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Single-Image Super-Resolution Based

on Rational Fractal Interpolation
Yunfeng Zhang, Qinglan Fan, Fangxun Bao, Yifang Liu, and Caiming Zhang

Abstract— This paper presents a novel single-image super-
resolution (SR) procedure, which upscales a given low-resolution
(LR) input image to a high-resolution image while preserving
the textural and structural information. First, we construct a
new type of bivariate rational fractal interpolation model and
investigate its analytical properties. This model has different
forms of expression with various values of the scaling factors
and shape parameters; thus, it can be employed to better
describe image features than current interpolation schemes.
Furthermore, this model combines the advantages of rational
interpolation and fractal interpolation, and its effectiveness is
validated through theoretical analysis. Second, we develop a
single-image SR algorithm based on the proposed model. The LR
input image is divided into texture and non-texture regions, and
then, the image is interpolated according to the characteristics of
the local structure. Specifically, in the texture region, the scaling
factor calculation is the critical step. We present a method to
accurately calculate scaling factors based on local fractal analysis.
Extensive experiments and comparisons with the other state-of-
the-art methods show that our algorithm achieves competitive
performance, with finer details and sharper edges.

Index Terms— Image super-resolution, rational fractal inter-
polation, image features, scaling factor, local fractal analysis.

I. INTRODUCTION

T
HE purpose of single-image super-resolution (SR) is to

reconstruct a latent high-resolution (HR) image using

a single low-resolution (LR) input. SR is a classic method

of image processing which has value in both academic and

industrial applications. SR has a wide range of practical

applications, such as video surveillance, criminal investigation,

remote sensing, medical image processing, and consumer

electronics [1]. In general, existing SR methods can be broadly

classified into two main categories: interpolation-based

methods and learning-based methods.
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Interpolation-based methods estimate the unknown pixels in

the HR grid by employing their known neighbors. Traditional

interpolation algorithms involving bi-linear and bi-cubic [2]

interpolation are the most widely used methods in practice.

However, the kernel functions used in the above methods

are isotropic and cannot fully reflect the intrinsic structures

of images. Thus, these interpolation approaches are prone to

producing zigzagging artifacts along edges and blurring details

in textures. In order to compensate for the deficiencies of tra-

ditional methods, edge-directed interpolation methods [3], [6]

have recently been proposed. Although these types of methods

can maintain the image edge structure, they often generate

speckle noise or distortion around texture areas. The rational

function that approximates the ideal kernel function [7] has

been applied in image interpolation [8], [9]. Reconstructed

images often have better visual results through rational func-

tion interpolation; however, the rational interpolation function

results in an unsatisfactory level in preserving textural details.

Learning-based SR methods depend on the assumption that

the high-frequency information missing in the LR image can

be learned from a training set of HR and LR image pairs.

Learning-based methods can be divided into two categories:

the first depends on an external dictionary constructed from

a set of external training images, and the second replaces the

external training set with the LR image itself. For the former,

a HR image is generated from a single LR image with the

help of training pairs. The commonly used methods include

regression-based methods [10], [11], sparse representation-

based approaches [12], [13], patch-based SR methods [14],

among others. Furthermore, anchored neighborhood regression

(ANR) [15] and simple functions (SF) [20] provide state-of-

the-art quality performance. Combining the best qualities of

ANR and SF, an adjusted anchored neighborhood regression

(A+) [17] method was proposed for fast SR. In recent years,

deep learning technology has attracted considerable atten-

tion from numerous researchers. In image SR reconstruction,

a deep learning approach (SRCNN) [16] was presented and

directly learned an end-to-end mapping between the LR and

HR images. Although such methods, which rely on an external

dataset, typically perform well for some classes of images,

they understandably have a considerable drawback: they are

fixed and are thus not adapted to the input image [18]. For

example, irregularities along the edges can be observed as in

the results of [14], when the image content does not match

the exemplary data set. In the latter case, the methods produce

HR images by employing similarity redundancy information

within both the same sale and across different scales. In [18],

for each LR patch, similar self-examples were found, and

it was necessary to learn a linear function to directly map
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Fig. 1. Algorithm framework.

each LR patch into its HR version. However, in [18], the

LR-HR patch pairs were found by searching only for “trans-

lated” versions of patches in the down-scaled images. A self-

similarity-driven SR algorithm (selfExSR) [19] was proposed

to expand the internal patch search space by allowing geomet-

ric variations, which improves the visual effect well. However,

if the LR image does not contain sufficient repetitive patterns,

then these algorithms tend to produce sharp edges rather than

fine details. Considering the advantages of interpolation-based

methods and learning-based methods, by applying the machine

learning method in image interpolation, the study in [21]

developed an image interpolation method in which nonlocal

autoregressive modeling (NARM) was embedded in the sparse

representation model. This method improves the visual effect

well, but it tends to significantly degrade the quality of the

reconstructed HR image when larger magnification ratios are

performed, particularly image details and textural features.

Fractal is an efficient tool for describing the texture of an

image, and is widely applied in texture description, classifica-

tion, segmentation, among other functions. In [22], a texture

multifractal spectrum was introduced. Based on multifractal

analysis in wavelet pyramids of texture images, the study

in [23] presented a textural descriptor that implicitly com-

bines information from both spatial and frequency domains.

A dynamic texture classification was proposed on the basis

of dynamic fractal analysis in [24]. A method for HR optical

image segmentation was proposed based on the multifractal

characterization of an image in [25]. In addition, a fractal

dimension-invariant filtering method [26] was presented for

edge detection. In [27], a depth up-sampling algorithm which

jointly uses local fractal analysis and boundary consistency

analysis was proposed. However, only a limited amount of

literature on applying fractal analysis in image SR has been

available until now. For example, in [28], an image SR

algorithm was proposed using a special type of orthogonal

fractal coding method which can produce pleasing details, but

fails to recover sharper edges. In [29], a texture enhancement

algorithm which uses local fractal analysis for improving

single-image SR performance was presented, and this can

effectively enhance image details. However, this algorithm

cannot provide satisfactory results in a stochastic texture

region which does not follow the local fractal property.

Note that the above fractal analytical methods characterize

the textural feature of the image primarily by using the fractal

dimension. The fractal dimension is employed to describe the

roughness of the texture, but it cannot accurately characterize

textural details. Thus, it is necessary to construct a fractal

function and apply related properties to accurately describe

the image details.

