTRODUCTION

I
MAGE acquired in bad weather conditions such as haze,

rain and dust may suffer from low visibility. Suspended

aerosols interact with light passing through the air, causing

absorption and scattering, in bad weather on hazy or foggy

days. This interaction causes serious image degradation such

as blurring effects, reduced contrast, and false colors. As

vision based autonomous driving and other Advanced Driver

Assistance Systems (ADAS) were developed, the low visi-

bility from bad weather condition may cause false detection

[1]. A simple example of the effect of haze on the results

of the vision algorithm is shown in Fig. 1. Therefore, an

effective haze removal algorithm is required to ensure the

reliable function of outdoor vision systems.

Many studies have been conducted on the effect of haze

on color images. Several methods based on multiple images

or fusion of different images. Schechner et al. [2] used a

polarized camera to capture multiple images of the same

scene with different polarization angles and calculated the

atmospheric light and scene depth to obtain a clear image.

Liang et al. [3] proposed a dehazing algorithm that fuses

infrared and visible images to improve the visual quality of

hazy images. Ancuti et al. [4] proposed a method that fuses

two diffidently enhanced images from an original hazy image

to perform contrast enhancement. Although these approaches

achieve remarkable results, they require a minimum of two

images or additional cameras that use different spectral

ranges, limiting their applications.
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(a) (b)

(c) (d)

FIGURE 1. The effect of haze on image acquisition and edge detection. (a)

hazy image, (b) result of the proposed method, (c) Canny edge detection of

(a), and (d) Canny edge detection of (b).

In recent years, single image dehazing methods have been

extensively researched with significant advances that require

priors or assumptions. Fattal et al. [5] proposed a method

to remove the effect of haze by estimating the albedo of

the scene using the change of the color line. Zhu et al. [6]

introduced a method based on the fact that haze decrease

the color saturation and increases intensity. Tan [7] proposed

an algorithm which based on the found that the haze-free

image with fine visual effect presents relatively high contrast.

Nishino et al. [8] introduced a Bayesian probability algo-

rithm that jointly estimates the depth and scene albedo from

a single image. Additionally, several image enhancement

methods such as histogram equalization, wavelet transform,

and Retinex methods exist [9].

Recently, convolutional neural network (CNN) have been

applied in haze removal. Cai et al. [10] suggested that using

trained receptive fields can produce results similar to heuris-

tic priors, such as dark channel prior (DCP), indicating that

neural networks can remove haze. This indicates that the

neural network could be also used in haze removal. Ren et al.

[11] proposed an effective multi-scale CNN to restore high

quality haze-free images using the NYU depth dataset [12].

Li et al. [13] re-formulated an end-to-end dehazing CNN,

AOD-Net, which can estimate transmission and atmospheric

light simultaneously. Zhang et al. [14] proposed the densely

connected pyramid dehaze network that can examine scene

depth and atmospheric light simultaneously. The hybrid ap-

proach to adapt exist dehazing method into learning based

method also studied. Zhao et al. [15] adopted DCP to adver-

sarial networks (GANs) to increase the visibility. Chen et al.

[16] also used DCP for hybrid image learning. Although most

image enhancement methods and deep-learning-based meth-

ods are easy to implement and some of them are based on the

atmospheric scattering model, deep-learning-based models
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FIGURE 2. Image acquisition in an imaging system using (a) single scattering

model and (b) multiple scattering model.

face certain challenges in training data. Furthermore, most

of the existing studies use indoor image pairs for training and

evaluate dehazing models. Owing to the lack of real-world

hazy and clear image pairs, these learning based methods

are ineffective in dealing with real-world haze images [15].

Moreover, as the suitable training data for the real-world road

scene with haze is not enough, the learning-based methods

may fail to remove the haze in the road scene.

On the other hand, many physics-based methods have also

been proposed aimed at solving the inverse problem of the

optical model to restore degraded images. Researchers have

observed that the effects of aerosols such as Rayleigh scatter-

ing and Mie scattering follow the Koschmieder’s law [17].

These effects on aerosols exponentially correlate with the

depth of the scene. The widespread haze removal algorithms

based on Koschmieder’s law are single scattering model

(SSM) which assumes only one particle affects the image

acquisition. In SSM, the haze removal is an ill-posed problem

as two unknown variables, scene depth and atmospheric light,

exist in one equation.

This problem can be solved by setting a prior; the most

commonly used prior is a DCP proposed by He et al. [18]

wherein certain pixels with low intensities exist in at least one

channel of RGB color space. Based on this prior, the distance

between the object and the image acquisition device is esti-

mated accurately to obtain a haze-free image. However, DCP

fails to recover the sky regions in hazy images, owing to its

similarity to the value of atmospheric light. Consequently, the

color distortions appear in the restored images. Additionally,

DCP sustains halo artifacts in depth discontinuities without

time-consuming soft matting, as it assumes a constant depth

in the local image patch. To address this problem, Li and

Zheng [19] proposed to restore the haze image by exploiting

globally guided image filter.

Furthermore, a non-local approach uses the change of pixel
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FIGURE 3. Differences in applying deconvolution in dehazing. (a),(d) hazy image, (b),(c) dehazing with/without deconvolution using DCP, and (e),(f) dehazing

with/without deconvolution using the proposed method.

values to estimate the scene depth and atmospheric light, as

explained by Berman [20]. Despite recent approaches based

on the flexible adjust the level of the haze removal [21],

boundary constraint [22], and etc., recover quality and com-

plexity of the single image dehazing is still tough problem.

Moreover, SSM ignores the atmospheric scattering with more

than one particle despite adopting a physical model, which

may cause blurring artifacts on the images [23].

Another approach to overcome this limitation of SSM is

to use the multiple scattering model (MSM), which is based

on the idea that more than one molecule affects the light

acquired by the camera from an object in hazy conditions

(Fig. 2). Unlike in SSM, light entering one pixel of a camera

or image sensor in the MSM is affected by the surrounding

region thus becoming blurred. Narasimhan et al. [24] defined

a blur kernel for different weather conditions with the optical

thickness defined as the atmospheric point spread function

(APSF). Wang et al. [25] estimated the blur kernel using the

generalized Gaussian distribution (GGD) to deblur the hazy

image by means of a Wiener filter. The results of applying the

SSM and the MSM to the same image are depicted in Fig. 3.

The red box in Fig. 3 depicts that MSM restores the dense

haze better than SSM. Using the blur kernel and deconvolu-

tion, high-frequency information reduced by the haze can be

recovered, which can help estimate the transmission map for

the dense haze regions as shown in Fig. 3. Thus, not only in

the proposed method but also in the conventional dehazing

method, the approach involving deconvolution is found to be

helpful for haze removal.

As dehazing methods are based on the physical model, in-

cluding image enhancement and deep-learning-based meth-

ods, they do not consider the characteristics of the road

scene, resulting in darker regions and color shifts in road and

traffic signs. Road regions with achromatic colors, such as

asphalt, are affected by over-saturation or low visibility as

haze removal methods make the roads darker. This causes

low visibility in the region of interest, despite the removal of

haze.

To address this problem, we propose a novel single image

dehazing method with a spatially variant APSF for road

scenes. We estimate a spatially variant blur kernel for haze

removal to improve the visibility while reducing the artifacts

caused by a spatially invariant blur kernel. Haze removal is

achieved in two steps. Initially, we set the proper blur kernel

with characteristics of haze in the road scene. We estimate the

APSF using generalized normal distribution. Furthermore,

the deblurred image is obtained, minimizing the artifacts

at the edges. The second step estimates the remaining two

unknown values, namely scene depth and atmospheric light,

to recover the scene radiance.

We utilize the DCP proposed by He et al. [18] to estimate

scene depth and atmospheric light. The dehazing method us-

ing DCP removes the haze effectively; however, it presents a

disadvantage in images with dense haze. As the area affected

by the haze more thicker, in terms of contrast the area have

a lower dynamic range, also the low frequency component

increases in terms of resolution. The low frequency and

contrast complicate the estimation of transmission map in the

haze removal method based on DCP, as all channels in the

area have similar values. This problem can be overcome with

deconvolution.

