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Abstract
A fast and novel method for single-image reconstruction using the super-resolution (SR) technique has been proposed in
this paper. The working principle of the proposed scheme has been divided into three components. A low-resolution image
is divided into several homogeneous or non-homogeneous regions in the first component. This partition is based on the
analysis of texture patterns within that region. Only the non-homogeneous regions undergo the sparse representation for SR
image reconstruction in the second component. The obtained reconstructed region from the second component undergoes a
statistical-based prediction model to generate its more enhanced version in the third component. The remaining homogeneous
regions are bicubic interpolated and reflect the required high-resolution image. The proposed technique is applied to some
Large-scale electrical, machine and civil architectural design images. The purpose of using these images is that these images
are huge in size, and processing such large images for any application is time-consuming. The proposed SR technique results
in a better reconstructed SR image from its lower version with low time complexity. The performance of the proposed system
on the electrical, machine and civil architectural design images is compared with the state-of-the-art methods, and it is shown
that the proposed scheme outperforms the other competing methods.

Keywords Super resolution · Sparse representation · Prediction model · Image reconstruction · Patch

1 Introduction

A high-resolution image is always desirable in most digi-
tal image processing applications such as office automation,
medical imaging, remote sensing, and video surveillance. A
high-resolution image gives a better appearance and better
classification of image regions. The image resolution means
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the scene area is represented by a single pixel, and higher
resolution (HR) refers to a small area resulting in more spa-
tial image details. This resolution of an image depends on
the camera device used during image acquisition. There are
various issues to obtaining a high-resolution image using
hardware devices. However, algorithmic image reconstruc-
tion techniques are more promising for bringing HR images
from low-resolution (LR) ones.

We may get the HR images from observed LR images
by suppressing the degradation introduced during image
acquisition and increasing the high-frequency components.
The process is referred to as Super-Resolution (SR) tech-
nique. Moreover, during the SR process, the non-redundant
information in LR images is combined with domain-specific
knowledge to create an HR image. One commonly used
approach to SR is single-image interpolation, which is used
to increase the image size. In this case, no additional infor-
mation is provided, and hence, the quality of the HR image
is limited due to the nature of the problem. We adopt here
the patch-based (or exemplar-based) method for SR, where
an LR image IL is partitioned into several patches, and then
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each LR patch is replaced by its corresponding HR patch to
reconstruct the HR image, say, IH . Various methods differ
mainly due to: (1) How to partition IL into LR patches; (2)
How to generate or select HR patch corresponding to a given
LR patch; (3) How to combine HR patches to reconstruct IH .

The objective of this problem domain is to obtain the
best possible SR image and accept the SR image as quickly
as possible. The solution to this problem depends upon
available single LR images or multiple LR images. So, the
methods of SR technique are categorized into single-frame
SR and multi-frame SR techniques. Moreover, the single-
frame SR algorithm is also categorized into two approaches:
(a) interpolation-based method and (b) patch-based method
(Milanfa 2010).

Most of these methods use the single-frame and the patch-
based super-resolution techniques to reconstruct HR images
fromLR images. Thesemethods have achieved better perfor-
mance in the research area of image super-resolution. From
the great success of this single-frame and patch-based SR
method (Yang et al. 2010), in this paper, patches are extracted
from the input image I . Then, the implementation focuses on
the recovering SR version of the given low-resolution version
of I . To capture the significant co-occurrence prior and speed
up the process,we obtain some representation from the image
patch pairs extracted from HR and LR images. These repre-
sentations are the first- and second-order gradients from each
patch.

The contributions of the proposed work are as follows:

• To speed up the super-resolution (SR) image reconstruc-
tion, the LR patches are classified into homogeneous and
non-homogeneous groups based on the features extracted
from each patch. If an LR patch belongs to the non-
homogeneous group, the proposed SR method is applied
to obtain its HR patch; otherwise, the bi-cubic interpola-
tion method is applied on the homogeneous patches.

• For the classification of homogeneous and non-
homogeneous LR patches, an unsupervised clustering
technique has been employedon the texture features com-
puted from the grey-level co-occurrence matrices of the
image patches.

• In the training phase, the features extracted from the
LR and HR patch pair of IL and IH undergo a sparse
representation to generate Dictionary. We have adopted
this sparse representation using Dictionary, as a recent
result suggests that HR signals’ linear relationships are
well recovered from their lower-dimensional projection
obtained from sparse representation. Moreover, image
patch-based sparse representation plays an important role
in regularizing SR ill-posed problems with effectiveness
and robustness properties.

• The obtained HR image patches are fed to a prediction
model to produce refined SR image patches.

The organization of this paper is as follows: Sect. 2 dis-
cusses some related works. Section 3 describes the proposed
method with a detailed discussion of each component of the
proposed system. The experimental results and discussions
have been demonstrated in Sect. 4. Section 5 concludes this
paper.