In this paper, we construct a rational fractal interpolation

model. On the one hand, compared with other polynomial

interpolation kernel functions, the rational interpolation func-

tion is a more accurate approximation function for the ideal

interpolation. It can preserve image edge structures well.

On the other hand, the fractal function is an efficient model

for describing image texture, and the reconstructed images

have fine textural details and structural information when using

rational fractal function interpolation. Based on this model,

a novel single-image SR algorithm is proposed in which the

fractal analysis method is applied in image interpolation. The

major steps of the proposed algorithm are illustrated in Fig. 1.

First, according to the image features, the image is divided into

a texture region and a non-texture region. Second, we employ

the rational fractal interpolation model in the texture region,

and we use the rational interpolation model in the non-

texture region. Finally, a HR image is obtained by pixel

mapping.

By applying the rational fractal interpolation model in

image SR reconstruction, the advantages of our method over

other SR methods are as follows. First, it can recover more

pleasing details than other interpolation methods. Second,

unlike learning-based methods which depend on the source

of training patches, our method can achieve competitive per-

formance by only using LR image patch information.

The major contributions of the proposed method are sum-

marized as follows:

(1) We construct a rational fractal interpolation model based

on previous research on rational splines [30], [33], and we

investigate its analytical properties, such as error analysis,

stability, quasi-locality, and fractal dimension.

(2) Inspired by the constructed rational fractal interpolation

model, we propose a single-image SR method by apply-

ing the fractal analysis method in the interpolation model.

This method can accurately recover the spatial characteristic
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information of the image, particularly image details and tex-

tural features.

(3) The extensions have two aspects: the first is con-

sideration of the relationship between scaling factors and

fractal dimension, and the second is consideration of the local

characteristics of the image. Here, a method is presented to

accurately calculate the scaling factors.

The remainder of this paper is organized as follows.

Section II will develop a new type of bivariate rational fractal

interpolation model, and it will present relevant theoretical

analyses. Section III will present the proposed single-image

SR reconstruction algorithm. The experimental results and

analysis will be presented along with an evaluation of the

effectiveness of the algorithm in Section IV. Section V will

present some conclusions.

II. PROPOSED FRAMEWORK

A. Basic Idea

The fractal texture can describe the spatial characteristics

information of the image correctly; moreover, the rational

function is an approximation of the sinc function, which

corresponds to ideal filtering. Based on the general char-

acteristics described above, we construct a rational fractal

interpolation model, and we provide the relevant theoretical

analysis. The error analysis results prove that the proposed

model is good in terms of the approximation effect, and it can

control interpolation error. The stability analysis indicates that

the proposed model has fairly strong adaptability in image

interpolation. According to the property of quasi-locality,

the model is suitable for describing the local features of an

image. The fractal dimension reflects the complexity of the

texture; furthermore, it has a strong correlation with the scaling

factors. Here, we provide the method for calculating the fractal

dimension.

Based on the above, the proposed interpolation model

has greater flexibility and better practicality than previous

models. In the following sections, the method of constructing

the bivariate rational fractal interpolation function will be

provided. In essence, our constructed rational function is

embedded into an iterated function system. Then, the relevant

theoretical analyses of the model will be presented.

B. Rational Fractal Interpolation Function

1) Iterated Function System: Fractal interpolation functions

(FIFs) are types of continuous functions generated by iterated

function systems (IFSs). FIFs corresponding to the following

IFS form have been investigated the most extensively:

⎧

⎪

⎨

⎪

⎩

φi (x) = ai x + bi ,

ϕ j (y) = c j y + d j ,

Fi, j (x, y, z) = si, j z + qi, j (x, y),

(1)

where |si, j | < 1 and si, j are called vertical scaling factors

and qi, j (x, y) are continuous functions. The detailed process

is shown in Appendix A.

Fig. 2. Illustration of the iteration system.

2) Construction of Rational FIFs: Based on our previous

work on bivariate rational interpolation, a novel method for

constructing bivariate rational FIFs is proposed in this section.

The core idea of the method is to treat continuous functions

qi, j (x, y) in (1) as a “fractal perturbation” of bivariate rational

interpolation functions Pi, j (φi (x), ϕ j (y)) obtained via rational

perturbation base functions Bi, j (x, y), namely,

qi, j (x, y) = Pi, j (φi (x), ϕ j (y)) − si, j Bi, j (x, y).

Thus, the IFS (1) determines a continuous function �(x, y),

which is called a bivariate rational FIF, and

�(φi (x), ϕ j (y)) = si, j �(x, y) + Pi, j (φi (x), ϕ j (y))

− si, j Bi, j (x, y). (2)

Furthermore, if the shape parameters satisfy a suitable mild

condition, the fractal function �(x, y) defined by (2) can be

rewritten in the following simple matrix form:

�(φi (x), ϕ j (y)) = si, j �(x, y) + AE B, (3)

where A is a 4-dimensional row vector, B is a 4-dimensional

column vector, and E is a constant matrix of order 4. The

specific construction of the bivariate rational FIF is shown in

Appendix B.

Equation (2) shows that the bivariate rational FIF �(x, y)

is given by an iterative scheme. In the following, we inter-

pret the iterative process of the system via a data set of a

5 × 5 grid: {(xi , y j , fi, j ) : i, j = 1, 2, · · · , 5}. For each i

and j (i, j = 1, 2, 3, 4), contractive homeomorphisms φi (x)

and ϕ j (y) map intervals [x1, x5] and [y1, y5] to subinter-

vals [xi , xi+1] and [y j , y j+1], and 5 points are obtained on

[xi , xi+1] and [y j , y j+1] respectively, as shown in Fig. 2(a).

Meanwhile, 5 × 5 interpolation points are provided on each

subregion [xi , xi+1] × [y j , y j+1], and 5 × 5 points on the

interpolation surface corresponding to this subregion can be

acquired by the iterative scheme (2); take [x3, x4] × [y2, y3]

as an example, as shown in Fig. 2(b), where the top and
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TABLE I

DATASET TAKEN FROM FUNCTION (4)

bottom parts of Fig. 2(b) represent interpolation surfaces and

interpolation regions respectively. Thus, after the first iteration,

we obtain 17 × 17 points on region [x1, x5] × [y1, y5] and the

interpolation surface corresponding to the region. The same

occurs with more iterations.

