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Abstract: Super-Resolution (SR) techniques for image restoration have recently been gaining attention
due to their excellent performance. For powerful learning abilities, Generative Adversarial Networks
(GANs) have been proven to have achieved great success. In this paper, we propose an Enhanced
Generative Adversarial Network (EGAN) for improving its effects for a real-time Super-Resolution
task. The main content of this paper are as follows: (1) We adopted the Laplacian pyramid framework
as a pre-trained module, which is beneficial for providing multiscale features for our input. (2) At each
feature block, a convolutional skip-connections network, which may contain some latent information,
was significant for the generative model to reconstruct a plausible-looking image. (3) Considering
that the edge details usually play an important role in image generation, a perceptual loss function
was defined to train and seek the optimal parameters. Quantitative and qualitative evaluations
were demonstrated so that our algorithm not only took full advantage of the Convolutional Neural
Networks (CNNs) to improve the image quality, but also performed better than other algorithms in
speed and performance for real-time Super-Resolution tasks.

Keywords: super-resolution; deep-learning; generative adversarial networks

1. Introduction

Super-Resolution (SR) has become a hot topic in the computer vision research com-
munity, since it reconstructs a high-resolution (HR) image from the low-resolution (LR)
information provided. SR has a wide range of applications in medical imaging, and in
security and surveillance, where high-frequency details are required on demand [1]. The
dilemma of SR is that it is an ill-posed inverse problem, since multiple HR patches are
consistent with the given LR patch. To address this issue, additional prior knowledge has
to be made regarding the formation of the desired HR images.

Recently, deep-learning methods have exhibited excellent performance in SR tasks. The
data-driven method has also been used with large improvements in accuracy; this includes
convolutional neural network (CNN)-based methods [2]. For example, the pioneer CNN
model for SR has gained considerable attention because of its portable architecture. This
method [3], termed Super-Resolution Convolutional Neural Network (SRCNN), provides
compelling quality and outperforms traditional non-deep-learning algorithms. Subse-
quently, many follow-up methods have shown their advantages for SR tasks. Kim et al. [4]
deployed gradient clipping and residuals-learning to predict the residuals instead of ac-
tual pixels. Lai et al. [5] proposed the Deep Laplacian Pyramid Network (LapSRN) by
upscaling from a small to a large upscaling factor. They progressively predicted the sub-
band residuals ranging from coarse to fine levels. With the further development of CNNs,
they deployed some skip-connections to improve the image quality. The Deep Recur-
sive Residual Network (DRRN) jointly utilizes skip-connections to fully exploit the latent
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information [6]. At present, the real-time performances of existing networks are poor, the
sample data are difficult to obtain, and the restoration effect is not ideal.

To date, convolutional neural networks have become increasingly powerful in com-
puter vision applications. However, there has been less attention paid to CNNs that
discriminate whether the extracted features are robust, based on their potential to train
high-dimensional, complex real data [7]. There are two outstanding algorithms, Vari-
ational AutoEncoders (VAE) and Generative Adversarial Networks (GANs), that have
excellent performances compared with state-of-the-art algorithms for image processing.
The VAE [8] is an attractive model, since it learns complex probability distributions from
training data. However, the high-quality images significantly depend on the expressiveness
of the inference model. In other words, the VAE is not expressive enough when it is trained
on true posterior distributions. The GANs [9] mimic the target distribution through the
construction of a generative model. The networks represent two parts of the generator
and discriminator to extract features for SR tasks. The algorithm of the GAN may be
characterized as a two-player minimax game between the generative model, which tries to
produce counterfeit data without detection, and the discriminative model, which learns to
distinguish between the synthesized images from the generator and the real images from
data distribution. On the one hand, a noise variable z can be defined as the generative
model input. Goodfellow et al. then incorporated the noise z into the model G to generate
the synthesized images G(z). Furthermore, the parameters of network G can be optimized
constantly based on the feedback information given by the discriminator. On the other
hand, the discriminative model D can be viewed as mappings from the data distribution:
D(x) −→

dicriminator
(0, 1). It determines whether the images are from the generator (false, close

to 0) or from the data distribution (true, close to 1). For the discriminative model D, training
the parameters of D via fixing the generator can classify images. Specifically, they achieve
this strategy with the utility of two joint adversarial networks. This achieves a balance
when the synthesized images G(z) are similar to real images from the data distribution, and
the discriminator D predicts 0.5 between G(z) and the real images for most inputs. Both the
networks of G and D have learned the capacity sufficiently, which is called the Nash equi-
librium [10]. Unfortunately, some of the GAN structures are unstable during the training
performance, which causes that lead generator to produce some artifacts and nonsensical
outputs. Considering that the CNN architecture has a remarkable performance in terms of
feature extraction, we take advantage of CNNs to construct our generator, and then utilize
a discriminator to test whether the generated images satisfy the SR performance.

Quantitative and qualitative evaluations have been demonstrated so that our algorithm
not only takes full advantage of the Convolutional Neural Networks (CNNs) to improve
the image quality, but it also performs better than previous GAN algorithms for super-
resolution tasks.

Super-resolution reconstruction is very important for acquiring image information
and reconnaissance detection. Existing works have some problems, such as a weak gen-
eralization ability and a large space for the mapping function solution. Our framework
improves the resolution detail of the image texture, which provides original materials for
subsequent image processing.

In this paper, we propose Enhanced Generative Adversarial Networks (EGAN) in or-
der to efficiently correct these issues. The main contributions of our network are as follows:

• Convolutional skip-connections: Some CNN algorithms show significant advantages
for SR tasks. Different from cascade networks in typical methods, we design a convo-
lutional skip-connections network based on an end-to-end manner. Note that feature
maps from the intermediate layers may contain some latent information. It is crucial
for the generative model to generate a plausible-looking image that relies on the con-
volutional skip-connections. Therefore, our generator can project some high-frequency
details onto the synthesized images to fool the discriminator, D.