The novelty of our study is as follows:

• We propose how to estimate the blur kernel spatially

variant with respect to the characteristics of the road

scenes with haze.

• We adopt the superpixel algorithm for blur kernel and

transmission estimations to consider the features of the

road scenes, such as traffic signs and lights.

• We employ total variation (TV) as the regularization

strategy to handle the edges and remove noise in the

deconvolution process during haze removal.

The rest of this paper organized as follows. In section

II, we review the conventional haze removal algorithms

using MSM and explain the superpixel algorithm. Section

III proposes a new haze removal algorithm with a spatially

variant blur kernel for road scenes. In section IV, we evaluate

the performance of the proposed method with application to

several vision algorithms and analyze the subjective quality

and objective metrics. Section V concludes the paper.

II. PROBLEM FORMULATION AND RELATED WORK

In this section, we present the existing SSM- and MSM-

based image observation models for haze removal. Further,

we define the spatially variant model for haze removal using

image restoration theory. Finally the briefly review of the

superpixel algorithm is presented.
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(a) (b) (c) (d) (e) (f)

FIGURE 4. Difference in image segmentation between superpixels and patch-based method. (a), (c), (e) segmentation using superpixels; (b), (d), (f) segmentation

using patch-based method.

(a) (b) (c) (d)

FIGURE 5. Change in the segmented region according to the number of superpixels. (a) n = 30; (b) n = 50; (c) n = 100; (d) n = 300.

A. HAZE REMOVAL USING MULTIPLE SCATTERING

MODEL

In the SSM, the effect of haze can be defined as follows:

I = J · t+A(1− t), (1)

where I is the observed image, J is the scene radiance,

A is the global atmospheric light, and t is the medium

transmission. t can be represented as

t = exp(−ηd), (2)

where d is the depth and η denotes the atmospheric scattering

coefficient.

However, in MSM, the effect of more than one particle

results in an optical blur on the image plane, as illustrated in

Fig. 2. Wei et al. [23] proposed that scene radiance can be

blurred with the surrounding radiance. However, the method

does not consider the optical blur caused by particles, and

airlight. Narasimhan et al. [24] defined APSF which causes

optical blur for isotropic point light source. The images

obtained using MSM model can be expressed as:

Iblurred = I ∗APSF
= ((J · t+A(1− t)) ∗APSF, (3)

where ∗ means convolution operation [26].

The modeling of the image degraded by the MSM is

expressed as an ill-posed problem with three unknowns:

APSF , t, and A, as shown in Eq. (3). Many studies have

been conducted for accurate APSF estimation. The conven-

tional methods used a single kernel based on the weather

conditions, such as haze, fog, and rain as suggested by

Narashiman et al. [24], and Wang et al. [25] used the GGD.

Wang et al. substituted the shape and scale parameter values

of GGD in a Legendre polynomial during application to sev-

eral images. The Legendre polynomial requires one param-

eter value based on weather conditions; thus, the parameter

value used by Wang et al. defines a spatially-invariant APSF

for the entire image. However, spatially-invariant blur kernel

generates artifacts in the flat areas and edges, as depicted in

Fig. 6.

In image restoration theory, the input image degraded by

the blur kernel can be mathematically modeled using the

following equation:

y = Hx+ n, (4)

where y is an observed image, H is the system matrix of

degradation, x is the original image, and n is the correspond-

ing error or noise, which assumed as Gaussian.

The artifact removal using APSF is considered as the

image restoration problem, wherein x is determined as:

x = I = (J · t+A(1− t)). (5)

(a) (b)

FIGURE 6. Haze-removed image with deconvolution. (a) hazy image and (b)

haze-removed image with the ringing artifact.
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In the proposed method the degradation matrix H is esti-

mated spatially variant to restore optical blur while suppress

artifact and noise. Additionally, the system matrix H is

estimated based on the characteristics of the road scenes, to

solve the problem which road region goes darker with faded

color. The spatially variant blur kernel can be mathematically

modeled by the following equation:

yk = hk ∗ xk + nk, (6)

where k is the index for each region and hk is the spatially

variant blur kernel that is considered as APSF in this paper.

B. SUPERPIXEL ALGORITHM

A superpixel is a group of pixels sharing common charac-

teristics, such as pixel intensity. The superpixel algorithm is

widely used in the vision area because it can divides the entire

image into a desired number of regions based on the char-

acteristics of the region and provides useful primitives for

evaluating the characteristics of local images [27]. However,

owing to the calculation time and computational cost, the

superpixels undergo image segmentation. Achanta et al. [27]

calculated superpixels by simple linear iterative clustering

(SLIC), which uses a 5-D space with the L∗, a∗ and b∗ values

of the CIELAB color space and the x, y pixel coordinates

for local clustering. Several approaches have been proposed

using image segmentation with SLIC [9], [25], [28], [29].

The superpixel is used for segmentation of the sky region

using object [25] or initial transmission estimation [25], [28],

[29].

A road scene contains many objects, including traffic signs

and lights. In traditional patch-based methods, these objects

are affected by halo artifacts as the transmission map is

estimated differently when the same object is split into multi-

ple patches. Most conventional methods have different faded

colors or halos appearing in one object, particularly where

color information is essential. This problem can also occur

in the deconvolution of artifacts, such as ringing artifacts

and noise boosting, as incorrect kernel estimation of light

sources. Therefore, blur kernel estimation and haze removal

through segmentation for characteristic regions are required

in a road scene.

In the proposed method, superpixels are used to estimate

the APSF considering the characteristics of each region,

and the regions are classified using the superpixel algorithm

instead of the conventional patch-based algorithm. The pro-

posed algorithm involves images containing haze in a road

scene, and there may be cases wherein the same object is

estimated as different transmission maps. The superpixel

algorithm facilitates kernel estimation considering the char-

acteristics of the region, using the cars, roads, and telephone

poles as individual areas, as presented in Fig. 4. Conventional

methods use superpixels to estimate and correct only the sky

regions [25], whereas the proposed method uses superpixels

in the main objects of the road regions as well. The difference

in grouping of images according to the change in the number

of superpixels in Fig. 5. Despite the increase in the number of

groupings, the road and sky regions, the border between the

building and sky, and the border between the building and

road are divided into different groups.

III. PROPOSED METHOD

In this paper, we propose a single image haze removal al-

gorithm using spatially variant APSF based on a MSM. The

proposed algorithm is divided into three parts. At first, we

set priors using the features of the road scene and calculate

the APSF of each region. After estimating the blur kernel,

the total variation is used to restore the degraded image while

preserving the edge. This is followed by the estimation of

the transmission map and airlight based on the deblurred

image. Finally, the haze-removed image is obtained through

the pixel-based blending method.

A. APSF ESTIMATION USING SUPERPIXEL ALGORITHM

In this section, the spatially adaptive APSF is estimated by

measuring the effect of haze on each region. As mentioned

earlier, applying the same kernel to the entire image generates

various artifacts in regions that are less affected by the haze.

In the proposed method, the angle norm factor and gradient

are set to model the characteristics of the road image; APSF

for each region is defined using these two factors. Most road

images are composed of a large amount of edge information

(the peripheral portion excluding the road) and a flat area

(road, vehicle bonnet, etc.). When the image is affected by

haze, the overall contrast of the image including the edge

information decreases. Choi et al. [30] measured the density

of haze features such as contrast energy and image entropy.

In our previous study [31], we measured the degree of haze

contained in a region using the standard deviation and esti-

mated the APSF of the region proportional to it. However,

contrast alone cannot identify whether the area in which the

kernel is estimated is an area with information not visible

owing to the haze or a flat area without haze. Therefore, the

proposed method estimates the blur kernel using the color

information of the area segmented by superpixels combined

with the gradient information.

Fig. 7 expresses the road image including haze and the

value of each pixel in the RGB three-dimensional (3D) space.