Remark 1: The construction of the rational FIF described

here allows us to embed shape parameters within the structure

of the fractal function, and the rational FIF �(x, y) defined

by (2) is uniquely identified from the interpolation data and

the values of the scaling factors and shape parameters. With

different scaling factors and shape parameters, this fractal

function can be expressed in different forms, specifically, if the

scaling factors si, j = 0 for all i and j , �(x, y) reduces to the

bivariate rational spline interpolant Pi, j (x, y). This means that

the presented bivariate rational fractal interpolation is a flexible

and diverse form for the choice of suitable interpolant.

C. Theoretical Discussion

1) Error Analysis: In image interpolation, the accuracy of

the interpolation model directly affects the quality of the

interpolated image, which is generally assessed in terms of

errors and is the key criterion for evaluating the interpolation

method. The smaller the error is, the higher the accuracy is.

In order to show the effectiveness with which the bivariate

rational FIF �(x, y) defined by (2) approximates the original

function f (x, y), we provide the upper bound of the uniform

error between �(x, y) and f (x, y) as follows:

‖ f − �‖∞ ≤
|s|∞

1 − |s|∞
M + h2‖

∂2 f

∂x2
‖∞C

+ l(‖
∂ f

∂y
‖∞ + ‖

∂ Pi, j

∂y
‖∞),

where M is a constant associated with fi, j , d∗
i, j and di, j ; C

is an error constant associated with shape parameters: |s|∞ =

max{|si, j | : i ∈ I , j ∈ J }; h = max{hi : i ∈ I }; and

l = max{l j : j ∈ J }.

Example 1: Consider the interpolation data presented

in Table I, which has been approximated from the following

function by taking the values truncated to four decimal places:

f (x, y) =
4

(x + 1)2 + (y + 1)2 + 1
,

(x, y) ∈ [0.1, 0.5; 0.1, 0.5]. (4)

The example will show the approximation effectiveness of the

developed bivariate rational fractal interpolation.

Fig. 3 presents the graph of the error function f (x, y) −

�(x, y), and the values of the error range from −4 × 10−3 to

4 × 10−3. This graph clearly shows that the bivariate rational

Fig. 3. Error surface f (x, y) − �(x, y).

TABLE II

THE PERTURBATION OF THE DATA IN TABLE 1

spline FIFs provide a good approximation for the original

function f (x, y). This result confirms that the proposed ratio-

nal fractal model can guarantee the quality of interpolated

images well.

2) Stability: Stability is an important criterion for describ-

ing the quality of an interpolation function, and it measures

the anti-interference ability of the perturbation of interpolation

data. In this part, we provide this property of the developed

bivariate rational FIF.

Let �̂ = {(xi , y j , f̂i, j , d̂∗
i, j , d̂i, j ) : i ∈ I; j ∈ J } be

another given set of interpolation points, which are gen-

erated by perturbation of the vertical coordinates fi, j and

first-order partial derivatives d∗
i, j and di, j . Define an IFS

{F̂; (ϕi(x), ψ j (y), F̂i, j (x, y, �̂(x, y))) : i ∈ I ; j ∈ J },

where ϕi (x) and ψ j (y) are defined as above, and

F̂i, j (x, y, �̂(x, y)) = si, j �̂(x, y) + P̂i, j (ϕi (x), ψ j (y))

− si, j B̂i, j (x, y),

P̂i, j (ϕi (x), ψ j (y)) and B̂i, j (x, y) satisfy the corresponding

join-up conditions. �̂(x, y) is the bivariate rational FIF gen-

erated by this IFS. We therefore have

‖� − �̂‖∞ ≤
1 + |s|∞

1 − |s|∞
δ f +

2h

1 − |s|∞
δd∗ +

2l

1 − |s|∞
δd ,

where δ f = max{| fi, j − f̂i, j |}, δd∗ = max{|d∗
i, j − d̂∗

i, j |}, and

δd = max{|di, j − d̂i, j |}.

Example 2: Consider the interpolation data shown

in Table II, which is a perturbation of the data in Table I.

Fig. 4 provides the surface of function �(x, y) − �̂(x, y).

Fig. 4 shows that the presented bivariate rational fractal inter-

polation has good capacity for stability during the perturbation

of interpolation data.

3) Quasi-Locality: In practical applications, it is often nec-

essary to adjust the local shape of the interpolation surfaces

without affecting the entire shape. Consequently, interpolation

functions with local properties are highly competitive. Because

FIF has some level of self-similarity, for the fractal surface
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Fig. 4. Perturbation error surface �(x, y) − �̂(x, y).

TABLE III

INTERPOLATION DATASET FOR QUASI-LOCALITY ANALYSIS

derived from FIF, each patch in a subregion will possess

global properties inherited from the entire set of interpolation

data. This implies that the shape of the entire interpolation

surface may be affected if the IFS parameters are changed

in a particular subregion. In this sense, it is difficult to

constrain or adjust the local shape of the fractal surface.

However, in the presented bivariate rational spline fractal

interpolation scheme, the “height function” Pi, j (x, y) with

the shape parameters possesses the local shape property such

that the bivariate rational FIF has good quasi-locality capacity

on the parameters in the rational IFS. This finding will be

interpreted using the following example.

Example 3: The interpolation data is shown in Table III.

Take si, j = 0.02 for all i and j ; the values of all shape

parameters are 0.6. Fig. 5(a) shows the corresponding bivariate

rational fractal surface �4(x, y). Now, we consider the effects

of the scaling factors and shape parameters on the shape of

the fractal surface. First, we change si, j to 0.15 for i, j = 1, 2,

keeping the other scaling factors and all shape parameters as

in Fig. 5(a), and Fig. 5(b) provides the corresponding rational

fractal surface �5(x, y). Second, take α∗
i, j = β∗

i, j = γ ∗
i, j = 65

for i, j = 1, 2, keeping all the scaling factors and other shape

parameters as in Fig. 5(a), and Fig. 5(c) presents the graph

of the corresponding rational fractal surface �6(x, y). Third,

take αi, j = βi, j = γi, j = 46 for i, j = 1, 2, keeping all the

scaling factors and other shape parameters as in Fig. 5(a), and

Fig. 5(d) is the corresponding rational fractal surface �7(x, y).

Fig. 5 shows that a significant change in the shape of the

fractal surface occurs in the particular subregions in which

changes of the scaling factors or shape parameters have been

made, and the remainder pertaining to other subregions is not

extremely sensitive. This result indicates that the developed

bivariate rational fractal interpolation has a good property of

quasi-locality on the IFS parameters; thus, the shape of the

fractal surface can be adjusted locally without a significant

influence in other regions. Furthermore, compared with the

scaling factors, the shape parameters have a minor effect on

the shape of the fractal surface.