2 Related work

The interpolation-based methods such as Bilinear or Bicubic
interpolation applied on smooth images with some jagged
and ringing artefacts to exploit the natural image prior that
results better results (Dai et al. 2007; Sun et al. 2008). The
patch-basedmethods locally capture the prior co-occurrences
between LR and HR image patch pairs. Then, it employs a
large database of LR and HR patch pairs and uses a learning
mechanism for the corresponding mapping between the LR
and HR image patches that are applied to a new LR image
to reconstruct its most likely HR version (Yang et al. 2010;
Glasner et al. 2009). Generally, these methods are based on
the image edge prior or image gradient prior (Sun et al. 2008).
The objective of this kind of method is to magnify the image
so that the edge sharpness and the texture details within the
image are preserved. Natsui and Nagao (2016) proposed a
single-frame SR technique using multiple graph-structured
programs based on Cartesian Genetic Programming, which
is one of the evolutionary methods like genetic algorithms.
Lai et al. (2012) proposed a method for single-frame SR
technique, where a total variation regularization was used
to minimize the iterative back-projection-based SR recon-
struction error by suppressing the chessboard and ringing
artefacts at the time of acquiring the high-resolution image.
Dang and Radha (2017) proposed a single-image SR tech-
nique using Tangent Space Learning of high-resolution patch
manifold, which is based on the linear approximation of HR
patch space using sparse subspace clustering algorithms. A
method for compressed sensing reconstruction method with
single plane wave transmission for super-resolution of ultra-
sound images had been proposed by Shu et al. (2018). A
multi-frame SR technique based on the fusion of multiple
low-resolution images captured at Visual Wavelength and
Near-Infrared lighting conditions with different camera posi-
tions for synthesizing HR colour images had been proposed
by Honda et al. (2018).

A well comprehensive survey for super-resolution of bio-
metric images such as the face (2D+3D), iris, finger-print
and gait based on operation domain (spatial and frequency),
singe-frame, multi-frame, reconstruction, learning, feature
domain and deep-learning-based SR techniques had been
discussed by Nguyen et al. (2018). Akyol and GöKmen
(2012) have proposed a method for face super-resolution
by enhancing the shape and texture information of faces. A
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multi-channel constraint-based image super-resolution tech-
nique that has the capability for collaborative representations,
clustering, multilayer mapping relationships to reconstruct
HR images from LR images had been proposed by Cao and
Li (2018). Zhao et al. (2017) proposed a method for SR tech-
nique where the adaptive sparse coding had been employed
by establishing the regularization parameters with integrat-
ing correlation and sparsity terms in the regularization. Their
SR method modulates the collaborative representation and
the sparse representation. The CNN-based architectures with
a subpixel network have been considered for the resolu-
tion enhancement of 2D cone-beam CT image slices of
ex vivo teeth in Hatvani et al. (2018). A novel dehaz-
ing model for remote sensing images has been proposed
bySingh and Kumar (2018a). Deep Learning and Trans-
fer Learning-Based Super-Resolution Reconstruction from
Single Medical Image has been proposed byZhang and An
(2017). A deep learning framework based on a generative
adversarial network to perform super-resolution incoherent
imaging systems has been proposed in Liu et al. (2019).
Metaheuristic-based deep COVID-19 screening model from
chest X-ray has been proposed in images (Kaur et al. 2021).
Further, a multi-objective differential evolution-based deep
neural networks had been employed for multi-modality med-
ical image fusion technique by Kaur and Singh (2021).
Singh et al. had built a model for defogging of road images
using gain coefficient-based trilateral filter (Singh andKumar
2018b).

3 Proposedmethodology

The proposed super-resolution (SR) technique is applied
mainly to reconstruct the high-resolution (HR) image from
the low-resolution (LR) image of electrical circuit draw-
ings using the single-frame and patch-based super-resolution
technique. The proposed method can also be applied to
other drawings, such asmechanical drawing and architectural
drawing. We have done some experiments in this direction
to see the performance of the proposed method.

The proposed method has three main phases: (1) In the
first phase, we partition m-training images ILs into several
patches. Then, the patches are divided into two clusters based
on the homogeneous/non-homogeneous texture pattern using
the k-means clustering algorithm. Then, classification of an
LR patch of an individual LR image IL is done by comparing
its GLCM texture features with that of the cluster centres; (2)
In the second phase, the bicubic interpolation (Hwang and
Lee 2004) (i.e. no super-resolution is applied on it) is applied
on the homogeneous patches, while the non-homogeneous
patches undergo for sparse representation based SR method
followed by statistical prediction model based algorithms;
(3) Here, the colour image I is transformed to its (Y ,Cb,Cr )

colour channel and only luminance channel (Y ) is used in the
first and second phase. The remaining Cb, Cr channels are
interpolated using the bi-cubic interpolation technique and
are combined with the obtained HR Y -channel in the third
phase. A brief overview of the proposed system is shown in
Fig. 1.

