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Abstract

We present an approach to separating reflection from a

single image. The approach uses a fully convolutional net-

work trained end-to-end with losses that exploit low-level

and high-level image information. Our loss function in-

cludes two perceptual losses: a feature loss from a visual

perception network, and an adversarial loss that encodes

characteristics of images in the transmission layers. We

also propose a novel exclusion loss that enforces pixel-level

layer separation. We create a dataset of real-world images

with reflection and corresponding ground-truth transmis-

sion layers for quantitative evaluation and model training.

We validate our method through comprehensive quantita-

tive experiments and show that our approach outperforms

state-of-the-art reflection removal methods in PSNR, SSIM,

and perceptual user study. We also extend our method to

two other image enhancement tasks to demonstrate the gen-

erality of our approach.

1. Introduction

Reflection from windows and glasses is ubiquitous in

the real world, but it is usually undesirable in photographs.

Users often want to extract the hidden clean transmission

image by removing reflection from an image. For exam-

ple, we may have been tempted to take photos through an

aquarium glass or skyscraper windows, but reflection can

often damage the image quality. Removing reflection from

a single image allows us to recover visual content with bet-

ter perceptibility. Thus, separating the reflection layer and

transmission layer from an image — the reflection separa-

tion problem — is an active research area in computer vi-

sion.

Let I ∈ R
m×n×3 be the input image with reflection. I

can be approximately modeled as the sum of the transmis-

sion layer T and the reflection layer R: I = T+R. Our goal

is to recover the transmission layer T given I , which is an

ill-posed problem without additional constraints or priors.

As the reflection separation problem is ill-posed, prior

works often require additional input images and hard-

crafted priors. A line of previous research uses multiple im-

ages as input or requires explicit user guidance [9, 27, 32].

Multiple images, however, are not always available in prac-

tice, and user guidance is inconvenient and error-prone. Re-

cent researchers proposed methods for reflection removal

from a single image [25, 21], but these approaches rely on

hand-crafted priors such as ghost cues and relative smooth-

ness which may not generalize to all images with reflec-

tion. More recently, CEILNet [5] uses a deep neural net-

work to train a model with low-level losses on color and

edges, but this approach does not directly enable the model

to learn high-level semantics which can be highly useful for

reflection removal. Low-level information is insufficient

for reflection separation when there is color ambiguity or

the model needs to ”recognize” objects in the image. For

example, in Figure 1, our model trained with perceptual

losses may have learned the representations of lamps and

faces, and thus correctly removes them from the input im-

age, while CEILNet fails to do so.

In this paper, we present a fully convolutional network

with perceptual losses that encode both low-level and high-

level image information. Our network takes a single image

as input and directly synthesizes two images: the reflec-

tion layer and the transmission layer. We further propose a

novel exclusion loss that effectively enforces the separation

of transmission and reflection at pixel level. To thoroughly

evaluate and train different approaches, we build a dataset

that contains real-world images and the ground-truth trans-

mission images. Our dataset covers diverse natural environ-

ments including indoor and outdoor scenes. We also use this

real-world dataset to compare our approach quantitatively

to previous methods. In summary, our main contributions

are:

• We propose to use a deep neural network with percep-

tual losses for single image reflection separation. We

impose perceptual supervision through two losses with

different levels of image information: a feature loss

from a visual perception network, and an adversarial

loss to refine the output transmission layer.

• We propose a carefully designed exclusion loss that

emphasizes independence of the layers to be separated

in the gradient domain.
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Input CEILNet [5] Our results

Figure 1: Results by CEILNet [5] and our approach on real-world images. The top row shows a real image from the CEILNet

dataset with a window reflecting a poster of a human face; the bottom row shows an image taken by ourselves, with a lamp as

the reflection. From left to right: the input images, CEILNet results and our results. Note that our approach trained to learn

both low-level and high-level image statistics successfully removes the reflection layers of the face and lamp, while CEILNet

does not.

• We build a dataset of real-world images for reflection

removal with corresponding ground-truth transmission

layers. This new dataset enables quantitative evalua-

tion and comparisons among our approach and exist-

ing algorithms.

• Our extensive experiments on real data and synthetic

data indicate that our method outperforms state-of-the-

art methods in SSIM, PSNR, and a perceptual user

study on Amazon Mechanical Turk. Our trained model

on reflection separation can be directly applied to two

other image enhancement tasks, flare removal and de-

hazing.