Fig. 5. Quasi-locality of the bivariate rational spline fractal interpolation:
(a) Rational fractal surface �4, (b) Rational fractal surface �5 with differ-
ent si, j , (c) Rational fractal surface �6 with different α∗

i, j , β
∗
i, j , γ

∗
i, j , and

(d) Rational fractal surface �7 with different αi, j , βi, j , γi, j .

4) Fractal Dimension: The fractal dimension of surfaces

is a measure of the irregularity of surfaces. This describes

the roughness of the surfaces. We provide the box-counting

dimension of the rational fractal surface as follows.

Denote

S =

⎛

⎜

⎜

⎜

⎝

|sτ−1(1)| |sτ−1(1)| · · · |sτ−1(1)|

|sτ−1(2)| |sτ−1(2)| · · · |sτ−1(2)|
...

...
...

|sτ−1(N2)| |sτ−1(N2)| · · · |sτ−1(N2)|

⎞

⎟

⎟

⎟

⎠

N2×N2

,

where τ (i, j) = (i − 1) × N + j represents the enumeration

of set {(i, j) : i, j = 1, 2, · · · , N}. Let the knots be equally

spaced, namely, hi = l j = b−a
N

, and let the interpolation points

of every interval be neither x-collinear nor y-collinear. Then,

the box-counting dimension D of the fractal surface defined

by (13) is as follows:

D =

{

1 + logN λ, λ > N

2, λ ≤ N
(5)

where λ = ρ(S).

Furthermore, since

λ = ρ(S) =

N2
∑

k=1

τ−1(k) =

N
∑

i=1

N
∑

j=1

si, j ,

equation (5) can be rewritten as follows:

D =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + logN

N
∑

i=1

N
∑

j=1

|si, j |,
∑N

i=1

∑N
j=1 |si, j | > N,

2, others.

(6)

Equation (6) shows that the fractal dimension of the surfaces

is closely related to the values of the scaling factors in the

corresponding bivariate rational FIFs. For the same interpola-

tion data and values of the shape parameters, Fig. 6 provides

the fractal interpolation surfaces corresponding to the different

values of the scaling factors.
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Fig. 6. Roughness of the surfaces for different scaling factors: (a) Smooth
rational fractal surface with si, j = 0.1, and (b) Rational fractal surface with
si, j = 0.3.

Fig. 7. Texture detection.

III. ADAPTIVE IMAGE SUPER-RESOLUTION

RECONSTRUCTION ALGORITHM

A. Image Interpolation

1) Regional Division: In general, different regions in a

single digital image have different structural characteristics.

It is difficult for image interpolation to achieve better quality

by using a single model. The proposed interpolation model

has different forms of expression, which can be used to handle

different regions. For images, regional division is a key step

in the interpolation algorithm. The interpolation quality can

be directly affected by the regional division results.

Unlike common texture detection methods, such as the

Sobel and Canny operators, our objective is to detect more

detailed textures such that the proposed SR algorithm can

better play the dominant role of the rational fractal interpo-

lation function. Here, we introduce the isoline method [34]

to detect the textural and structural information of the image

for regional division. Furthermore, we have conducted an

experiment to choose an image patch of suitable size for

texture detection (the smallest size of the interpolation unit is

3 × 3). As shown in Fig. 8, considering the robustness of the

method, a 5×5 patch in a given LR input image is treated as a

unit for detecting the roughness of texture because choosing a

patch that is too small will result in noise sensitivity. Similarly,

some texture regions will be considered as non-texture regions

if the size of the image patch is too large.

Pixel value is the most intuitive expression of various

structures in generic natural images, and it also satisfies the

attributes of the image itself. Therefore, textural details can

be detected according to differences between values of pixels.

If the region detected includes an isopleth, then it is regarded

as a texture region. Otherwise, it is regarded as a non-texture

Fig. 8. Texture detection results of noisy images: (a)-(d) 3 × 3 patch, (e)-(h)
5 × 5 patch and (i)-(l) 7 × 7 patch.

region. As shown in Fig. 7, the main procedures of this method

are as follows. First, each LR image patch (5 × 5) is divided

into 4 sub-blocks (3 × 3). Second, using the first sub-block as

an example, for LR image patch fm,n, m, n = 1, 2, · · · , 5,

λ =

∑5
m=1

∑5
n=1 fm,n

5 × 5
,

where fm,n is the pixel value at point (m, n) and λ is the

average value of all pixels. Let �xm,n = fm,n − λ, m, n =

1, 2, 3; the image can be divided into a texture region and a

non-texture region using the following formula:
{

non − texture region, �xm,n ≥ 0 or �xm,n ≤ 0,∀m, n,

texture region, otherwi se.

(7)

Specifically, if all sub-blocks have a uniform sign, i.e., if a

5 × 5 LR image patch does not include an isopleth, then we

regard it as a non-texture region. Otherwise, the LR image

patch is regarded as a texture region. The binarization image

is presented to evaluate the effectiveness of the proposed

method in Fig. 9. As indicated by the experimental results,

image texture details are effectively detected. The fractal can

describe the spatial characteristics information of the image

correctly; therefore, the proposed texture detection method is

able to exert the advantages of the rational fractal interpolation

function.

2) Scaling Factor Calculation: For image processing,

the scaling factors reflect the complexity of the texture.

According to the property analysis in Section II-C, the scaling

factors play an important role in the rational fractal interpola-

tion function. Thus, the quality of interpolation can be directly

affected by the values of scaling factors. As the accuracy

of scaling factors improves, greater interpolation quality is

obtained. Generally, an image patch is interpolated with the
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Fig. 9. Results of texture detection. (a) Baboon. (b) Child. (c) Lena.

Fig. 10. Local scaling factors.

same scaling factors in the traditional fractal interpolation

methods, which ignores the local variations (local geometric

structure) of an image. Here, we present a method of calculat-

ing the scaling factors based on the local features of an image.

This method involves two steps. First, the initial values of the

scaling factors are obtained for each LR image patch. Second,

the scaling factors are further obtained according to the image

texture information.