3.1 Preprocessing

Duringpreprocessing, (R,G, B)of each input low-resolution
(LR) image IL is transformed to (Y ,Cb,Cr ) colour chan-
nel, and super-resolution is performed only on Y-channel
LR image to obtain the Y-channel HR (High Resolu-
tion) image. Here, we have employed the patch-based SR
(Super-Resolution) technique. Hence, a patch wn×n with
overlapping of p pixels both the horizontal and vertical
directions is considered from IY . Then, Gray-level Co-
occurrences Matrix (GLCM) texture features (Umer et al.
2016) Fwi ∈ R

d×1 are computed from each wi , i.e. IY
gives (Fw1 , · · · ,FwN ) ∈ R

d×N , where N be the number
of patches and d is the number of texture features from
each patch. Now, k-means clustering algorithm is applied
on GLCM texture features collected from m-training IY
images to obtain a code-book C ∈ R

d×2 considering two
classes (k = 2): homogeneous and non-homogeneous. Here,
the usefulness of k-means clustering algorithm are: (1) It
can well differentiate between the homogeneous and non-
homogeneous patterns within the image based on GLCM
texture features computed from patches; (2) It takes lesser
time for finding the dictionary of discriminate patches; (3)
The other clustering algorithm can take more time with bet-
ter features. At the same time, the k-means provides an
excellent pre-clustering technique and reduces the spaces
between clusters into disjoint smaller sub-spaces better than
the other clustering algorithms. For a given image IY , the
feature vectorFwi ∈ R

d×1 corresponding to eachwi is com-
pared with C ∈ R

d×2 using minimum distance classifier to
predict whether wi has homogeneous or non-homogeneous
region. The non-homogeneous wi is considered as LR (yi )
and undergoes for super-resolution technique. In the next sec-
tion, we discuss the super-resolution technique using sparse
representation.

3.2 SR using sparse representation (Case-1)

Sparse representation is a powerful technique for represent-
ing, compressing, and processing high dimensional signals in
low dimensional space. The classes of signals such as images
and audio can be modelled through sparse representation
concerning their fixed bases. Effective and efficient convex
optimization or greedy pursuit algorithms are available for
computing those representations with high fidelity. These are
the main reasons for a successful and wide use of sparse rep-
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Fig. 1 Data flow diagram of the
proposed system

resentation (Wright et al. 2010). So, the sparse representation
has been extensively used in many computer vision tasks,
such as super image resolution, image de-noising, image
inpainting, motion and data segmentation, image classifi-
cation, and face recognition. In most of these applications,
using sparsity as prior, sparse representation outperforms the
state-of-the-art results.

We have employed patch-based sparse representation
for single-image super-resolution (SR) in this work. How-
ever, the non-overlapping patch-wise operation may cause
block artefacts; hence, overlapping patches are employed to
overcome this problem. The sparse representation provides
high-quality image reconstruction for SRalgorithmsbyusing
overlapping patches over the image (Toutounchi et al. 2017).
On the other hand, overlapping patches leads to more time
consumption. To overcome this, we have adopted only a tiny
overlap between patches. To reduce the computational cost
further, we have employed a technique for patch selection
based on its homogeneous or non-homogeneous texture pat-
tern (discussed above) and applied the sparse representation
only on those patches that are non-homogeneous. During
sparse representation, we consider LR patches (yi ) from Y-
channel of LR image Iy and then extract features from each
yi .

In the training phase, more precisely during Dictio-
nary learning, we take high-resolution (HR) image, say, Ix
from the application domain and deliberately form its low-
resolution (LR) version, say, Iy through the appropriate
down-sampling method. If Ix is a gray-level image, so is
Iy . However, if we had to handle colour images, then con-
sider that Ix and Iy are corresponding Y-channel images.
Different features can be extracted from the LR patches
which are mentioned in the existing literature. Freeman et al.
(2000) extracted edge-based information fromLRpatches by
using a high pass filter. Chang et al. (2004) and Yang et al.
(2010) have extracted first- and second-order gradients from
LR and HR patches. In this work, we also use first (g1 =

[−1, 0, 1], gT1 ) and second-order (g3 = [1, 0,−2, 0, 1], gT3 )
gradients of patches. These filters are directly applied to the
training images (LR Iy and HR Ix ), which yields four gra-
dient maps at each location. Then, any patch is represented
in terms of feature vector corresponding to its gradient map.
To track the correspondence between HR (obtained origi-
nal image) and LR patches (down-sampled image), feature
vectors of xi and yi are concatenated to form vi .

The above-mentioned feature vectors are used to create
two dictionaries Dl and Dh corresponding to LR and HR
patches, respectively,whichwill be subsequently exploited to
obtain sparse representations of LR and HR patches, respec-
tively.