In the case of a haze-free image, pixels are evenly distributed

in the R, G, and B planes, as depicted in Figs. 7(j)-(l).

However, the distribution of the pixel values in hazy images

containing details such as leaves, trees, and signs (Figs. 7(g)-

(i)) indicates that the width is narrower than that of the haze-

free image, although the distribution of the entire hazy image

is not particularly focused on one side. If each pixel of the

image is projected onto the RGB color space in this manner,

a unique vector pointed by each pixel is obtained. This vector

can be expressed as;

Ci = [ri,gi,bi], (7)

where i is the pixel position, r, g, and b are the vectors

composed of the pixel value at each color channel.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIGURE 7. Expressing each pixel in RGB color domain for different patches. (a)–(c) sky area; (d)–(f) road area; (g)–(i) hazy area; (j)–(l) area without haze.

TABLE 1. Angle norm factor and the gradient value for Fig. 7

Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig. 7(d) Fig. 7(e) Fig. 7(f) Fig. 7(g) Fig. 7(h) Fig. 7(i) Fig. 7(j) Fig. 7(k) Fig. 7(l)

AF 0.013 0.011 0.242 0.004 0.004 0.012 0.015 0.026 0.026 0.047 0.018 0.050

Grad 0.255 0.173 0.701 1.264 1.637 0.920 0.682 3.202 5.883 3.074 12.919 4.517

Earlier studies have established that the distribution of im-

ages containing haze is concentrated around the achromatic

series [1, 1, 1] in vector form with normalization between 0
and 1. The sky and the road regions expressed in the RGB

color space in Fig 7. The distribution of the sky region

(Figs. 7(a)–(c)) occupies a very narrow area in 3D space

with most of the pointing vectors point in similar directions.

This is regarded as having a similar direction vector (position

vector) when each point in the sky area is considered as one

vector. The road area (Figs. 7(d)–(f)) also exhibits a similar

distribution (having one position vector), with the vectors

pointing in directions over a relatively wide range, which

can be considered as a large vector magnitude. However,

classifying an area using only a position vector has certain

limitations. For example, although the distribution of the

images in Figs. 7(j) and (k) have similar position vectors in

the sky and the road areas, the vector is stretched more widely

in Fig. 7(k). To define angle norm factor, first the average of

the projected vectors is defined as a mean pointing vector,

and the average of the angles formed by each vector with

mean pointing vector is obtained. The angle norm factor can

be expressed as;

AF k =
1

n

∑

i∈N

arccos (
xi · µk

||xi||||µk||
), (8)

µk =
1

n

∑

i∈N

Ci = [µ(r,i), µ(g,i), µ(b,i)], (9)

where µ is the mean of each color channel, k is the index

of the separated group with superpixel algorithm, N is kth

subset, and n is the number of the pixels in each subset N .

Thus, the degree of haze through the distribution within a

group in a color space is estimated using the angle norm

factor.

The calculated gradient values and angle norm factors of

the hazy, road, and sky areas are listed in Table 1. Although

both the hazy and road areas have low angle norm factors,

the value is lower in the road area than the dense hazy area.

This is because when there are no unique parts such as a

lane or a crack, the road area appears as a color composed

of components of similar material. If the kernel is estimated

with only the angle norm factor, artifacts occur in the road

area as presented in Fig. 6.

To prevent this, the proposed method uses the gradient of

each group to estimate the kernel. The effect of the haze

appears low in the gradient because the haze component is

applied as an additive term. Generally, the gradient value

is small only in the area affected by the haze. However, in

the image containing the haze, the sky region also has a

small gradient value. The aforementioned color distribution

appears in the road region as well; however, it has a larger

value than the dense hazy region in terms of gradient. This is

because the road surface has a rough surface and not perfectly

flat owing to the different components (concrete, cement,

stone, etc.). In the proposed method, the two regions, sky and

road regions, are separated through a gradient.

The number of gradients in the region is defined as follows:

Gradk(x) = ||∇x||1 =
∑

i∈N

|∇xi|

=
∑

i∈N

|∇vxi|+
∑

i∈N

|∇hxi|,
(10)

where |∇vxi|, and |∇hxi| denote the vertical and horizontal

differences between the adjacent pixels, respectively. Eq. (10)

can determine the distribution in the edge of the area in more

detail than the existing contrast measurement methods using

variance and standard deviation.

The road region contains multiple areas with a small

number of gradients, such as signs and lanes. These areas do

not exhibit a significant distinction in the number of gradients

before and after being affected by the haze. Consequently,

it is difficult to determine the degree of haze using only

the number of simple gradients. Therefore, the proposed

method uses the color distribution of the area containing

6 VOLUME 4, 2016
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the haze to estimate the APSF kernel, compensating for the

disadvantages of the two terms, the angle norm factor and

gradient value.

In the proposed method, we utilizes the generalized normal

distribution, wherein the additional parameters are added to

the normal distribution, along with the two terms obtained

to estimate the spatially variant APSF. The probability den-

sity function (PDF) of the normal distribution (Gaussian

distribution) and the generalized normal distribution can be

expressed as follows:

f(z)normal =
1

σ
√
2π

exp {−1

2
(
z − ψ

σ
)
2

}, (11)

f(z)G_normal =
β

2αΓ(1/β)
exp(−|z − ψ|

α

β

), (12)

where ψ is mean or location, σ is standard deviation and Γ is

the gamma function. In a generalized normal distribution, the

shape of the symmetric distribution is decided by the shape

parameter β, which also has a relationship with kurtosis.

Kurtosis measures the ‘tailedness’ of the probability dis-

tribution of a real-valued random variable. The kurtosis is

defined as follows:

Kurt[X] = E[(
X − ψ

σ
)]4 =

ψ4

σ4
. (13)

For the generalized normal distribution, the kurtosis defined

as:

Kurt =
Γ( 5

β
)Γ( 1

β
)

Γ( 3
β
)2

. (14)

When kurtosis increases, the distribution is sharply pointed in

the middle and decays slowly in the tails; when it decreases,

the distribution becomes flatter on the top and thinner in the

tails. In Figs. 8(b) and (c), the graph of lower kurtosis with

sharp peak indicates the value of surrounding pixels. Thus,

kurtosis defines the shape parameter because the lower and

higher kurtosis increases and decreases the influence of the

surrounding pixels, respectively.

In the proposed method, to improve the amount of infor-

mation in the area with a high influence of haze, the APSF is

set using the wide tail considering the surrounding area. The

estimated wide tail kernel and deconvolution improves the

amount of information before transmission map estimation.

In addition, in areas where artifacts may occur because of

deconvolution, such as road and sign areas, a kernel flattened

from the top is estimated using a narrow tail.

Fig. 8(a) presents the relationship between kurtosis and the

shape parameter, β. The change in β for each region region

changes the kurtosis, determining the kernel shape. As the

value of β decreases, kurtosis increases, and the PDF of the

generalized normal distribution is estimated as a kernel of

a shape considering the surrounding area, as the top portion

becomes sharp and the tail portion becomes heavy. As the

value of β increases, kurtosis decreases, and the PDF flattens

the top area and is lighter at the tail, thus being estimated as

a kernel that prevents ringing or other artifacts.

In the generalized normal distribution, the scale param-

eter α, determines the spread out degree of the probability

distribution. As indicated in Fig. 8, the distribution changes

according to α despite the same value of β. Therefore,

calculating the value of α is equally important as that of β
in determining the kernel. Figs. 8(b)–(e) present the different

APSF kernels estimated based on the changes in α and β.

The proposed method estimates the different values of β
for each region using the angle norm factor and the gradient

value. If the angle norm factor is small owing to the color

information in a region distributed in a similar direction, the

influence of haze is considered significant. Therefore, a ker-

nel capable of compensating for high-frequency information

using the surrounding information before transmission map

estimation is required. For regions with a low angle norm

factor, a kernel with a sharp top region and a wide tail is

used. Therefore, the angle norm factor and β are directly

proportional, and β is expressed as follows:

βk = c1 ·AF k, (15)

where c1 is the optimization parameter.