As shown in Fig. 10, the concrete steps of the method are

as follows. First, as in image processing, the fractal dimension

reflects the complexity of the texture. Equation (6) shows

that the fractal dimension has a strong correlation with the

scaling factors. It is imperative to calculate the values of the

scaling factors with the help of the fractal dimension. However,

the fractal dimension D of formula (6) is the fractal dimension

of the entire image, and the scaling factors si, j of the LR image

patch cannot be obtained by using it directly. Based on the

property that the proposed bivariate rational FIF has a good

capacity of quasi-locality on the parameters in the rational

IFS, we present an efficient method of calculating the scaling

factors with the help of the local fractal dimension [35].

Suppose that each LR image patch uses the same scaling

factors, where the initial values of the scaling factors Sinit ial

are obtained by calculating the following formula:

Sinit ial = N D−3. (8)

Then, it is unsuitable to use the same scaling factor for LR

image patches with complex geometric structures. Take the

first sub-block ( fm,n, m, n = 1, 2, 3) as an example: if it is

the texture region,

aver =
f1,1 + f1,2 · · · + f3,3

9
,

sum = | f1,1 − aver | + | f1,3 − aver | + | f3,1 − aver |

+ | f3,3 − aver |,

s1,1 = Sinit ial ×
| f1,1 − aver |

sum
,

Fig. 11. Rational fractal interpolation model.

Algorithm 1 Image Interpolation Process

s1,2 = Sinit ial ×
| f1,3 − aver |

sum
,

s2,1 = Sinit ial ×
| f3,1 − aver |

sum
,

s2,2 = Sinit ial ×
| f3,3 − aver |

sum
;

otherwise, s1,1 = s1,2 = s2,1 = s2,2 = 0.

3) Interpolation Algorithm: The interpolation model has

different forms of expression, which can be used to address the

texture region and non-texture region separately. In the texture

region, the interpolation is rational fractal interpolation. In the

non-texture region, we use the rational interpolation (si, j = 0).

Based on the above analysis for regional division, the LR

input image is divided into many 5 × 5 patches. According

to block characteristics, a 5 × 5 vector control grid is used

to construct the interpolation surface, and we then use it and

rational fractal interpolation to compute every point’s intensity

in the magnified image. As shown in Fig. 11, for the given

5 × 5 image patch, a 17 × 17 patch can be obtained by using

the proposed model (see Section II-B). The red dots represent

the LR image pixels, and the missing HR samples are the

green dots. The main steps of the interpolation algorithm are

summarized in Algorithm 1.

The LR image is divided into 5×5 patches, and the proposed

interpolation model is used to estimate the missing pixels in

the LR image patch. In order to guarantee a smooth connection

between patches, there is an overlapping pixel point between

the patches in the processing. The image interpolation process

is shown in Fig. 12. The interpolation is extended to the entire

image by traversing each patch in raster-scan order in the LR

image, namely from left to right and from top to bottom.

B. Mapping

The proposed rational fractal interpolation function is an

IFS. A large number of pixels are obtained with an increasing

number of iterations, and more detailed information can be
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Fig. 12. Illustration of the image interpolation process.

Fig. 13. The process of pixel mapping (×2).

captured. Thus, the image can be amplified at any integral

multiple via pixel mapping. In fact, pixel mapping is a

sampling process.

Specifically, after the first iteration, the image can be

magnified with three different scale factors (×2,×3, and ×4).

As shown in Section II-B, for the given 5×5 patch, a 17×17

patch can be obtained by using the proposed model. Thus,

the image with an upscaling factor of 4 can be obtained

directly by using the proposed model. The image also can be

magnified with two different scale factors (2 and 3) using the

pixel mapping process which will be described in the following

sections. As shown in Fig. 13 and Fig. 14, taking the first sub-

block ( fi, j ) as an example, the HR image sub-block (gx,y and

hm,n) can be obtained using the following: fi, j , gx,y, hm,n ,

the pixel values at points (i, j), (x, y), (m, m), respectively.

As shown in Fig. 13,

gx,y+1 =

j+4
∑

t= j

fi,t

j+4
∑

t= j

fi,t

× fi,t , gx+1,y =

i+4
∑

s=i

fs, j

i+4
∑

s=i

fs, j

× fs, j ,

Fig. 14. The process of pixel mapping (×3).

Fig. 15. Performance variation of the proposed model with different
parameters α, β, γ on the training dataset.

gi+1, j+1 is obtained from the following equations:

var H or = var( fi+2, j+1, fi+2, j+2, fi+2, j+3),

var V er = var( fi+1, j+2, fi+2, j+2, fi+3, j+2),

var45 = var( fi+1, j+3, fi+2, j+2, fi+3, j+1),

var135 = var( fi+1, j+1, fi+2, j+2, fi+3, j+3),

var Min = min(var H or, var V er, var45, var135),

where var() is a variance function and min() is a minimal

function. Variance reflects the difference between pixel values.

Texture direction can be obtained approximatively according

to the minimum value of variance. Thus, gi+1, j+1 is closest

to these pixels whose texture direction is consistent with that
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TABLE IV

OBJECTIVE QUALITY ASSESSMENT OF DIFFERENT METHODS (SET5)

of gi+1, j+1. For example, if var Min = var H or , gi+1, j+1 =
fi+2, j+1+ fi+2, j+2+ fi+2, j+3

3
, and so on.

As shown in Fig. 14,

hm,n+1 =

j+3
∑

t= j

fi,t

j+3
∑

t= j

fi,t

× fi,t ,

hm,n+2 =

j+4
∑

t= j+1

fi,t

j+4
∑

t= j+1

fi,t

× fi,t ,

hm+1,n =

i+3
∑

s=i

fs, j

i+3
∑

s=i

fs, j

× fs, j ,

hm+2,n =

i+4
∑

s=i+1

fs, j

i+4
∑

s=i+1

fs, j

× fs, j ,

hm+1,n+1 is determined by 9 pixels ( fs,t , s = i, . . . , i +

2, t = j, . . . , j + 2), hm+1,n+2 is determined by 9 pixels

( fs,t , s = i, . . . , i + 2, t = j + 2, . . . , j + 4), hm+2,n+1

is determined by 9 pixels ( fs,t , s = i + 2, . . . , i + 4, t =

j, . . . , j + 2), hm+2,n+2 is determined by 9 pixels ( fs,t , s =

i + 2, . . . , i + 4, t = j + 2, . . . , j + 4), and the method of

computation is the same as mentioned above.

Because FIF has some level of self-similarity, fine image

structures can be recovered using this feature. Moreover, it is

highly advantageous to improve the interpolation accuracy of

images using these pixels.