Since sparse representation is an ill-posed problem,
we take the help of constraints to solve this problem.
First, the image observation model is considered where a
low-resolution image Iy is obtained from the given high-
resolution image Ix , such that

Iy = μHIx (1)

where μ is the down-sampling factor and H is the blurring
filter. Since Eq. (1) represents a many-to-one mapping, for a
given low-resolution image Iy infinitely many solutions of
Ix can be obtained by solving Eq. (1). To resolve this issue,
we consider that each patch x ∈ Ix can be represented as a
sparse linear combination of dictionary Dh . Similar concept
is true for y ∈ Iy also. Or, in general, the vector v (= [x | y])
can be represented by a sparse combination of dictionary D,
which in turn would be concatenation ofDh andDl , i.e.D =
Dh | Dh . The vector v contains various features including
pixel intensities ofHRandLRpatches concatenated together.
Hence,

v = Dα (2)

for some coefficient vector α ∈ RK , where K is the number
of words or elements in the Dictionary and ||α||0 ≤≤ K ,
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which is a sparsity constraint. Note that both D and α are
unknown and are learned simultaneously by optimizing the
following equation.

min ||α||0 s.t. ||Dα − v||22 ≤ ε (3)

Thus, the above mentioned [Eq. (3)] sparse representa-
tion α corresponds to both HR and LR patches together,
which have spatial compatibility between the neighbours.
So using this α for x , the entire HR image Ix is regularized
and refined using the reconstruction constant. For this pur-
pose, local modelling for sparsity prior has been introduced
for local patches to recover some HR patch x which may be
lost during processing.

During local modelling, the HR patch xi is derived for
the corresponding LR patch yi . For these two dictionaries,
Dl and Dh is needed separately. Recall that dictionary D is
generated, through sparse model of the patches, from vector
v (= [x | y]). This suggests that dictionary D can straight-
away be decomposed into Dl and Dh . Also note that here
both these dictionaries Dl and Dh have the same sparse rep-
resentation α (i.e. αl or αh are same) for each yi and xi patch
pairs. And this suggests the method for generating HR patch,
given the test LR patch and two dictionaries. For each input
LR patch yi , the corresponding sparse representation α is
obtained based on Dl . Now, the patch bases of Dh are com-
bined according to α to generate high-resolution patch xi .
This solution may be mathematically formulated as

min ||α||0 s.t. ||Dlα − Fy||22 ≤ ε (4)

where F is the feature extraction operator that includes inten-
sity mapping of the patch along with first- and second-order
spatial derivatives of the patch. Solving Eq. (4), we obtain a
α to represent y in terms of the dictionary Dl . Now, same α

is used to generate xi based on Dh . So we have

x = Dhα (5)

The problem defined in Eq.(4) is NP-hard problem
(Aharon et al. 2006), and it says that the obtained sparse
representation α could be sufficiently sparse. This can be
efficiently approximated by introducing l1-norm in place of
l0 norm as follows:

min ||α||1 s.t. ||Dlα − Fy||22 ≤ ε (6)

Now, the regularization parameter is introduced in Eq. (6)
to obtain following loss function

J (α) = min
α

||Dlα − Fy||22 + λ||α||1 (7)

Here, the term λ balances the solution’s sparsity and the
approximation’s fidelity to y. The formulation in Eq. (7) is

Lasso (Yang et al. 2012) optimization problem, which is a
linear regression regularization with l1-norm on α. In this
work, we obtain corresponding HR patches for SR image to
only those LR patches which are non-homogeneous regions.
So, during processing, each non-homogeneous region is con-
sidered as yi image, and then, a patch slides in a raster scan,
i.e. horizontally and then vertically. So, there may be the
possibility of overlapping patches for the ambiguous region.
So, to check closely the previously computed HR patch xi
from the SR reconstruction Dhα of y, we modify Eq.(7) as
follows:

min ||α||1 s.t. ||Dlα − Fy||22 ≤ ε , ||PDhα − w||22 ≤ ε

(8)

wherew contains the value for the particular reconstructed
HR image on overlap and P is a matrix for overlap region
between the target patch and the previously computed HR
patch. The optimization in Eq.(8) is formulated as

min
ᾰ

||D̂ᾰ − ŷ||22 + λ||ᾰ||1 (9)

where D̂ = [Dl , βPDh]T and ŷ = [Fy, βw]T . The
parameter β = 1 is the control of trade-off between the
matching of LR input y and finding a HR patch x which
is compatible with its neighbour. The final optimal solution
of Eq.(9) is ᾰ, and the final HR patch x̆ is computed as

x̆ = D̂ᾰ (10)

The HR patch x̆ obtained from Eq. (10) has much more
better resolution then the LR patch y.

3.3 SR using predictionmodel (Case-2)

Now, the obtained HR patch x̆ undergoes a predicted model
which generates much higher resolution HR patch x̂ consid-
ering the previously obtained x̆ as LR patch y. Here, also
two dictionariesDl andDh have been used. The objective of
this prediction model is to predict the missing HR details for
each LR patch y (here y = x̆) via Dl and Dh , having dif-
ferent elements. Then, a statistical prediction model is being
utilized for prediction the HR representation vector αh of
each patch from its corresponding αl . In above Case-1 tech-
nique, the sparse coefficient α is similar for αl = αh . To
introduce more sparsity in αl , zl ∈ {−1, 1}ml is computed
from αl which is as follows‘

zl, j = { 1, αl, j > ρ,∀ j = 1, · · · ,ml

0, otherwise
(11)

where ρ is a threshold which adaptively changes for each
LR patch and is computed based on following criterion
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Fig. 2 Some generic HR images

Fig. 3 Result of the proposed
SR technique using sparse
representation

Fig. 4 Result of the proposed
SR technique using sparse
representation followed by
prediction model