2. Related Work

Multiple-image methods. As the reflection separation

problem is ill-posed, most previous work tackles this prob-

lem with multiple input images. These multi-image ap-

proaches often use motion cues to separate the transmis-

sion and reflection layers [32, 9, 20, 28, 23, 6, 29, 10]. The

motion cues are either inferred from calibrated cameras, or

motion parallax that assumes the background and reflection

objects have greatly different motion fields. Some other

multi-image approaches include the use of flash and no-

flash image pairs to improve the flash image with reflec-

tion removed [1]. Schechner et al. [24] use a sequence of

images with different focus settings to separate layers with

depth estimation. Kong et al. [15] exploit physical proper-

ties of polarization and use multiple polarized images taken

with angular filters to find the optimal separation. More

recently, Han and Sim [10] tackle the glass reflection re-

moval problem with multiple glass images, assuming that

the gradient field in background image is almost constant

while the gradient field in reflection varies much more. Al-

though multiple-image methods have shown promising per-

formance in removing reflection, capturing multiple images

is sometimes impossible, for example, these methods can

not be applied to existing or legacy photographs.

Single-image methods. Another line of work considers

using a single image with predefined priors. A widely used

prior is the natural image gradient sparsity [19, 18] to find

minimum edges and corners for layer decomposition. The

gradient sparsity prior is also explored together with opti-

mal and minimum user assistance to better guide the ill-

posed separation problem [17, 27]. A recent work by Ar-

vanitopoulos et al. [2] uses the gradient sparsity constraint,

combined with a data fidelity term in the Laplacian space to

suppress reflection. However, all these approaches rely on

low-level heuristics and are limited in cases where a high-

level understanding of the image is needed.

Another prior for reflection separation is that the reflec-

tion layer is often out of focus and appears smooth. This

is explicitly formulated into an optimization objective by Li

and Brown [21], in which they penalize large reflection gra-

dients. Although the assumption of relative smoothness is

valid, their formulation can break down when the reflection

layer has high contrast. Wan et al. [31] propose a varia-

tion of this smoothness prior where depth of field is used as
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(a) Input (b) Without Lfeat (c) Without Ladv (d) Without Lexcl (e) Complete model

Figure 2: Visual comparisons on the three perceptual loss functions, evaluated on a real-world image. In (b), we replace

Lfeat with image space L1 loss and observed overly-smooth output. (c) shows artifacts of color degradation and noticeable

residuals without Ladv. In (d), the lack of Lexcl makes the predicted transmission have undesired reflection residuals. Our

complete model in (e) is able to produce better and cleaner prediction.

guidance for edge labeling and layer separation. Addition-

ally, Shih et al. [25] focus on a subset of the problem where

reflection has ghost effects, and use estimated convolution

kernel to optimize for reflection removal.

Fan et al. [5] recently propose a deep learning network,

the Cascaded Edge and Image Learning Network (CEIL-

Net), for reflection removal. They formulate reflection re-

moval as an edge simplification task and learn an intermedi-

ate edge map to guide layer separation. CEILNet is trained

purely with a low-level loss that combines the differences

in color space and gradient domain. The main difference

between CEILNet and ours is that they did not explicitly

utilize perceptual information during training.

Benchmark datasets. A benchmark dataset by Wan et al.

[30] was proposed recently for reflection removal. The au-

thors collected 1500 real images of 40 scenes in a controlled

lab environment by imaging pairs of daily objects and post-

cards, as well as 100 scenes in natural outdoor environments

with three different pieces of glasses. However, the dataset

has not been released publicly yet at the time of submission.

In order to evaluate among different models quantitatively

on real-world images, we collect a dataset of 110 real im-

ages with ground truth in natural scene environments.

3. Overview

Given an image I ∈ [0, 1]m×n×3 with reflection, our ap-

proach decomposes I into a transmission layer fT (I; θ) and

a reflection layer fR(I; θ) using a single network f(I; θ) =
(fT (I; θ), fR(I; θ)), where θ is the network weights. We

train the network f on a dataset D = {(I, T,R)} where I

is the input image, T is the transmission layer of I , and R

is the reflection layer of I .