IV. EXPERIMENTAL AND DISCUSSION

We conduct a variety of experiments to evaluate the effec-

tiveness of the proposed SR algorithm. Thirteen classic and

recent state-of-the-art methods, including interpolation, sta-

tistical and learning methods, are used to compare the SR
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TABLE V

OBJECTIVE QUALITY ASSESSMENT OF DIFFERENT METHODS (SET14)

Fig. 16. Comparison of SR results (×2) on Girl image. (a) bicubic. (b) BMF. (c) NEDI. (d) ICBI. (e) DCCI. (f) Lanczos. (g) ScSR. (h) NARM. (i) SRCNN.
(j) A+. (k) selfExSR. (l) ANR. (m) Tai’s. (n) our method. (o) original image.
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Fig. 17. Comparison of SR results (×2) on Wall image. (a) bicubic. (b) BMF. (c) NEDI. (d) ICBI. (e) DCCI. (f) Lanczos. (g) ScSR. (h) NARM. (i) SRCNN.
(j) A+. (k) selfExSR. (l) ANR. (m) Tai’s. (n) our method. (o) original image.

Fig. 18. Comparison of SR results (×2) on Baboon image. (a) bicubic. (b) BMF. (c) NEDI. (d) ICBI. (e) DCCI. (f) Lanczos. (g) ScSR. (h) NARM.
(i) SRCNN. (j) A+. (k) selfExSR. (l) ANR. (m) Tai’s. (n) our method. (o) original image.

performance. Interpolation-based SR methods include bicu-

bic interpolation, BMF (applying median filtering for image

preprocessing and then performing bicubic interpolation),

NEDI [3], ICBI [5], DCCI [6], and Lanczos interpolation.

Tai et al. [39] method is a statistical method. ScSR [13],

NARM [21], SRCNN [16], A+ [17], SelfExSR [19], and

ANR [15] are learning techniques. Moreover, ScSR, SRCNN,

A+, and ANR rely on an external training set. Set5 [36],

Set14 [37], and DIV2K [38] are employed to evaluate the

performance of the single-image SR methods in this paper.

In order to assess the SR performance obtained from different

methods, three objective assessment indices of peak signal-to-

noise ratio (PSNR), structural similarity (SSIM), and feature

similarity (FSIM) are reported.

A. Experimental Configuration

In order to demonstrate the improvements of the proposed

algorithm, we perform tests on the image datasets men-

tioned above. In our experiments, LR images are obtained by

down-sampling the HR images directly along both the horizon-

tal and vertical directions by a factor of 2, 3, or 4. For instance,

down-sampling with a factor of 2 means reducing a N × N

image to a N
2
× N

2
image by throwing away every other row and

column. On the other hand, we also test the performance of all

SR methods in more realistic conditions in which LR images

are obtained by unknown downscaling operators. The human

visual system is more sensitive to the luminance channel than

the chrominance channels. Thus, we transform the color RGB

images into YCbCr color space and only conduct all compared

methods in the Y channel. The remaining channels (Cb and Cr)

are simply magnified using the bicubic interpolation algorithm.

All experiments are performed using software provided by the

authors of these methods.

B. Parameter Settings

The proposed rational fractal interpolation model contains

shape parameters that can be employed to slightly adjust the

shape of the surface. The error analysis in Section II-C shows
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Fig. 19. Comparison of SR results (×3) on Baby image. (a) bicubic. (b) BMF. (c) Lanczos. (d) ScSR. (e) NARM. (f) SRCNN. (g) A+. (h) selfExSR.
(i) ANR. (j) Tai’s. (k) our method. (l) original image.

Fig. 20. Comparison of SR results (×3) on Raccoon image. (a) bicubic. (b) BMF. (c) Lanczos. (d) ScSR. (e) NARM. (f) SRCNN. (g) A+. (h) selfExSR.
(i) ANR. (j) Tai’s. (k) our method. (l) original image.

that the shape parameters have a minor effect in the rational

fractal interpolation function compared with the scaling fac-

tors. For an interpolated image based on the model, the influ-

ence of the shape parameters is minor for local image pixels.

Nevertheless, we obtain the suitable range of shape parameters

using a number of training images. Fig. 15 plots the changing

curved lines, which vary with different shape parameters on

the training dataset. The difference is small between α and β;

for simplicity, let α = β. Based on this figure, the shape

parameters are determined from the numbers of experiments,

and α, β, γ are selected in [0.4, 1.2], [0.4, 1.2], [0.5, 2.5] at

random, respectively. Furthermore, the experimental results

demonstrate that the range of shape parameters that we have

selected is reasonable.

C. Quality Assessment

In order to examine the performance of the proposed

algorithm, we ran three versions of the algorithm for three

different scale factors (2, 3, and 4).

Tables IV and V present the objective qualities generated

by all methods for the test images. In Table IV, Set5 is used

to evaluate the performance of upscaling factors of 2, 3, and

4, and Set14 is used to evaluate the upscaling factor of 3

in Table V. Each image corresponds to three lines in the tables,

PSNR, SSIM, and FSIM from top to bottom, respectively. “-”

indicates that related methods cannot achieve the function that

the image is magnified with factors of 3 and 4. It is clear

from these results that the proposed algorithm achieves the

best results among the compared methods in terms of the

three quantitative assessments. Specifically, when the image is

magnified with higher scale factors, the objective data of our

method are higher than is achieved using other methods. For

example, our method yields the best quantitative results for test

images with an upscaling factor of 4 in Table IV, 3.3-5.7 dB

PSNR better than other methods on average. This result occurs

because the proposed interpolation model is IFS, and more

image information can be obtained with less data, compared

with other methods. Moreover, the proposed method has clear
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Fig. 21. Comparison of SR results (×4) on Man image. (a) bicubic. (b) BMF. (c) Lanczos. (d) ScSR. (e) SRCNN. (f) A+. (g) selfExSR. (j) ANR. (i) Tai’s.
(j) our method.

Fig. 22. Comparison of SR results (×4) on Zebra image. (a) bicubic. (b) BMF. (c) Lanczos. (d) ScSR. (e) SRCNN. (f) A+. (g) selfExSR. (j) ANR.
(i) Tai’s. (j) our method.

advantages compared with other methods in the SSIM and

FSIM, which are used for measuring the structure similarity

between two images. This result demonstrates that the fractal

model is quite efficient for describing image textures.