As mentioned previously, the gradient information distin-

guishes between areas containing a lot of haze that cannot be

separated only by color distribution. Therefore, for regions

with similar angle norm factors, smaller and larger gradient

values result in the greater and lesser effect of haze, respec-

tively. As the effect of haze increases, more information must

be restored using a kernel with a wide tail. Thus, the gradient

value is also proportional to β, wherein β is expressed as

follows:

βk = c2 ·Gradk, (16)

where c2 is the optimization parameter.

In the proposed method, the value α is set using the

modified angle norm factor. As mentioned earlier, the angle

norm factor indicates the degree of color distribution of a

group. Although the width of the color distribution range of

the group can be determined using the angle norm factor, it

is difficult to ascertain whether the range indicates a specific

color direction. For example, in the case of a sign composed

of the same color, the saturation increases in the original

color direction despite including the haze. These phenomena

are often observed in road images, including traffic lights

(red, green, and yellow), the color of the bonnet, and the

headlights of vehicles coming from the opposite direction.

The modified angle norm factor measures the angle between

the color distribution of the group and the achromatic color.

The change in the achromatic color increases when the

general area is affected by the haze. Therefore, the pointing

vector [1, 1, 1] of [R,G,B] in the 3D color space is used

as the pointing vector of the achromatic color. The modified

angle norm factor can be expressed as:

MAF k =
1

n

∑

i∈n

arccos (
xi · ep

||xi||||ep||
),

ep = [1, 1, 1].

(17)

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082175, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b) (c) (d) (e)

FIGURE 8. Kurtosis of generalized normal distribution and atmospheric point spread function kernel with different α and β (a) changes of the kurtosis with different

β; (b), (c) α = 1; (d), (e) α = 2.

In the case of the modified angle norm factor, a smaller

angle between each vector and the achromatic pointing vec-

tor points in an achromatic direction. Therefore, informa-

tion from the surrounding area must be utilized through a

widespread kernel. However, in the case of signs and traffic

lights, although the color distribution of the group is highly

dense, the angle formed by the achromatic pointing vector

increases owing to the distribution pointing toward the pri-

mary color in the color space. In that case, it is necessary to

prevent aliasing through a narrow tail. Therefore, α and the

modified angle norm factor are inversely proportional to each

other, expressed as follows:

αk =
c3

MAF k

, (18)

where c3 is the optimization parameter. This relationship can

be applied to gradient values as well; the regions with small

gradient values have areas with both low (sky region) and

high modified angle norm factors (traffic signs). Finally, the

APSF for the each group k is estimated into:

APSF k =
β

2αΓ(1/β)
exp(−|z − ψ|

α

β

), (19)

where α = c3/MAF k, and β = c1 · c2 ·AF k ·Gradk.

Using Eq. (4) with H defined based on Eq. (19), x̂

can be restored through a process called deconvolution.

Several deconvolution methods, such as Wiener filtering,

Lucy–Richardson [32], [33], alternating direction methods

of multipliers (ADMM) [34], [35] exist. As indicated in in

Fig. 3, although the noise component may not be included

in a haze composite image using computer graphics, actual

image acquisition involves both haze and noise components.

Therefore, it is necessary to use a deconvolution method

to suppress noise components while preserving the edge

information. This can be achieved using TV regularization

rather than only data fidelity. The deblurred image x̂ can be

expressed as follows:

x̂k = argmin
x

||yk − hk ∗ xk||22 + λ||∇xk||11, (20)

where λ is the regularization parameter. The difference be-

tween the deconvolution methods is presented in Fig. 9. As

deconvolution cannot remove haze itself, we compared the

result using the proposed dehazing method. The APSF kernel

is estimated equally for two images and the only difference is

deconvolution method. The edge information of an object can

be preserved during deconvolution using TV, which prevents

artifacts in the red box of Fig. 9.

As the image is restored from the optical blur using

ADMM to solve the TV regularization problem, only two un-

known values remain, which are estimated in the subsequent

sections.

B. ESTIMATION OF TRANSMISSION MAP & AIRLIGHT

We estimated APSF and restored x into x̂ in section III-A.

The two remaining unknown values are transmission map

and atmospheric light.

The proposed method utilizes DCP. The transmission map

is estimated using the deconvolved image with the estimated

APSF. The DCP utilizes the prior that the lowest pixel value

of the three channels in the region is 0 to solve the ill-posed

problem. It can be expressed as follows:

Jdark
patch(p) = min

(k,l)∈Ω
min(Jc(k, l)), (21)

where p is the dark channel value, k and l are pixel location,

Ω is a local patch in general and c denotes color channels in

color image which c ∈ (r, g, b). Using DCP, the transmission

map is estimated as follows:

t̄patch(k, l) = 1− w · min
(k,l)∈Ω

min
c

(
Ic(k, l)

Ac
), (22)

where t̄ is estimated depth at (k, l) and w is adaptive param-

eter set to 0.95. The estimated transmission is called coarse

transmission. If coarse transmission used with initial estima-

tion, blocking artifacts occur at the boundary of each block.

He et al. used a soft matting method to remove blocking

artifacts. However, soft matting requires a lot of computation

and time. Bilateral filtering [36] and guided filtering [37]

has adopted to compensate computation while removing the

artifacts. Also, by developing the single-scale, which uses

one patch size entire image, methods based on multi-scale

retinex method of utilizing multiple patch sizes such as small,

medium, and large sizes and weighted summation were also

developed [38]. Multi-scale methods prevent large objects

from being included in different patches. However, when the

edge information of the image or the characteristics of the
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(a) (b)

FIGURE 9. Difference in deconvolution methods indicating dehazing result

using (a) Lucy–Richardson and (b) alternating direction methods of multipliers

region are not known, this approach has a limit for dividing

the scale.

In the proposed method, in order to compensate the lim-

itations of the patch based DCP, transmission estimation of

the segmented region through superpixel algorithm is used

together. The method to obtain haze-free image through the

two methods is described in section III-C. The DCP using

superpixel is expressed as follows:

Jdark
superpixel(p) = min

(k,l)∈Ω′

min(Jc(k, l)), (23)

where Ω′ is the segmented group with superpixel algorithm,

not a local patch. The transmission map is estimated as

follows:

t̄sp(k, l) = 1− w · min
(k,l)∈Ω′

min
c

(
Ic(k, l)

Ac
). (24)

Since segmentation through superpixel algorithm is per-

formed, the possibility of blocking artifacts that may occur

in coarse estimation may also be less as the total number of

masks is smaller than the method using the local patch. How-

ever, the boundary part divided by the superpixel algorithm is

not shaped square in most cases (Fig. 5), and the size between

the boundary is strong. Therefore, smoothing of the edge part

is essential like the patch-based method. To achieve this, the

proposed method utilizes the luminance information of the

input image. The filtered transmission can be represented as

follows:
tpj = aprLj + bpr,

tspj = asprLj + bspr,
(25)

where tp and tsp are the filtered transmission for t̄patch and

t̄sp, respectively, and L denotes luminance component of the

hazy image. The coefficients for guide filter can be expressed

as:

ar =

1
|Ω|

∑
i∈Ωr

Lipi − µrp̄r

σ2
r + ǫ

,

br = p̄r − arµr,

(26)

where p is t̄patch for tp, and t̄sp for tsp. The estimated

transmission maps with two different approaches and the

filtered transmission maps are presented in Fig. 10. The

red box in Fig. 10(c) indicates that the estimation using

superpixel easily identifies the signs on the road, whereas the

(a) (b)

(c) (d)

FIGURE 10. Estimated and filtered transmission maps of Fig. 3(d). (a) t̄sp; (b)

t̄patch; (c) guided filtered t̄sp; (d) guided filtered t̄patch.

patch-based estimation does not detect it. This can suppress

halo artifacts during the dehazing process.