Our loss function contains three terms: a feature loss

Lfeat by comparing the images in feature space, and an ad-

versarial loss Ladv for realistic image refinement, an exclu-

sion loss Lexcl that enforces separation of the transmission

and reflection layers in the gradient domain. Our overall

loss function is

L(θ) = w1Lfeat(θ) + w2Ladv(θ) + w3Lexcl(θ), (1)

where we set w1 = 0.1, w2 = 0.01 and w3 = 1 to balance

the weight of each term.

An ideal model for reflection separation should be able

to understand contents in an image. To train our net-

work f with semantic understanding of the input image,

we form hypercolumn features [11] by extracting features

from a VGG-19 [26] network pre-trained on the ImageNet

dataset [22]. The benefit of using hypercolumn features

is that the input is augmented with useful features that

abstract visual perception of a large dataset such as Im-

ageNet. The hypercolumn feature at a given pixel loca-

tion is a stack of activation units across selected layers of

a network at that location. Here, we sampled the layers

’conv1 2’, ’conv2 2’, ’conv3 2’, ’conv4 2’, and ’conv5 2’

in the pre-trained VGG-19 network. The hypercolumn fea-

ture has 1472 dimensions in total. We concatenate the input

image I with its hypercolumn features as the augmented in-

put for f .

Our network f is a fully convolutional network that has a

similar network architecture to the context aggregation net-

work [33, 4]. Our network has a large receptive field of

513 × 513 to effectively aggregate global image informa-

tion. The first layer of f is a 1 × 1 convolution to reduce

feature dimension (1472+3) to 64. The following 8 layers

are 3× 3 dilated convolutions. The dilation rate varies from

1 to 128. All the intermediate layers have 64 feature chan-

nels. For the last layer we use a linear transformation to

synthesize 2 images in the RGB color space.

We evaluate different methods on the publicly avail-

able synthetic and real images from the CEILNet dataset[5]

and the real-world dataset we collected. We compare our

method to the state-of-the-art reflection removal approach
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CEILNet [5], an optimization based approach [21], and

Pix2pix [12], a general framework for image translation.

4. Training

4.1. Feature loss

We use a feature loss to measure the difference between

our predicted transmission layer and the ground-truth trans-

mission in feature space. As the aforementioned observa-

tion in Figure 1 shows, semantic reasoning about the scene

would benefit the task of reflection removal. A feature loss

that combines low-level and high-level features from a per-

ception network would serve our purpose. Feature loss has

also been successfully applied to other tasks such as image

synthesis and style transfer [3, 7, 16, 13].

Here, we compute the feature loss by feeding the pre-

dicted image layer and the ground truth through a pre-

trained VGG-19 network Φ. We compute the L1 difference

between Φ(fT (I; θ) and Φ(T ) in selected feature layers:

Lfeat(θ) =
∑

(I,T )∈D

∑

l

λl‖Φl(T )− Φl(fT (I; θ))‖1, (2)

where Φl indicates the layer l in the VGG-19 network.

The weights {λl} are used to balance different terms in the

loss function. We select the layers ’conv1 2’, ’conv2 2’,

’conv3 2’, ’conv4 2’, and ’conv5 2’ in the VGG-19 net-

work.

4.2. Adversarial loss

During the course of our research, we find that trans-

mission image can suffer from unrealistic color degradation

and undesirable subtle residuals without an adversarial loss.

We adopted the conditional GAN [12] for our model. Our

generator would be fT (I; θ). The architecture of our dis-

criminator, denoted as D, has 4 layers and 64 feature chan-

nels wide. The discriminator tries to discriminate between

patches in the real transmission images and patches given

by fT (I; θ) conditioned on I . The goal is to let the network

D learn a suitable loss function for further refining layer

separation, and to push the predicted transmission layers to-

ward the domain of real reflection-free images.

Loss for the discriminator D is:
∑

(I,T )∈D

logD(I, fT (I; θ))− logD(I, T ), (3)

where D(I, x) outputs the probability that x is a natural

transmission image given the input image I . Then our ad-

versarial loss is:

Ladv(θ) =
∑

I∈D

− logD(I, fT (I; θ)). (4)

We optimize over − logD(I, fT (I; θ)) instead of

log (1−D(I, fT (I; θ))) for better gradient perfor-

mance [8].