For visual comparisons, Figs. 16-22 present the SR results

of these methods. Figs. 16-18 show images with a resolution

enhancement factor of 2, Figs. 19-20 show images with a

resolution enhancement factor of 3, and Figs. 21-22 show the

SR results of different approaches using an upscaling factor

of 4, where LR images are obtained by unknown downscaling

operators. Overall, compared with those of the other state-of-

the-art methods, the results of the proposed scheme are more

appealing. The primary advantage of our approach is its ability

to obtain vivid texture regions.

As shown in Figs. 16-18, the proposed method can recover

more pleasing details than the other compared methods. The

images generated by NEDI, ICBI, and DCCI are fuzzy and

distorted. Bicubic, BMF, and Tai’s methods also suffer from

blurred artifacts. The results achieved by Lanczos and ScSR

show unnatural details. The texture details are not efficiently

preserved in SRCNN, A+, selfExSR, and ANR. Furthermore,

in Fig. 16, the improvement in edge preservation is significant

in the proposed algorithm’s image compared to the other

methods, where jaggy and blurry artifacts are observed along

the edges in the magnified local regions. NARM, NEDI, and

our proposed method can efficiently preserve the sharpness of

edges.

As shown in Figs. 19-20, overall, with severe blurring

artifacts, the performance of BMF is always inferior to that

of the other methods. Fig. 19(c) and Fig. 20(c) show the

results of the bicubic method, which fails to recover the

structural information of images. As evidenced, some fine

image structures are not recovered by Lanczos. ScSR suffers

from aliasing artifacts in the texture region. The images

obtained by NARM produce overly smooth edges, resulting

in a loss of the fine textures. In the SRCNN, A+, selfExSR,

and ANR magnified images, artifacts appear, and the texture

is twisted heavily. Tai’s method suffers from fuzzy artifacts.

Our method succeeds in avoiding these undesired effects.

Additionally, the images generated by the proposed method

show an outstanding improvement on the compared methods.

Figs. 21-22 show the SR experiments on two LR bench-

marks with unknown sampling kernels. A comparison of

different SR approaches for restoring the texture details is
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shown in Fig. 21. Bicubic, BMF, Lanczos, ScSR, and Tai’s

methods are prone to blurring the image details. Displeasing

artifacts along edges are produced by SRCNN and selfExSR.

selfExSR also suffers from blocking artifacts. ANR, A+,

and our method achieve better results among the considered

methods. As shown in Fig. 22, the proposed algorithm exhibits

a visually appealing appearance compared to the comparison

method.

To summarize, our method outperforms the other algo-

rithms in terms of the objective quality of the SR images.

Furthermore, from the visual results presented, the proposed

algorithm can perform better in image detail areas than the

other methods, and it can retain the edge region well. There-

fore, the constructed interpolation model is quite efficient for

describing the space characteristics information of images.

V. CONCLUSION

In this paper, we present a single-image SR algorithm based

on the rational fractal interpolation model, which is more

suitable for describing the structures of an image. First, for

each LR image patch, the isoline method is employed to detect

texture, such that more detailed textures can be obtained,

and the LR image is divided into texture regions and non-

texture regions. Second, in the interpolation model, the scaling

factors play an important role, whereas the influence of the

shape parameters is minor. Based on the relationship between

scaling factors and the fractal dimension, the scaling factors

are accurately calculated by using the image local structure

feature. Nevertheless, a suitable range of shape parameters is

obtained using a number of training images. Then, rational

fractal interpolation and rational interpolation are used in

the texture region and the non-texture region, respectively.

Specifically, each LR image patch is first interpolated, and

the interpolation is extended to the entire image by traversing

each patch. Finally, an HR image is obtained by pixel mapping.

Because the proposed rational fractal interpolation function is

an IFS, the image can be amplified at any integral multiple

by selecting a suitable mapping. The experimental results

demonstrate that the proposed algorithm achieves competitive

performance and generates high-quality SR images with sharp

edges and rich texture.

APPENDIX

A. Iterated Function System (IFS)

Let {(xi , y j , zi, j ), i = 1, 2, . . . , N; j = 1, 2, . . . , M} be

a given set of data points, closed interval I = [a, b] ⊆ R
contains {x1, x2, · · · , xN }, and closed interval J = [c, d] ⊆

R contains {y1, y2, · · · , yM }. Set Ii = [xi , xi+1] for i ∈

I = {1, 2, · · · , N − 1} and J j = [y j , y j+1] for j ∈

J = {1, 2, · · · , M − 1}. Denote I = {1, 2, · · · , N},J =

{1, 2, · · · , M}. Let φi (x) be contractive homeomorphisms: I

→ Ii ,

φi (x1) = xi , φ(xN ) = xi+1,

|φi (c1) − φi (c2)| ≤ λ|c1 − c2|, ∀c1, c2 ∈ I,

where 0 ≤ λ < 1. Let ϕ j (y) be contractive homeomorphisms:

J → J j

ϕ j (y1) = y j , ϕ j (yM ) = y j+1,

|ϕ j (d1) − ϕ j (d2)| ≤ µ|d1 − d2|, ∀d1, d2 ∈ J,

where 0 ≤ µ < 1. Furthermore, let F = I × J × R, and for

i ∈ I , j ∈ J , the continuous mappings Fi, j : F → R fulfill

Fi, j (x1, y1, z1,1) = zi, j , Fi, j (x1, yM , z1,M ) = zi, j+1,

Fi, j (xN , y1, zN,1) = zi+1, j , Fi, j (xN , yM , zN,M )= zi+1, j+1.

For i ∈ I , j ∈ J , define functions wi, j : F → F ,

wi, j (x, y, z) = (φi (x), ϕ j (y), Fi, j (x, y, z)), (9)

then, IFS (9) generates a unique attractor which is a graph of

a continuous function � : I × J → R satisfying �(xi , y j ) =

zi, j , function � is called a FIF, and the following relation

holds:

�(φi (x), ϕ j (y)) = Fi, j (x, y,�(x, y)), i ∈ I , j ∈ J ,

or

�(x, y) = Fi, j (φ
−1
i (x), ϕ−1

j (y),� ◦ (φ−1
i (x).

FIFs corresponding to the following IFS form were investi-

gated the most extensively:
⎧

⎪

⎨

⎪

⎩

φi (x) = ai x + bi ,

ϕ j (y) = c j y + d j ,

Fi, j (x, y, z) = si, j z + qi, j (x, y),

(10)

where

ai =
xi+1 − xi

xN − x1
, bi =

xN xi − x1xi+1

xN − x1

c j =
y j+1 − y j

yM − y1
, d j =

yM y j − y1 y j+1

yM − y1
,

with −1 < si, j < 1. The parameters si, j are called the vertical

scaling factors.