Table 1 Comparative performance for Case-1 and Case-2 SR tech-
niques for generic images using PSNR and SSIM

Butterfly Girl Pepper Starfish Zebra

Case-1 32.92 41.97 34.04 35.39 31.02

0.8751 0.9579 0.8380 0.9148 0.6839

Case-2 35.74 45.01 34.89 38.83 31.48

0.9412 0.9754 0.8772 0.9605 0.7344

∑ml
j=1 |αl, j |2 for (|αl, j ≤ ρ|) ≤ nλ2, where λ is a pre-

specified parameter. So, the sparsity patterns zl = {−1, 1}ml

for LR patch and zh = {−1, 1}mh for the HR patch capture
the relationships between these two patterns and for this a
statistical prediction model is required which is described in
the following section.

To capture the statistical dependencies within the sparsity
pattern zl = {−1, 1}ml and zh = {−1, 1}mh , the restricted
Boltzmannmachine (RBM) (Sutskever et al. 2009) technique
is employedwhichmay be described by the conditional prob-
ability (Peleg and Elad 2014) as follows:

p(zh/zl) = 1

y
exp(bTh zh + zTh Whlzh) (12)

where b ∈ R
m is the bias vector and W ∈ R

mh×ml is
an interaction matrix between zl = {−1, 1}ml and zh =
{−1, 1}mh . Thus,

p(zh/zl) =
mh∏

j=1

φ((bh, j + wT
hl zl)zh, j ) (13)

where φ(s) = 1
(1+exp(−2s)) is the sigmoid function and is

due to the elements of zh which are statistically independent
of zl . RBM is an exponential model that works with binary
vectors, and it leads to the conditional marginal probability
for each element of zh in zl such that

p(zh, j = 1/zl) = φ(bh, j + wT
hl zl), ∀ j = 1, · · · ,mh (14)

The obtained zh is employed to compute the HR co-
efficient αh using αl based on the below criterion:

αh, j = {G j , zh, j = 1
0, zh, j = −1

(15)

where G ∈ R
mh is the Gaussian distribution, i.e. Gαl ∼

N (Chlαl ,
∑

hl), where Chl ∈ R
mh×ml and

∑ +ml ∈
R
mh×mh . This leads to the following conditional expectation:

E[αh, j |zh, j = 1, αl ] = cThlαl ,∀ j = 1, · · · ,mh (16)

The models defined in Eq.(15) and (16) show the linear
mapping of αl to αh and it happens when zh is known. In
the case where relation between αl and zl is nonlinear, then
the final estimate of αh using αl , zh , zl may be given by an
MMSE estimator as follows:

123



Single-image reconstruction using novel super-resolution technique for large... 8095

Fig. 5 Img1, Img2, Img3, Img4, Img5, Img6, Img7, Img8 are large-scaled electrical circuit images, whereas Img9, Img10, Img11, Img12,
Img13, Img14, Img15, Img16 are the large-scaled machine and civil layout design images
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α̂h, j = E[αh, j |zl , αl ]
=

∑

zh∈� j

E[αh, j |zh, zl , αl ]P(zh |zl , αl)

=
∑

zh∈� j

E[αh, j |zh, j = 1, αl ]P(zh |zl))

= E[αh, j |zh, j = 1, αl ]P(zh, j = 1|zl))
= (cThlαl)φ(bh, j + wT

h, j zl) (17)

From the above MMSE estimator (Eq. (17)), the obtained
αh is not only sparse but also leads to better signal recovery
(Peleg and Elad 2014). Moreover, MMSE estimator (Baum
and Eagon 1967) can be represented as a product of linear
terms with respect to αl and a nonlinear term concerning zl .
The final predicted HR patch x is given by

x = Dh α̂h (18)

3.4 Initial validation of proposedmethods

Since we are more acquainted with natural images (or
scenes), the above-discussed super-resolution (SR) tech-
niques (both Case-1 and Case-2) are applied on generic
images like Butterfly, Girl, Pepper, Starfish and Zebra as
shown in Fig. 2. The effect of SR technique using sparse
representation (Case-1) is shown in Fig. 3; whereas that of
SR technique using sparse representation followed by pre-
diction model (Case-2) is shown in Fig. 4. Moreover, the
performance is also shown in Table 1 in terms of Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) (Hore and Ziou 2010) indexes. The Table shows that
the performance of Case-2 is much better than Case-1.

Note that the collection of HR and LR patch pairs, col-
lected from natural image pairs, undergoes a dictionary
learning process to obtain Dl and Dh . For this learning, we
have employed the parametric dictionary learning discussed
in Yang et al. (2010) and Peleg and Elad (2014).

4 Experimental results

This section presents and evaluates the performance of pro-
posed SR techniques when applied to engineering drawing
(i.e. line drawing) images in general and electrical circuit
drawings in particular.