The final unknown value is atmospheric light. From the

Koschmieder’s law, the atmospheric light can be estimated

where the scene depth is becomes 0. He et al. first picked

0.1% highest pixels from dark channel image, and estimateA
as the highest value among those pixels. However, this poses

a computation problem as all the pixels in the image must be

sorted to pick the highest pixels.

In the road scene, the sky region is generally included in

the image, except in special cases, and is chiefly distributed

on the upper side in the horizontal direction while the dis-

tribution in the vertical direction can vary. In the proposed

method, to speed up the calculation time, the input image

down-sampled 1/4 for horizontal and vertical direction. As

the sky-region occupies most of the road scenes, the down

sampling does not affect to the estimation of A.

We have to extract the object which has white values like

streetlight while extracting the candidate pixels of A. Since

the estimation of A is made for the pixel with the largest

value, there is a possibility that the value of a white object

such as a streetlight is estimated as the A value. In order

to eliminate not only this possibility but also the problem of

color noise, in the proposed method, morphological filtering

is performed on the candidate set. Through this process, the

influence of the sky region on the estimation of a value can

be increased and the influence of small objects and edges can

be reduced.

The haze-free image J can be restored using the decon-

volved input I , A, and filtered transmission map. The haze-
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free image, scene radiance, is expressed as:

Jpatch(k, l) =
Ideconv(k, l)−A

max(tp(k, l), t0)

Jsp(k, l) =
Ideconv(k, l)−A

max(tsp(k, l), t0)
),

(27)

where t0 is a typical value that prevents the denominator

from reaching 0. As we indicated earlier, we get two scene

radiance which uses patch based DCP, and superpixel seg-

mentation based DCP.

C. FUSION FOR A HAZE-FREE IMAGE

As mentioned in III-B, we obtain two different scene radiance

Jpatch and Jsp from Eq. (27). When the same operation (e.g.

gamma correction, histogram equalization, white balance) is

performed into the entire image, the degradation of the hazy

image is not eliminated because the optical density of haze

varies across the entire image [4]. Codruta et al. performed

weight map and multi-scale fusion using Gaussian and Lapla-

cian pyramids, differences in luminance, chrominance, and

visual saliency between the haze-removed image and the

original image. However, this multi-scale fusion method is

for an image in which only one operation is processed when

the haze is removed, thus limiting the performance improve-

ment.

In the case of an image obtained for transmission using

a superpixel, the major edge portion of the image can be

well-preserved. However, as the same transmission value is

assumed for an area larger than the patch-based method,

the haze-free image may become darker. Therefore, in the

proposed method, the haze-free image is finally obtained

using two different approaches. The weight map for the

fusion of two images can be calculated in pixel units using

the three factors proposed in III-A.

The weight map can be calculated based on the change in

the amount of haze before and after removal. This implies

that better haze removal increases the number of gradients,

the color distribution is more diverse, and the achromatic

tendency influencing the haze is reduced. In addition, com-

paring the original image with the image after haze removal

preserves the original value before and after haze removal

for, particularly road parts with small gradient values, traffic

lights, and signs containing one color. The weight map can

be expressed as follows:

W (k, l) =
fsp(k, l)

fsp(k, l) + fpatch(k, l)
,

f(k, l) =
AF (k, l) ·Grad(k, l)

MAF (k, l)
,

(28)

where fsp and fpatch are the factors for the superpixel-based

and the patch-based haze-removed images, respectively, as

mentioned in Eq. (27). The patch size used was identical to

the one used in transmission map calculation. Additionally,

we used the segmentation information of the input image

because the characteristics of a haze-free image are different

from the input image, owing to the superpixel segmentation.

(a) (b)

(c) (d)

FIGURE 11. Haze-free images obtained using (a) superpixel algorithm, (b)

patch-based algorithm. (c) weight map for fusion, and (d) haze-free image with

fusion.

To remove the blocking artifact caused by the superpixel

segmentation, we filtered weight map with guide image,

for which we used multiplication of the patch-based and

segmented images. Fig. 11 presents two haze-free image and

weight map with filtering.

The final haze-free image is obtained with:

J(k, l) =W (k, l) · Jsp(k, l) + (1−W ) · Jpatch(k, l). (29)

IV. EXPERIMENTAL RESULTS

In this section, we validate the performance of our proposed

method using multiple hazy images. The hazy images used

in the experiment are divided into synthetic and naturally

hazy images with and without ground truth, respectively. We

obtained the synthetic images from the Frida image database

[1], [39], Virtual KITTI dataset [40], O-HAZE database

[41] and RESIDE database [42]. Unlike the synthetic image,

natural hazy images do not have ground truth images, but it is

necessary to use the natural hazy images to check whether the

proposed method is applicable. For the natural hazy images,

we collected various images using Flickr.com and several

image search engines including hazy images from the paper

Choi et al. proposed [30]. As the proposed method tests haze

removal from road scenes, the experiment was conducted

using only the images containing the road area and cars from

the image databases.

Initially, we compared the haze-removed images obtained

using conventional methods. As the proposed method utilizes

DCP, the algorithm proposed by He et al. was compared with

the proposed algorithm. In addition, we compared the method

of removing haze using color attenuation prior (CAP) [5],

and the density of fog assessment-based defogger (DEFADE)

method which analyzes the effect of haze on the image
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIGURE 12. Comparison results of vision algorithms with different haze-removed methods. The first row is hazy and hazy-free images. The second row is edge

map detected with Canny edge detector. The third row is the Hough transform for each results. The fourth row is detected vanishing point for each image. (a) the

hazy image, (b) results of DCP, (c) results of CAP, (d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of

PMHLD, (i) results of the proposed method.

through various features [30]. To reflect the recent research

on haze removal through a deep-learning approach, we com-

pared the results of the proposed method with that of the

CNN-based dehazing algorithm, DehazeNet [10]. The results

of AOD-Net [13], a learning-based dehazing method using a

scattering model, was also compared together. Additionally,

the results of patch map based hybrid learning dehazeNet for

single image haze removal (PMHLD) [16], which imported

DCP into network, was compared to reflect recent research

on haze removal. Finally, we compared our results with haze

removal based on artificial exposure fusion (AMEF) [43] as

it effectively removes haze from images using a one-sided

histogram.

The results of the proposed method were compared with

the conventional results from two perspectives. Initially, we

applied the haze-removed image through each method to the

vision algorithm that uses the road scene as the input image,

verifying the effect of haze removal on the performance of

vision algorithms: Vanishing point estimation utilizes the

method proposed by Kong et al. [44] and line segment

detector (LSD) proposed by Gioi et al. [45]. This is followed

by a combined qualitative and quantitative comparisons of

the results.

For the experiments, we set three parameters which esti-

mates the APSF, c1, c2,and c3 as 1, 1, and 10 respectively.

The number of superpixels are set to 300 for each image.

These parameters have been set up through various experi-

ments.

A. APPLICATION AND EVALUATION FOR DRIVING

ASSISTANCE SYSTEM

As the proposed method removes the haze effect in a road

scene, a subjective evaluation of haze removal is essential to

determine how the haze-removed image affects other applica-

tions while subjective evaluation of the removal of the effect

of haze is also important. In this section, the performances

of various vision algorithms are tested using road scenes to

evaluate whether haze removal enhances their performance.

We compare the results of the performance with the im-

provement of the Hough transform and edge detection using

Canny edge detector, which is widely used in autonomous

driving, and the results of the vanishing point estimation.

Fig. 12 compares the result of the proposed method with the

conventional methods.

As the Canny edge detector includes a threshold, the edge

discrimination ability may vary depending on the threshold

setting. In the Hough transform, thresholds are included in

the parts that can be extracted as straight lines. We experi-

mented without adjusting the threshold because calculating

the optimal threshold for each image affects the detection.

Fig. 12(a), indicates that for a hazy image, the edge is not

estimated using the Canny edge detector and the intersection

of each line does not occur in the Hough transform. However,

when the haze is removed using dehazing methods, the

intersection between the deformed lines occurs through edge

detection and Hough transform, validating that dehazing

algorithms improve the performance of the vision algorithm.