I T R Ψ(T,R)

Train	without

normalization

Train	with

normalization

fT fR Ψ(fT , fR)

Figure 3: Visual comparisons of training with and with-

out gradient normalization. In the middle two columns,

the small window at the right bottom corner of each image

shows the gradient magnitude of each image. In the right-

most column, Ψ denotes the normalized gradient product

formulated in Equation 6. The first row left to right shows:

input, ground truth transmission T , ground truth reflection

R, and Ψ. Ψ(T,R) is close to zeros indicating that the gra-

dient fields of T and R are not correlated. The middle row

shows results trained with no normalization in the gradi-

ent fields. We observe that the reflection prediction trained

without normalization is heavily suppressed. Bottom row

shows results trained with gradient normalization with bet-

ter reflection separation.

4.3. Exclusion loss

We further propose an exclusion loss in the gradient do-

main to better separate the reflection and transmission lay-

ers. We explore the relationship between the two layers

through analysis of the edges in the two layers. Our key

observation is that the edges of the transmission and the re-

flection layers are unlikely to overlap. An edge in I should

be caused by either T or R, but not both. Thus we minimize

the correlation between the predicted transmission and re-

flection layers in the gradient domain. We formulate the

exclusion loss as the product of normalized gradient fields

of the two layers at multiple spatial resolutions :

Lexcl(θ) =
∑

I∈D

N
∑

n=1

‖Ψ(f↓n
T (I; θ), f↓n

R (I; θ))‖F , (5)

Ψ(T,R) = tanh(λT |∇T |)⊙ tanh(λR|∇R|), (6)

where λT and λR are normalization factors, ‖ · ‖F is the

Frobenius norm, ⊙ denotes element-wise multiplication,
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and n is the image downsampling factor: the images fT
and fR are downsampled by a factor of 2n−1 with bilin-

ear interpolation. We set N = 3, λT =
√

‖∇R‖F

‖∇T‖F

, and

λR =
√

‖∇T‖F

‖∇R‖F

in our experiments.

Note that the normalization factors λT and λR are criti-

cal in Equation 6, since the transmission and reflection lay-

ers may contain unbalanced gradient magnitudes. The re-

flection layer can be either blurred with low intensity and

thus consists of small gradients, or it could reflect very

bright light and composes brightest spots in the image,

which produces high contrast reflection and thus large gra-

dients. A scale discrepancy between |∇T | and |∇R| would

cause unbalanced updates to the two layer predictions. We

observe that without proper normalization factors, the net-

work would suppress the layer with a smaller gradient up-

date rate to close to zero. A visual comparison of results

with and without normalization is shown in Figure 3.

Lexcl is effective in separating the transmission and re-

flection layers at the pixel level. If we disable Lexcl in our

model, some residual reflection may remain visible in the

output transmission image, as shown in Figure 2 (d).

4.4. Implementation

Given the ground-truth reflection layer R, we can further

constrain fR(I; θ) with R. Reflection layer is usually not in

focus and thus blurry. We simply add a L1 loss in color

space to constrain fR(I; θ):

LR(θ) =
∑

(I,R)∈D

‖fR(I; θ)−R‖1. (7)

We train the network f by minimizing (L + LR) on syn-

thetic and real data jointly. Note that we disable LR when

training on a real-world image as it is difficult to estimate R

precisely. We tried computing R = I − T but R sometimes

contains significant artifacts because I = R + T may not

hold when I is overexposed.

For the training data, we use 5000 synthetic images and

extract 500 image patches from 90 real-world training im-

ages with random resolutions between 256p and 480p. To

further augment the data, we randomly resize image patches

while keeping the original aspect ratio. We train for 250

epochs with batch size 1 on an Nvidia Titan X GPU and

weights are updated using the Adam optimizer [14] with a

fixed learning rate of 10−4.

5. Dataset

5.1. Synthetic data

To create synthetic images with reflection, we choose

5000 random pairs of images from Flickr: one outdoor im-

age and one indoor image for each pair. We use an image

Figure 4: Real data collection setup and captured images.

We capture two images with and without the glass with

same camera settings in a static scene. Right column

from top to bottom: captured image with reflection and the

ground-truth transmission image T .

(either indoor or outdoor) as the transmission layer and the

other image as the reflection layer. We assume the transmis-

sion and reflection layers locate on different focal planes so

that the two layers exhibit noticeable different blurriness.