4.1 Data used

We demonstrate the results of the proposed single-image
SR technique on electrical circuits, machine layout, and
civil architectural design images originally captured in a
high-resolution camera. These images are huge, and using

Table 2 Description for employed Image names and their sizes

Name Size Name Size

Img1 1700 × 2400 × 3 Img9 900 × 2100 × 3

Img2 1650 × 3050 × 3 Img10 600 × 900 × 3

Img3 1850 × 3600 × 3 Img11 600 × 900 × 3

Img4 2200 × 3300 × 3 Img12 1800 × 2400 × 3

Img5 750 × 1600 × 3 Img13 1200 × 1500 × 3

Img6 1100 × 1700 × 3 Img14 750 × 900 × 3

Img7 3500 × 4900 × 3 Img15 2100 × 3000 × 3

Img8 2500 × 3300 × 3 Img16 2400 × 3600 × 3

these images for any application is computationally time-
consuming onmoderate capacity machines. We keep only its
lower version (i.e. down-sampled version) and apply the pro-
posed super-resolution (SR) techniques whenever required
to speed up the process. Figure 5 shows the original version
of the electrical circuit images (Img1, Img2, Img3, Img4,
Img5, Img6, Img7, Img8), machine layout and civil archi-
tectural design images (Img9, Img10, Img11, Img12, Img13,
Img14, Img15, Img16). Table 2 provides the size of these
images in termsof (Rows)× (Columns)× (Channels).We
have applied the proposed method to these images and have
obtained the performance. These images are large-scaled
images and huge. Tomake the systemunderstandable, conve-
nient and comparablewith the other state-of-the-art methods,
we have manually cropped a small region from these images
(shown in Fig. 5) and considered them as original HR images
and then down-sampled each cropped region to its lower res-
olution images (shown in Fig. 5).

4.2 Results and discussion

During experimentation, each image I is converted to its (Y ,
Cb, Cr ) colour channels. Then, only Y-channel of LR image
(Iy) is considered to undergo to the proposed algorithm to
reconstruct Y-Channel of HR image Ix . Corresponding ICb

andICr are up-sampled and interpolated to be combinedwith
Ix and then, converted to RGB image. Now, a window wi of
size 50 × 50 slides over Iy with 50% overlapping of pixels
in horizontal and vertical direction picks up the patches of
same size. Then, GLCM (Umer et al. 2016) texture features
Fwi ∈ R

200×1 are extracted from each wi . The collection of
these texture features selected randomly fromm = 5 training
images are used to obtain a code-bookCB ∈ R

200×2 using k-
means clustering algorithm for evaluating the homogeneous
and non-homogeneous region for each wi ∈ Iy .

Any homogeneous patch wi does not undergo the pro-
posed SR technique. It is bicubic interpolated and converted
to its RGB version. The up-sampled patches are used to
form the high-resolution (HR) image. The non-homogeneous
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Fig. 6 Performance of the proposed SR technique using the dictionary pair (Dl ∈ R
25×512, Dh ∈ R

100×512), (Dl ∈ R
25×1024,Dh ∈ R

100×1024)
and (Dl ∈ R

25×2048, Dh ∈ R
100×2048, respectively
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Table 3 Performance of the
reconstructed SR image using
the proposed system with
respect to PSNR and SSIM
indexes

Img1, Img2, Img3, Img4, Img5, Img6, Img7, Img8

Dh ∈ R
512×100 33.82 40.52 32.64 31.22 31.56 31.17 32.65 32.85

0.8792 0.9197 0.8991 0.9287 0.9135 0.9149 0.9191 0.9372

Dh ∈ R
1024×100 35.82 42.52 34.38 33.40 33.52 32.31 32.47 35.08

0.8791 0.9298 0.8784 0.9181 0.9296 0.9203 0.9290 0.9191

Dh ∈ R
2048×100 40.84 46.52 39.89 38.63 38.89 37.59 36.51 40.11

0.9994 0.9999 0.9987 0.9982 0.9915 0.9928 0.9990 0.9991

Img9, Img10, Img11, Img12, Img13, Img14, Img15, Img16

Dh ∈ R
512×100 33.45 29.55 28.71 26.46 27.70 27.84 29.68 32.11

0.8728 0.8298 0.6911 0.6534 0.6953 0.7154 0.7102 0.8617

Dh ∈ R
1024×100 36.96 32.90 31.13 31.41 30.18 31.69 30.40 33.89

0.8883 0.8454 0.7241 0.7500 0.7149 0.7948 0.7279 0.8821

Dh ∈ R
2048×100 42.19 37.65 36.77 36.85 40.33 40.97 39.58 42.01

0.9431 0.9296 0.8749 0.8483 0.9502 0.9490 0.9244 0.9969

patches wi undergo the proposed SR technique. Here,
during the super-resolution technique, we consider each
non-homogeneous patch wi as an LR image Y and its recon-
structed SR patch X ′ is utilized to form the final HR image.
Note that for each non-homogeneous LR region Y , we apply
first-order gradient (g1, g2) and second-order gradient (g3,
g4) features which yield four gradient maps at each location.
Then, a window w5×5 with 50% overlapping is considered
over each feature map of Y . Now, feature vector with respect
to each position of w5×5 is extracted from four feature map
which are concatenated to obtain a feature vector for w5×5

to obtain its representation as yi ∈ R
100×1. Then, the joint

feature learning technique for the dictionary has been per-
formed on the concatenated HR and LR patch pair features
which derive Dl ∈ R

25×K and Dh ∈ R
100×K , dictionary

for the corresponding HR and LR patch pairs, respectively.
Here, for each dictionary Dh or Dl , K = {512, 1024, 2048}
items are considered. During dictionary learning, the colour
images are transformed from the RGB to YCbCr channels
and then, features are extracted from the corresponding Y-
channel only.