B. Construction of Bivariate Rational FIFs

Let � = [a, b; c, d] be the plane region, � =

{(xi , y j , fi, j , d∗
i, j , di, j ) : i ∈ I; j ∈ J } a given set of

data points, where a = x1 < x2 < · · · < xN = b and

c = y1 < y2 < · · · < yM = d are the knot spacings, fi, j

represents fi, j (x, y) at the point (xi , y j ), and d∗
i, j and di, j are

the chosen first-order partial derivatives
∂ f (x,y)

∂x
and

∂ f (x,y)
∂y

at the knots (xi , y j ), respectively. Denote hi = xi+1 − xi ,

l j = y j+1 − y j , HN = xN − x1, L M = yM − y1, and for any

point (x, y) ∈ �, θ = x−x1
xN −x1

, η =
y−y1

yM−y1
.

Denote

ω0,0(θ, •∗
i, j ) =

(1 − θ)2(α∗
i, j + θγ ∗

i, j )

(1 − θ)2α∗
i, j + θ(1 − θ)γ ∗

i, j + θ2β∗
i, j

,

ω0,1(θ, •∗
i, j ) =

θ2(β∗
i, j + (1 − θ)γ ∗

i, j )

(1 − θ)2α∗
i, j + θ(1 − θ)γ ∗

i, j + θ2β∗
i, j

,

ω1,0(θ, •∗
i, j ) =

θ(1 − θ)2α∗
i, j

(1 − θ)2α∗
i, j + θ(1 − θ)γ ∗

i, j + θ2β∗
i, j

,

ω1,1(θ, •∗
i, j ) =

θ2(1 − θ)β∗
i, j

(1 − θ)2α∗
i, j + θ(1 − θ)γ ∗

i, j + θ2β∗
i, j

.
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We construct bivariate rational spline interpolants as fol-

lows: first, the x-direction interpolating curve P∗
i, j (φi (x)) in

[x1, xN ] is defined by:

P∗
i, j (φi (x)) =

1
∑

r=0

[ω0,r (θ, •∗
i, j ) fi+r, j + hiω1,r (θ, •∗

i, j )d
∗
i+r, j ],

where α∗
i, j > 0, β∗

i, j > 0, and γ ∗
i, j > 0. The interpolant

P∗
i, j (φi (x)) satisfies:

P∗
i, j (xr ) = fr, j , P∗′

i, j (xr ) = d∗
r, j , r = i, i + 1.

Then, for i ∈ I , j ∈ J and αi, j > 0, βi, j > 0, γi, j > 0,

using the x-direction interpolation function P∗
i, j (φi (x)) defines

the bivariate rational interpolation function on � as follows:

Pi, j (φi (x), ϕ j (y)) =

1
∑

s=0

[ω0,s(η, •i, j )P∗
i, j+s (φi (x))

+ l jω1,s(η, •i, j )Di, j+s (φi (x))], (11)

where

Di, j (φi (x)) = ω0,0(θ, •∗
i, j )di, j + ω0,1(θ, •∗

i, j )di+1, j .

The interpolant Pi, j (x, y) satisfies:

Pi, j (xr , ys) = fr,s ,
∂ Pi, j (xr , ys)

∂x
= d∗

r,s,

∂ Pi, j (xr , ys))

∂y
= dr,s , r = i, i + 1; s = j, j + 1.

Motivated by the construction method of bivariate rational

spline interpolation, rational perturbation base functions are

defined as follows:

Bi, j (x, y) =

1
∑

s=0

[ω0,s(η, •i, j )Bs(M−1)+1,i, j+s(x)

+ L Mω1,s(η, •i, j )Ks(M−1)+1,i, j+s(x)],

where

Bk,i, j (x) =

1
∑

r=0

[ω0,r (θ, •∗
i, j ) fr(N−1)+1,k

+ HNω1,r (θ, •∗
i, j )d

∗
r(N−1)+1,k],

Kk,i, j (x) = ω0,0(θ, •∗
i, j )d1,k + ω0,1(θ, •∗

i, j )dN,k .

Then, function Bi, j (x, y) satisfies

Bi, j (xr , ys) = fr,s ,
∂ Bi, j (xr , ys)

∂x
= d∗

r,s ,

∂ Bi, j (xr , ys)

∂y
= dr,s, r = 1, N; s = 1, M.

Now, consider the following IFS:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

φi (x) = ai x + bi ,

ϕ j (y) = c j y + d j ,

Fi, j (x, y, z) = si, j z + Pi, j (φi (x), ϕ j (y))

−si, j Bi, j (x, y),

(12)

then, the IFS {�×R; (φi(x), ϕ j (y), Fi, j (x, y, z))} defined by

(12) admits a unique attractor G, and G is the graph of a

continuous function �(x, y), and

�(φi (x), ϕ j (y)) = si, j �(x, y) + Pi, j (φi (x), ϕ j (y))

− si, j Bi, j (x, y). (13)

Denote:

A = (ω0,0(θ, •∗
i, j ), ω0,1(θ, •∗

i, j ), ω1,0(θ, •∗
i, j ), ω1,1(θ, •∗

i, j )),

B = (ω0,0(η, •i, j ), ω0,1(η, •i, j ), ω1,0(η, •i, j ), ω1,1(η, •i, j ))
T ,

E =

⎛

⎜

⎜

⎝

E0,0 E0,1 D0,0 D0,1

E1,0 E1,1 D1,0 D1,1

D∗
0,0 D∗

0,1 0 0

D∗
1,0 D∗

1,1 0 0

⎞

⎟

⎟

⎠

,

where for r, s = 0, 1,

Er,s = fi+r, j+s − si, j fr(N−1)+1,s(M−1)+1,

D∗
r,s = hi d

∗
i+r, j+s − si, j HN d∗

r(N−1)+1,s(M−1)+1,

Dr,s = l j di+r, j+s − si, j L M dr(N−1)+1,s(M−1)+1.

When the shape parameters satisfy •∗
i, j = •∗

i, j+1, the fractal

surface �(x, y) defined by (13) can be rewritten as the

following simple matrix form:

�(φi (x), ϕ j (y)) = si, j �(x, y) + AE B. (14)
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