The edge information in the results of DEFADE, AMEF and

AOD-net (Figs. 12(d), (g), and (f)) increases compared to the

hazy image; however, the increase in edge information and

the number of intersections in the Hough domain is smaller

than those in other conventional algorithms, including the

proposed method. The fourth row in Fig. 12 depicts the esti-

mated vanishing point using Hough lines, indicated as yellow

lines for each result. The vanishing point is estimated based

on the intersection of the estimated Hough lines. The results

of DCP and PMHLD (Figs. 12(b), and (h)) indicate that their

ability to improve edge information is outstanding; however,

as the Hough line is incorrectly estimated the vanishing point

is estimated to be several points. Additionally, the two lines

below are estimated to have no relation to the vanishing

point. The results of CAP (Fig. 12(c)) adequately estimate the

vanishing points through the intersection, while a limitation

exists in estimating the Hough lines. The image in which the
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIGURE 13. Comparison results of lane segment with different haze-removed methods. The first row is hazy and hazy-free images. The second row represents the

detected line for each image. (a) the hazy image, (b) results of DCP, (c) results of CAP, (d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g)

results of AMEF, (h) results of PMHLD, (i) results of the proposed method.

haze is removed using the proposed method (Fig. 12(i)) ex-

hibits the best performance in estimating the amount of edge

information and the vanishing point through the Hough line

in comparison with the other methods, including DehazeNet

(Fig. 12(e)). The metrics for the improvement in the amount

of edge information are compared in Section IV-B.

The other widely used vision algorithm is line detection.

Fig. 13 presents an image wherein haze is removed using

the conventional algorithm, the hazy image, and the line esti-

mated using LSD. The red box in Fig. 13(a) is a section with

lanes that are important in autonomous driving. However,

it is not considered as a line in an image containing haze.

Although the results of DEFADE and AMEF(Figs. 13(d) and

(g)), presents stable results for haze removal, but they cannot

remove the haze effectively enough to detect a line in the

red box. DCP (Fig. 13(b)) effectively removes haze while

decreasing saturation,but does not effectively express the

length of the lane depicted in red box. The other conventional

methods, such as CAP, DehazeNet, AOD-Net and PMHLD

(Figs. 13(c), (e), (f), and (h)) detect the line in the red box

appropriately and express the edge information of the core

depicted in the blue box properly. However, the proposed

method (Fig. 13(i)) detects the lane in the red box and

the edge information of the corners in the blue box, along

with additional information such as other boundary parts,

shadows, the boundary of the road, and the bottom of the

vehicle, which can be utilized in the vision algorithms. Since

the method proposed in the basic vision algorithm improves

the detection performance of the algorithm, it can be applied

to other vision algorithms.

B. SUBJECTIVE COMPARISON AND OBJECTIVE

EVALUATION

To assess the performance of the proposed method, we tested

various hazy images with images though conventional meth-

ods as mentioned in IV. For fair comparison, we set the patch

size as 7 × 7 and lower bound t0 as 0.1 for the patch-based

methods, DCP, AMEF, and the proposed method. The patch

size of the guided filter for the proposed method is set to

17×17 because it smoothened the blocking artifact reduction.

The results of the conventional methods including proposed

methods on the real-world images are on Fig. 14.

Although DCP removes haze sufficiently, there is no con-

sideration for the sky or road areas, so artifacts such as noise

amplification occur in the wide flat area like haze-opaque

region. As indicated in the first row of Fig. 14(a), the dense

haze in a distant place is not removed effectively. Addition-

ally, the result of the DCP is over-saturated while removing

the haze by using only one prior using the minimum channel,

as depicted in fifth and sixth rows of Fig. 14(b).

The CAP algorithm, proposed by Zhu et al., has weak

ability to remove haze than DCP, while it removes haze better

than DEFADE and DehazeNet. As the CAP algorithm based

on the substitution of the brightness with increasing depth,

the results images are unnatural or darker shown in first and

fourth rows of the Fig. 14(c). Additionally, CAP removing

the haze sufficiently in the anterior region of the image, the

removal of relatively distant haze is limited, as depicted in

the third and fourth rows of Fig. 14(c).

Although the DEFADE algorithm produces stable results,

it does not eliminate the haze effects effectively. As indicated

in Fig. 14(d), the haze in the anterior is removed sufficiently,

but distant part retains some amount of haze. Additionally,

the haze removal in the anterior is inferior compared to

other algorithms because DEFADE initially calculates the

density of haze with features. Although comfortable results

are produced using these features, the drastic removal of haze

is restricted.

In the case of deep-learning-based algorithm DehazeNet,

the images become darker while removing the haze, as indi-

cated in the third and fourth rows of Fig. 14(e). Additionally,

DehazeNet has a limitation in restoring the haze located

far from the image acquisition device (Fig. 14(e)), and the

multiple scattering hazy images cannot be synthesized as De-

hzeNet examines only single scattering samples. This cause

the result of the haze-removed image with blurring effect

like fifth row of Fig. 14(e). The CNN for dehazing might be

improved using the proposed method. And the other deep-

learning-based algorithm, AOD-Net, shows stable results for

the images which artificially generated in the last two rows

of the Fig. 14. This is because most of the learning based

algorithms are learned through a haze set made indoors.

However, due to these characteristics, realness results cannot

be produced for real world haze scenes that lack training

data. As depicted in the first and the third rows of Fig 14(f),

the learning-based methods removes less haze for the dense
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIGURE 14. Qualitative comparison of the different methods on real-world images. (a) the hazy image, (b) results of DCP, (c) results of CAP, (d) results of DEFADE,

(e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed method.

haze region or real world image than the prior-based methods

including the proposed method.

This phenomenon also occurs in PMHLD, another

learning-based algorithm. As indicated in the bottom three

rows of Fig. 14(h), PMHLD yields better results than those of

the other conventional methods for synthesized hazy images

even when the road area is included. However, for a real-

world hazy scene with the road area (top four rows of Fig.

14(h)), the performance is degraded in the dense haze area,

and the road area becomes dark. This is because of the lack

of training set for a real-world hazy scene with road area.

The final conventional method is AMEF which is based on

the artificial exposure and image fusion. As AMEF is based

on the fusion, it’s results depends on the fusion fitting. As

depicted in Fig. 14(g), although the AMEF provides stable

results without halo artifacts, the result turns darker while

removing haze (fifth row of Fig. 14(g)). Additionally, as

the AMEF algorithm considers only the single scattering

model, it cannot remove the blurring effect caused by haze,

as observed in the trees in the last row of Fig. 14(g).

The proposed method has the purpose of restoring the

area with dense haze by using MSM and deconvolution. As

indicated in the second row Fig. 14, the car that was not

visible in the hazy image is clearly visible in the proposed

method. In addition, the proposed method can also prevent

dark regions from getting darker while removing the haze.

The blue car on the left side of Fig. 14(i) proves that the

dark area is better preserved compared to other algorithms.

As the proposed method utilizes MSM, the blurring effect

caused by haze can be removed during the dehazing process.

Based on the fifth row of Fig. 14, the results obtained using

the proposed method have a sharper edge for the cars on

the road and the people in yellow clothes at the bus stop.

This is observed in the last row of Fig. 14 for trees as

well. Finally, the proposed method preserves the colors of

materials such as asphalt and concrete of the road in the

process of removing haze. Based on the first, third and fourth

rows of Fig. 14, the color of the road is best preserved

through CAP among conventional algorithms. DEFADE and

DehazeNet have a limitation in removing haze in the road

regions, while DCP and AMEF are over-saturated. However,

the proposed method sets a prior for the road region using

the gradient and the color component. Therefore, the result

of Fig. 14(i) preserves and restores the road color despite the

different materials.

The synthetic image validates the effectiveness of the pro-

posed algorithm in removing the haze contained in the road

compared to the conventional algorithms. Fig. 15 and Fig.