This is a valid assumption in real-life photography, where

the object of interest (e.g. artwork through museum win-

dows) is often in the transmission layer and is set to be in

focus. In addition, reflection could be intentionally blurred

by shooting with a wide aperture. We use this assumption to

create a synthetic dataset, by applying a Gaussian smooth-

ing kernel with a random kernel size in the range of 3 to 17

pixels to the reflection image.

Our image composition approach is similar to the one

proposed by Fan et al. [5], but our forward model has the

following differences. We remove gamma correction from

the images and operate in linear space to better approximate

the physical formation of images. Instead of fixing the in-

tensity decay on R, we apply variation to the intensity decay

since we observe that reflection in real images could have

comparable or higher intensity level than the transmission

layer. We apply slight vignette centered at random position

in the reflection layer, which simulates the scenario when

camera views the reflection from oblique angles.

5.2. Real data

At the time of developing this work, there is no pub-

licly available benchmark with ground-truth transmission

to evaluate different reflection removal approaches on real

data. We collected a dataset of 110 real image pairs: image

with reflection and its corresponding ground-truth transmis-

sion image. The images with reflection were taken with a
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Synthetic Real

Method SSIM PSNR SSIM PSNR

Input 0.689 15.09 0.697 17.66

Pix2pix [12] 0.583 14.47 0.648 16.92

Li and Brown [21] 0.742 15.30 0.750 18.29

CEILNet [5] 0.826 20.47 0.762 19.04

Ours 0.853 22.63 0.821 21.30

Table 1: Quantitative comparison results among our method

and 3 other previous methods. We evaluated on synthetic

data provided by CEILNet [5], and our real image test set.

We also provide a trivial baseline that takes the input image

as the result transmission image.

Canon 600D camera on a tripod with a portable glass in

front of the camera. The ground-truth transmission layer

was captured when the portable glass was removed. Each

image pair was taken with the same exposure setting. Our

setup for data capture is shown in Figure 4. We captured the

dataset with the following considerations:

• environments: indoor and outdoor;

• lighting conditions: skylight, sunlight, and incandes-

cent;

• camera viewing angles: front view and oblique view;

• and camera apertures (affecting the reflection blurri-

ness): f /2.0 — f /16.

We split the dataset randomly into a training set and a test

set. We extract 500 patches from 90 training images for

training and use 20 images for quantitative evaluation.

6. Experiments

6.1. Comparison to prior work

We compare our model to CEILNet [5], the layer sep-

aration method by Li and Brown [21], and Pix2pix [12].

We evaluated different methods on the publicly available

synthetic images from the CEILNet dataset [5] and the real

images from the test set of our real-world dataset.

Our model is only trained on our generated synthetic

dataset and the training set of our real-world dataset. For

CEILNet, we evaluate its pre-trained model on the CEILNet

synthetic images. To evaluate CEILNet on our real data, we

fine-tune its model with our real training images (otherwise

it performs poorly). We evaluate the approach of Li and

Brown [21] with the provided default parameters. Pix2pix

is a general image translation model, we train its model on

our generated synthetic dataset and the training set of our

collected real dataset.

The quantitative results are shown in Table 1. We com-

pute the PSNR and SSIM between the result transmission

images of different methods and ground-truth transmission

Preference rate

Ours>CEILNet [5] 84.2%

Ours>Li and Brown [21] 87.8%

Table 2: User study results. The preference rate shows the

percentage of comparisons in which users prefer our results.

layer. We demonstrate strong quantitative performance over

previous works on both synthetic and real data.

We also conduct a user study on Amazon Mechanical

Turk, following the protocol by Chen and Koltun [3]. Dur-

ing the user study, each user is presented with a input real-

world image with reflection, our predicted transmission im-

age, and the predicted transmission image by a baseline in

the same row. Then the user needs to choose an output

image that is closer to the reflection-free version of the in-

put image between the two predicted transmission images.

There are 80 real-world images for comparisons from our

dataset and the CEILNet dataset. The results are reported in

Table 2. 84.2% of the comparisons to CEILNet and 87.8%
of the comparisons to Li and Brown have our results rated

to contain less reflection. The results are statistically sig-

nificant with p < 10−3 and 20 users participate in the user

study.

More experimental details and results are reported in the

supplement.