The i-th LR patch Yi corresponding to the non-
homogeneous region is used to obtain it’s SR patch by
employing the proposed SR technique via sparse repre-
sentation technique described in Sect. 3.2. The obtained
Xi undergoes to the statistical prediction model described
in Sect. 3.3. The performance of the proposed SR tech-
nique for electrical circuit images Img1, Img2, Img3, Img4,
Img5, Img6, Img7, Img8 and for machine and civil layout
design images Img9, Img10, Img11, Img12, Img13, Img14,
Img15 and Img16 using the dictionary pairs (Dl ∈ R

25×512,
Dh ∈ R

100×512), (Dl ∈ R
25×1024, Dh ∈ R

100×1024) and
(Dl ∈ R

25×2048, Dh ∈ R
100×2048) are shown in Fig. 6,

respectively.

Table 3 shows the performance of the proposed system in
terms of PSNR (first row for each image) and SSIM (second
row for each image) indexes for the images shown in Fig. 6
using the dictionary pairs (Dh ∈ R

25×512,Dl ∈ R
100×512),

(Dh ∈ R
25×1024, Dl ∈ R

100×1024) and (Dh ∈ R
25×2048,

Dl ∈ R
100×2048), respectively.

From the performance, as shown in Table 3 using different
dictionary pairs in Fig. 6 for electrical circuit, mechanical,
civil and architectural design images and also from Table. 3,
it is observed that for dictionary pair (Dh ∈ R

25×2048,
Dl ∈ R

100×2048) produces slightly better reconstructed SR
images. For further comparison of the proposed system
with other competingmethods such asBicubic-Interpolation,
Zhang et al. (2015), Marquina and Osher (2008), Purkait and
Chanda (2012) and Yang et al. (2010), we have employed
(Dl ∈ R

25×2048,Dh ∈ R
100×2048) dictionary pair. Here, both

visual perception analysis (Figs. 7 and 8) and the quantita-
tivemeasures PSNRandSSIM (Table 4) have been employed
with the reconstructed SR image obtained from the compet-
ing method and the proposed one. The performance of the
proposed system with respect to visual information fidelity
(VIF) evaluation index [?] is also reported in Table 4 (Third
row) along with the PSNR and SSIM indexes. The perfor-
mance comparison with respect to these indexes shows the
superiority of the proposed system.

Bicubic-Interpolation iswidely used for data interpolation
on the two-dimensional regular grid. It is a relatively standard
technique in image interpolation with good results and low
complexity. Zhang et al. (2015) have given empirical studies
on the sensitivity of different single-image super-resolution
algorithms based on different blurring kernels.Marquina and
Osher (2008) proposed a convolutional model that uses the
total variation of the signal followed by the Bregman itera-
tive refinement procedure for single-image super-resolution.
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Fig. 7 Performance comparison of the proposed SR technique with the other existing state-of-the-art methods for Img1, Img2, Img3, Img4, Img5,
Img6, Img7 and Img8, respectively

Purkait andChanda (2012) hadmodelled a nonlinear regular-
izationmethodbasedonmultiscalemorphology for reserving
the edges for super-resolution (SR) image reconstruction.
Finally, Yang et al. (2010) had proposed an image super-
resolutionmethod using sparse representation technique only
where the sparse representation for each low-resolution patch

was used to get its coefficient as representation to obtain the
corresponding high-resolution patch. From Figs. 7 and 8, it
has been shown that the proposed system applied on images
has better reconstructed.

Here, Table 5 shows the comparison performance with
respect to time in Sec.. Since the proposed system and
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Fig. 8 Performance comparison of the proposed SR technique with the other existing state-of-the-art methods for Img9, Img10, Img11, Img12,
Img13, Img14, Img15 and Img16, respectively

method in Purkait and Chanda (2012) outperforms other
competing methods. Additionally, the performance of the
proposed method and method in Purkait and Chanda (2012)
is more or less the same even in some circumstances. It has
been observed that for some images, the proposed system
overcomes (Purkait and Chanda 2012). But due to some
experimental setup and might be in some tuning of parame-

ters, the proposed system will take lesser time than Purkait
and Chanda (2012). Moreover, the performance reported in
Table 4, it has been observed that the proposed system gives
outstanding performance in terms of PSNR, SSIM, and VIF
as compared to the methods reported in Table 5. Hence, the
proposed system outperforms other competing methods.
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Table 4 Performance
comparison of the proposed SR
technique with the other existing
techniques with respect to
PSNR (first-rows), SSIM
(second-rows), and VIF
(third-rows) indexes

Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8

Bicubic 34.83 38.02 39.36 36.36 37.81 37.22 35.86 40.29

0.9992 0.9997 0.9993 0.9986 0.9925 0.9947 0.9991 0.99917

0.4758 0.4477 0.4359 0.4623 0.4496 0.4547 0.4667 0.4278

Zhang et al. (2015) 37.68 37.70 34.75 32.72 35.66 36.73 32.81 36.88

0.9422 0.9656 0.9060 0.9021 0.8927 0.8652 0.9687 0.9769

0.4507 0.4505 0.4765 0.4943 0.4685 0.4591 0.4935 0.4577

Marquina et al. (2008) 41.36 45.77 43.25 38.76 38.55 38.16 35.92 39.82

0.9999 0.9997 0.9995 0.9993 0.9974 0.9997 0.9993 0.9993

0.4184 0.3796 0.4017 0.4412 0.4431 0.4465 0.4662 0.4319

Purkait et al. (2012) 38.00 45.04 42.99 39.07 39.15 36.54 37.29 40.90

0.9999 0.9997 0.9997 0.9997 0.9980 0.9998 0.9997 0.9997

0.4479 0.386 0.404 0.4385 0.4378 0.4607 0.4541 0.4224

Yang et al. (2010) 37.32 43.58 35.72 38.51 33.71 33.81 34.24 39.69

0.9994 0.9993 0.9972 0.9969 0.9910 0.9921 0.9972 0.9981

0.4539 0.3988 0.4679 0.4434 0.4856 0.4847 0.4809 0.433

Proposed 40.84 46.52 39.89 38.63 38.89 37.59 36.51 40.11

0.9994 0.9999 0.9987 0.9982 0.9915 0.9928 0.9990 0.9991

0.5907 0.5957 0.5899 0.5888 0.589 0.5879 0.5869 0.5901

Img9 Img10 Img11 Img12 Img13 Img14 Img15 Img16

Bicubic 30.08 32.09 31.44 31.09 33.87 31.41 29.17 33.89

0.8986 0.9170 0.9276 0.8725 0.8959 0.8991 0.8276 0.8951

0.5175 0.4998 0.5056 0.5086 0.4842 0.5058 0.5255 0.484

Zhang et al. (2015) 33.86 32.95 32.33 33.52 32.83 32.01 33.18 33.56

0.9666 0.9505 0.9089 0.8873 0.8280 0.9391 0.9030 0.9254

0.4843 0.4923 0.4977 0.4873 0.4933 0.5005 0.4903 0.4869

Marquina et al. (2008) 39.67 33.06 29.64 29.42 32.18 33.53 34.57 36.50

0.9983 0.8170 0.7969 0.7880 0.8143 0.8290 0.8978 0.9356

0.4332 0.4913 0.5214 0.5233 0.4991 0.4872 0.4780 0.4611

Purkait et al. (2012) 37.95 36.02 32.39 32.59 35.80 37.55 34.05 36.67

0.8995 0.8796 0.8491 0.8234 0.8926 0.8693 0.8494 0.9278

0.4483 0.4653 0.4972 0.4955 0.4672 0.4518 0.4826 0.4596

Yang et al. (2010) 33.05 33.43 36.28 32.05 32.18 33.43 37.25 37.65

0.8960 0.8931 0.8901 0.8385 0.8212 0.8492 0.8651 0.8835

0.5053 0.5023 0.4797 0.5132 0.5121 0.5023 0.472 0.4689

Proposed 42.19 37.65 36.77 36.85 40.33 40.97 39.58 42.01

0.9431 0.9796 0.9249 0.8983 0.9502 0.9490 0.9244 0.9969

0.5919 0.5879 0.5871 0.5872 0.5903 0.5908 0.5896 0.5917

5 Conclusions

This paper presents a novel method of single-image super-
resolution technique. The proposed scheme has three com-
ponents. In the first component, to speed up the process,
the input image is divided into several regions analysed into
homogeneous or non-homogeneous regions based on the tex-
ture pattern analysis in those regions. The non-homogeneous
region undergoes a sparse representation technique to get a

better-reconstructed HR region in the second component. In
the third component, the reconstructed HR region from the
second component undergoes a prediction model based on
the statistical modelling of sparse representation using the
Boltzmannmachine technique to get amore enhanced recon-
structed HR image. The homogeneous regions are bicubic
interpolated and reflect the outcome image. Experimental
results demonstrate that the proposed method better recon-
structed SR images for electrical, machine, and civil design
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Table 5 Average performance of the competing methods and the pro-
posed system in terms of time (S)

Name Time (S)

Zhang et al. (2015) 10.82

Marquina et al. (2008) 08.12

Purkait et al. (2012) 07.11

Yang et al. (2010) 10.24

Proposed 07.31

images. The comparison with the existing state-of-the-art
methods shows that the proposed system outperforms other
methods efficiently. The proposed approach might take some
time to generate super-resolution images for the larger-scaled
images. In the future, some deep learning models will be
employed to solve super-resolution problems for the vastly
scaled engineering design images.
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