16 present synthetic images from the virtual KITTI, FRIDA,

and FRIDA2 dataset created using computer graphics. These

synthetic images are used for comparison of results because

acquiring an image without haze and an image contained in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 15. Qualitative comparison of the different methods on virtual KITTI image. (a) the hazy image, (b) results of DCP, (c) results of CAP, (d) results of

DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed method, (j) ground truth images.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIGURE 16. Qualitative comparison of the different methods on FRIDA and FRIDA2 data set image. First fifth rows: heterogeneous haze. Second sixth rows:

cloudy homogeneous haze. Third seventh rows: cloudy heterogeneous haze. Fourth eighth rows: homogeneous haze. (a) the hazy image, (b) results of DCP, (c)

results of CAP, (d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed

method, (j) ground truth images.

the actual image under the same environment is difficult. For

the virtual KITTI dataset, as indicated in Fig. 15(a), the cones

behind the white sign are covered by haze, unlike in Fig.

15(j). Among the conventional methods, DCP and PMHLD

(Figs. 15(b) and (h)), restore the cones. However, PMHLD

does not remove haze at a distance. CAP and DEFADE (Figs.

15(a), and (d)) do not sufficiently remove the haze, whereas

DehazeNet and AOD-Net (Figs. 15(e) and (f)) make the

image darker. In contrast, the proposed method (Fig. 15(i))

restores the hazy image effectively while preserving the road

regions and objects on the road, such as cars, signs, and the

cones behind the sign. The FRIDA and FRIDA2 datasets

contain four different haze types: homogeneous, heteroge-

neous and with and without cloud environments. Among the

conventional methods, DCP yields the best performance in

removing the four different types of haze. For the heteroge-

neous haze, most of the methods exhibited good performance

in removing the haze; however, except for the proposed

method, all other methods generated artifacts, indicated by

color of the blue crosswalk sign changes in the first row of

Fig. 16. However, the proposed method removes the haze up

to the location where the tree is visible without changing

the color of objects, including signs. The deep-learning-

based methods, DehazeNet and AOD-Net, make the road

darker while removing haze. PMHLD exhibits the second

best performance among the deep-learning-based algorithms;
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TABLE 2. QUANTITATIVE MEASUREMENT RESULTS OF SYNTHETIC DATASETS

Dataset Metrics hazy DCP CAP DEFADE DehazeNet AOD-Net AMEF PMHLD proposed

SSIM 0.426 0.467 0.443 0.409 0.182 0.425 0.377 0.413 0.505

Virtual KITTI(150 samples) PSNR 6.743 8.755 9.419 8.606 5.773 8.2241 8.750 0.732 8.829

FADE 1.274 0.382 0.714 0.371 0.347 0.412 1.201 0.315 0.246

SSIM 0.616 0.600 0.522 0.566 0.614 0.629 0.680 0.563 0.693

FRIDA(76 samples) PSNR 11.167 13.316 12.494 13.226 12.926 13.229 14.456 12.697 13.875

FADE 1.843 0.754 0.690 1.059 0.727 0.893 1.237 0.564 0.693

SSIM 0.737 0.642 0.334 0.756 0.662 0.440 0.787 0.656 0.803

FRIDA2(264 samples) PSNR 10.472 11.638 8.826 12.048 11.800 9.749 12.713 11.695 12.549

FADE 2.783 1.158 0.628 1.952 0.974 1.081 1.860 0.732 0.801

TABLE 3. QUANTITATIVE MEASUREMENT RESULTS in terms of e, r̄, NIQE, FADE, DHQI, and SSIM on the Fig. 12 and Fig.13

Image Metrics hazy DCP CAP DEFADE DehazeNet AOD-Net AMEF PMHLD proposed

e - 1.959 1.706 0.915 1.152 1.139 0.850 1.918 1.762

r̄ - 1.723 1.768 1.810 1.751 2.048 1.587 2.225 1.799

Fig.12 NIQE 2.303 2.713 2.537 2.380 2.345 2.564 2.469 2.324 2.266

FADE 3.236 0.818 1.004 1.247 1.327 1.457 1.295 0.455 0.798

DHQI 17.581 52.870 59.018 57.542 60.26 53.250 58.067 61.809 61.811

e - 1.094 0.592 0.233 0.605 0.544 0.326 0.802 0.805

r̄ - 1.937 1.751 1.450 0.778 1.922 1.403 2.079 2.202

Fig.13 NIQE 2.515 3.219 2.953 2.782 2.737 3.133 2.667 2.512 2.150

FADE 2.464 0.580 0.953 1.206 0.965 1.088 1.142 0.314 0.813

DHQI 49.861 59.160 61.686 58.987 63.554 50.318 60.643 67.052 67.136

however, it is not as effective in dense haze areas with cloudy

environments. The CAP algorithm, is based on the color

change, causing the dehazed image to becomes darker and

decreasing the saturation particularly in achromatic areas

with objects such as cars and roads. Finally, the AMEF

method removes haze without generating artifacts; however,

it does not remove dense haze regions. The proposed method

removes all four haze types without generating artifacts or

causing a color change of the objects in the road scene.

Unlike real world data, synthetic data has the original

image. Therefore, the amount of haze effect removed by the

dehazing algorithms can be measured and compared to the

original image. Table 2, presents the quantitative measure-

ments for Fig. 15 and Fig. 16. For the virtual KITTI dataset,

150 images were selected and all images in FRIDA and

FRIDA2 conducted in the experiment. Three metrics, namely

structural similarity index (SSIM) [46], peak signal to noise

ration (PSNR) and fog aware density evaluator (FADE), were

used to compare the results of the proposed method with

the conventional methods. SSIM is an image quality metric

based on the computation of three terms, the luminance

tern, the contrast term and the structural term. SSIM is

an index that better expresses how similar the original and

processed images are in the human visual system than the

PSNR calculated by simply calculating the mean square error

between pixels. The SSIM has boundary between 0 and 1,

the value near 1 means output image has similar structure

with reference image. FADE is proposed by choi et al. which

calculates the density of haze with features. The smaller value

of FADE means the image contains less haze component. In

Table 2, the numbers highlighted the darkest, second darkest,

and third darkest denote the highest, second-highest, and

third-highest performances, respectively.

In virtual KITTI dataset, the proposed method showed

the highest and second-highest performances for SSIM and

PSNR, respectively; the DCP and CAP presented the third-

highest and the highest results for the SSIM and PSNR,

respectively. As the SSIM calculates the structural similarity

between the output image and reference image, the proposed

method restores the hazy image effectively among conven-

tional methods. This is also validated by the proposed method

exhibiting the lowest FADE value, which measures the den-

sity of the haze, while the hazy image has the highest FADE

value. In the FRIDA and FRIDA2 dataset, the proposed

method shows at least the third highest for all metrics. This

shows the proposed methods removes haze effectively with

quantitative metrics.