Synthetic Real

Method SSIM PSNR SSIM PSNR

Ours w/o Lfeat 0.683 18.24 0.743 19.07

Ours w/o Ladv 0.818 20.80 0.793 21.12

Ours w/o Lexcl 0.796 19.58 0.802 20.22

Ours Ladv-only 0.765 18.05 0.782 19.52

Ours complete 0.853 22.63 0.821 21.30

Table 3: Quantitative comparisons on synthetic and real im-

ages among multiple ablated models of our method. We re-

move each of the three losses and evaluate on the re-trained

models. ’Ours Ladv-only’ denotes our method trained with

only an adversarial loss. Our complete model shows better

performance on both synthetic and real data. We evaluate

on synthetic data provided by CEILNet [5], and our real

test images described in Section 5.2.

6.2. Qualitative results

We present qualitative results of different methods in

Figure 5 and Figure 6, evaluated on real-world images from

our dataset (with ground truth) and from CEILNet [5] (with-
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Transmission Reflection Transmission Reflection

Input Ground-truth T CEILNet [5] Our results

Figure 5: Visual results comparison between CEILNet [5] and our method, evaluated on real images from our dataset de-

scribed in Section 5.2. From left to right: input, ground truth transmission layer, CEILNet [5] predictions and our predictions.

Notice that our method produces better and cleaner predictions in both the transmission and reflection layers. Additional re-

sults are provided in the supplement.

Transmission Reflection Transmission Reflection Transmission Reflection

Input CEILNet [5] Li and Brown [21] Our results

Figure 6: Qualitative comparisons among CEILNet [5], Li and Brown [21] and our method, evaluated on real images in the

CEILNET dataset. Note that even though we have no supervision on the reflection layer for real data, but our method predicts

cleaner reflection layer as well. Additional results are provided in the supplement.
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Figure 7: Extension applications on camera flare removal

and image dehazing. For each column, from top to bottom:

input, our predicted enhanced layer, our predicted removed

layer.

out ground truth), respectively.

6.3. Controlled experiments

To analyze how each loss contributes to the final perfor-

mance of our network, we remove or replace each loss in the

combined objective and re-train the network. A visual com-

parison is shown in Figure 2. When we replace the feature

loss Lfeat with a L1 loss in color space, the output images

tend to be overly-smooth; similar observation is also dis-

cussed in [34, 12]. Without Lexcl, we notice that visible

contents of the reflection layer may appear in the transmis-

sion prediction. The adversarial refinement loss Ladv helps

recover cleaner and more natural results, as shown in (e).

The quantitative results are shown in Table 3. We also

analyze the performance of the model with only an adver-

sarial loss, which is similar to a conditional GAN [12].

7. Extensions

We demonstrate two additional image enhancement ap-

plications, flare removal and dehazing, using our trained

model to remove an undesired layer. Note that we directly

apply our trained reflection removal model without train-

ing or fine-tuning on any flare removal or dehazing dataset.

These two tasks can be treated as layer separation problems,

similar to reflection separation. For flare removal, we aim to

remove the optical artifacts of lens flare, which is caused by

light reflection and scattering inside the lens. For dehazing,

we target at removing the hazy layer. The hazy images suf-

fer from contrast loss caused by light scattering, reflection

and attenuation of particles in the air. We show the exten-

sion results in Figure 7. Our trained model can achieve im-

Transmission Reflection

Input CEILNet [5]

Ground-truth T Our results

Figure 8: A challenging case with sharp reflection. Our

method produces better reflection separation results than

CEILNet, but is not able to remove reflection completely.

age enhancement by removing undesirable layers from the

input images for flare removal and dehazing. More exten-

sion results are provided in the supplement.

8. Discussion

We presented an end-to-end learning approach for sin-

gle image reflection separation with perceptual losses and a

customized exclusion loss. To decompose an image into the

transmission and reflection layers, we found it effective to

train a network with combined low-level and high-level im-

age features. In order to evaluate different methods on real

data, we collected a new dataset of real-world images for

reflection removal that contains ground-truth transmission

layers. We additionally extend our approach to two other

photo enhancement applications to show generality of our

approach for layer separation problems.

Although our reflection separation model outperforms

state-of-the-art approaches on both synthetic and real im-

ages, we believe the performance can be further improved

in the future. Figure 8 illustrates one challenging scenario

where the reflection layer is almost as sharp as the trans-

mission layer in a real-world image. We hope our model

and dataset will inspire subsequent work on reflection sep-

aration and the challenging scenarios. Our dataset and code

will be made publicly to facilitate future research.
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