To evaluate the performance of the proposed method quan-

titatively for natural images, several metrics measured the

improvement of the hazy image. We focus on the image
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TABLE 4. QUANTITATIVE MEASUREMENT RESULTS in terms of e, r̄, NIQE, FADE, and DHQI on the Fig. 14

Image Metrics hazy DCP CAP DEFADE DehazeNet AOD-Net AMEF PMHLD proposed

e - 0.505 0.552 0.642 0.250 0.475 0.261 0.304 0.583

r̄ - 1.506 1.364 1.843 1.456 1.714 1.451 1.696 1.823

Fig.14 1st row NIQE 1.696 1.786 1.766 1.867 1.691 1.815 1.998 2.934 1.639

FADE 0.962 0.318 0.260 0.241 0.293 0.400 0.425 0.311 0.221

DHQI 56.779 69.312 69.023 69.505 68.898 67.858 68.764 69.035 69.510

e - 0.502 0.385 0.496 0.450 0.528 0.155 0.397 0.612

r̄ - 1.667 1.373 1.885 1.215 1.474 1.016 1.804 1.746

Fig.14 3rd row NIQE 3.270 3.416 3.439 3.968 3.543 3.659 3.460 3.199 2.480

FADE 1.074 0.393 0.591 0.194 0.232 0.368 0.883 0.448 0.300

DHQI 57.765 65.839 63.462 64.589 68.482 55.686 61.697 63.692 65.793

e - 1.126 1.293 0.936 1.125 0.985 0.422 1.025 0.827

r̄ - 1.600 1.021 1.844 1.345 1.470 1.036 2.361 1.497

Fig.14 4th row NIQE 3.202 2.746 3.080 2.691 2.992 3.256 3.220 2.890 2.684

FADE 1.198 0.354 0.239 0.245 0.277 0.348 0.756 0.335 0.325

DHQI 57.765 65.839 63.462 64.589 68.482 64.655 61.697 62.294 65.793

e - 1.582 1.098 0.923 1.006 0.770 1.025 0.372 1.086

r̄ - 1.531 1.572 1.603 1.633 1.815 1.136 1.373 1.833

Fig.14 5th row NIQE 2.406 2.542 2.558 2.299 2.463 2.482 2.288 2.943 2.310

FADE 3.063 0.819 1.202 1.512 1.291 1.342 1.722 0.672 1.095

DHQI 49.416 51.726 59.273 58.234 58.645 49.443 56.159 60.620 61.208

e - 0.519 0.428 0.219 0.332 0.876 0.222 1.291 0.776

r̄ − 1.472 1.149 1.372 1.418 1.970 1.189 2.065 1.855

Fig.14 6th row NIQE 2.339 2.559 2.448 2.426 2.435 2.840 2.566 2.685 2.186

FADE 2.421 0.677 0.659 1.353 0.763 1.198 1.253 0.328 0.685

DHQI 51.203 58.364 65.432 58.346 66.225 50.416 60.288 65.607 67.575

e - 0.844 0.710 0.643 0.577 0.575 0.572 0.417 0.776

r̄ − 1.628 1.488 1.791 1.570 1.734 1.426 1.655 1.828

Fig.14 7th row NIQE 2.386 2.455 2.534 2.642 2.395 2.516 2.423 2.118 2.658

FADE 1.291 0.417 0.399 0.523 0.503 0.551 0.616 0.486 0.362

DHQI 53.121 68.799 70.730 66.472 69.174 67.113 68.061 68.136 71.976

quality into four parts. As the natural images does not

have images with haze, the metrics are almost blind quality

measurements. Initially, we apply a blind assessment metric

derived in [47], which measures the improvement by the

ratios of the newly visible edges and gradient magnitudes.

The newly visible edges and the ratio of the gradient norms

over edges are denoted by the indicators e and r̄, respectively.

The larger values of e and r̄ indicates a better restoration

of haze. We adopted natural image quality evaluator (NIQE)

[48] to measure whether the results distorted while dehaz-

ing. The NIQE indicator measures the quality of the image

using the features from natural scene statistics (NSS). Low

values of NIQE indicates that the output image has lower

distortions and distributions similar to NSS. The indicator

FADE is calculated using all the experimental images with

various algorithms, as we chose FADE for changing the haze

density. Finally, to measure the improvement of the dehazing

algorithm, we apply the recently proposed indicator to the

overall dehazing quality index (DHQI) [49]. DHQI calculates

the overall dehazing quality of the algorithms with haze

removing features, structure-preserving features, and over-

enhancement features which are the key aspects of dehazing.

High DHQI values indicate better restoration of the hazy

image. Table 3 calculates the five assessment criteria for the

images in Figs. 12 and 13. The numbers highlighted the

darkest, second darkest, and third darkest denote the highest,

second-highest, and third-highest performances, respectively,

similar to Table 2.

Table 3 shows that in most cases, the proposed method

exhibits the highest performance for all four haze types.

While DCP presents the highest performance for e, PMHLD

shows the best results among the conventional methods.

This indicates that the DCP-based method and PMHLD

perform better than other conventional methods in terms of
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TABLE 5. QUANTITATIVE MEASUREMENT RESULTS in terms of e, r̄, NIQE, FADE, and DHQI on various image sets

Metrics hazy DCP CAP DEFADE DehazeNet AOD-Net AMEF PMHLD proposed

e - 1.323 1.208 0.806 1.082 0.972 0.457 1.189 1.387

r̄ - 1.548 1.392 1.719 1.527 1.845 1.201 1.840 1.856

NIQE 2.813 3.000 2.922 2.918 2.836 3.105 2.844 2.892 2.795

FADE 2.156 0.655 0.854 0.843 0.856 0.995 1.286 0.449 0.639

DHQI 51.012 55.443 61.668 59.264 62.959 52.014 58.453 60.862 63.085

new visible edges and haze density. However, Table 3 also

validates that the results of the conventional methods exhibit

lower quality in terms of NSS after dehazing, except for the

proposed method. The PMHLD method exhibits the highest

performance among the conventional methods for the DHQI

index in Figs. 12 and 13. The proposed method exhibits the

second highest performance in the overall quality measure-

ments except r̄. This indicates that the newer algorithms are

performing better and the newer metrics may be suitable

for recent algorithms. This result reveal that the proposed

algorithm not only aids in improving the performance of

the vision algorithm, but also demonstrates high dehazing

performance quantitatively.

As presented in Table 4, the highest performance among

dehazing methods depends on the input image. The image

set in Fig. 14 is composed of the road scenes with different

image acquisition angle, railroad scene, and sidewalk with

people. DCP shows better performance for the new visible

edges, with less haze density. However, DCP exhibits low

quality with NIQE and DHQI, caused by the over-saturation

and noise boosting at the sky region of the DCP. Despite

CAP presents a stable result and high value in DHQI, it does

not produce a higher result than other algorithms in the new

visible edge. However, it performs better than other methods

in scenes that include railroads. DEFADE performs the best

among conventional methods, in which the visible edge in-

creases, the NIQE does not increase compared to the hazy

image, and the haze density decreases in real-world image.

However, it does not produce better performance than the

proposed method because the restoration of the area where

dense haze exists is low. Despite Dehazenet exhibiting high

performance in DHQI, image darkening worsens the perfor-

mance compared to other conventional methods in terms of

the new visible edge and contrast. PMHLD exhibits a good

performance for FADE and DHQI, but it has a limitation in

dense haze removal. The metric for new visible edges is not

high for PMHLD. Although AMEF does not generate artifact

such as halo, the quantitative measurements of AMEF are not

higher than those of the conventional methods. The proposed

method demonstrates a better performance for images with

haze acquired from the top view of the road and sidewalk

with people. However, the proposed method has a lower

quality index for the scene with a railroad because it has a

prior with road scenes.

Finally, we select 150 haze images from dataset and real-

world images mentioned in IV and restore all images using

the conventional methods including the proposed methods.

Table 5 shows the average of each quality metrics to measure

the dehazing performance. Table 5 indicate that the proposed

method outperforms the conventional methods in terms of

new visible edge, blind image quality from NSS, density

of haze, and the overall dehazing quality. The experimental

results validate that the proposed method can be extended to

general haze images as well as haze with road images.

V. CONCLUSION

In this paper,we propose a novel haze removal algorithm

using a multiple scattering model. Unlike the most of the ex-

isting approaches are based on the single scattering model, or

spatially invariant blur kernel, we proposed a spatially variant

atmospheric point spread function with superpixel algorithm.

Moreover, the generalized normal distribution is employed to

model the physical blur kernel caused by multiple scattering,

atmospheric point spread function. We define the blur kernel

of each region with three different prior for characteristics of

the road scenes: the angle norm factor, gradient value, and

the modified angle norm factor. To prevent artifacts from

edges and remove noise, the total variation regularization

is adopted. Experimental results indicate that the proposed

method can be applied to improve the performance of the

vision based algorithm for road scenes. The proposed method

evaluated using subjective assessment as well as objective

measures. The comparison results indicates that the proposed

method can achieve better results than the other state-of-the-

art dehazing algorithms quantitatively and qualitatively.
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