• Perceptual loss function: Normally, several GAN methods are limited by instability
learning during training. We propose a perceptual loss function to penalize the
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samples in our adversarial network. Considering that the edge details usually play a
significant role in image generation, the generator produces synthesized images that
are closer to the real images via our loss function. Moreover, our loss function corrects
the errors between the real images and the generated images, which improves the
accuracy of the discriminator.

2. Related Work

In this section, we discuss some typical SR algorithms, i.e., deep-learning. This includes
both CNN-based methods and GAN-based algorithms. Meanwhile, a brief introduction to
SR techniques and some typical GAN algorithms are illustrated. The detailed information
for SR will be discussed in the following sections.

2.1. Typical Image SR Algorithms

In generally, there are three categories for SR techniques. Earlier interpolation meth-
ods, such as bicubic interpolation and Lanczos resampling [11] can predict the center
pixel using neighboring pixels. Although these interpolation methods are very fast, the
edge information cannot be recovered effectively. To avoid edge artifacts, learning-based
approaches [12–14] can improve the resolution with the help of prior knowledge. However,
the prediction relies significantly on prior knowledge. This makes the effect in reconstruc-
tion drop dramatically while processing complex images. Due to its powerful learning
ability, the deep-learning [15–19] algorithms have shown greater degrees of performance
than the traditional methods in SR tasks. As the pioneer CNN model for SR, there are
three convolutional blocks in SRCNN: feature extraction, non-linear mapping, and recon-
struction. They learn implicit mapping through the CNN model and use this mapping
to recover the HR image from an interpolated image. Unfortunately, considering the lim-
itations of the network layers, there is some characteristic information that is not well
introduced for the further improvement of image quality. Under its powerful calculating
capabilities, an increasing number of CNN-based methods have attracted attention in SR
tasks. These include Fast Super Resolution Convolutional Neural Networks (FSRCNN),
Very Deep Convolutional Network (VDSR), Deeply Recursive Convolutional Network
(DRCN), and Deep Recursive Residual Network (DRRN). Meanwhile, Goodfellow et al. [9]
proposed a GAN that has become more popular and well-known in the deep-learning
field. Various kinds of GANs have been proposed in recent years. Under the guidance of
network structure, the Laplacian Pyramid of Generative Adversarial Network (LapGAN)
produces sharp images using the Laplacian pyramid [20]. The Deep Convolutional Genera-
tive Adversarial Network (DCGAN) has demonstrated great feature representations using
fully convolutional networks in the generator [21], instead of deterministic spatial pooling
functions. Even more excellent and effective are the perceptual loss functions, including a
content loss and an adversarial loss in Super-Resolution using a Generative Adversarial
Network (SRGAN) [22], which achieves state-of-the-art performance. In addition, other
deep-learning algorithms also achieve good results, such as the DRCN [23], InfoGAN [24],
CGAN [25], and CycleGAN [26].

2.2. SR Based on Deep-Learning Algorithms

Recently, SR based on deep-learning algorithms have been proven to achieve great suc-
cess. Many learning models have attracted increasing attention due to their powerful capa-
bilities. To enrich the image details, a multiscale dictionary is presented by Zhang et al. [27].
The related methods for SR tasks originate in compressed sensing [28,29]. Under the
mapping between the LR and HR images, Simonyan and Zisserman propose a deeper
network architecture to increase the accuracy, relying on a high degree of complexity [30].
In Denton et al., the authors present a generative model with a Laplacian pyramid network
(LAPGAN) that is similar to our pre-trained module. The RefineNet [15] fuses finer-grained
features with semantic information through a multipath architecture, which generates se-
mantic HR images, as given by Lin et al. This method also facilitates gradient propagation
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during end-to-end training. The skip-connections [23,31] as an effective design are used
to tackle the gradient vanishing problem. Meanwhile, it is beneficial for skip-connections
to carry significant information during the forward propagation. For these reasons, the
DRRN adopts many skip-connections between the convolutional layers to improve the
SR performance. In addition, Salimans [32] et al. present feature matching to accelerate
convergence using the mean squared error (MSE). This assists the discriminator in handling
some images that are poor in high-frequency details. In Ledig et al. [18], the authors use
a perceptual loss function based on the VGG19 network to generate more photo-realistic
images than typical algorithms. According to related work, an enhanced architecture is
crucial for the GAN algorithm.

3. An Enhanced Generative Adversarial Network for SR

In this section, we begin to describe our network for SR tasks. As shown in Figure 1,
the structure of our algorithm mainly consists of two networks, including the generative
network structure and the adversarial network structure. According to the typical SR
approach using GAN methods, our generative network can be divided into three modules.
On the one hand, inspired by the LapGAN [20], we employ an improved input using the
Laplacian pyramid as our pre-trained module to refine image features. Since the feature
maps of convolutional extraction may be “influenced” by the next layer, we add some
convolutional skip-connections to obtain more latent information. Additionally, the loss
function is perceptual for our generative network to optimize its parameters. On the other
hand, we improve the discriminative network summarized by Ledig et al. [18] to design
our structure.

Figure 1. Our architecture of the Enhanced Generative Adversarial Network. The structure of the
generative network and the discriminative network are depicted in (a,b), where (a) contains the Lapla-
cian pyramid framework and the convolutional skip-connections, and (b) contains three modules of
the convolutional layers, BN and LReLU.

Our discriminative network is constantly trained to distinguish the synthesized images
from the generator, and the real images from the data distribution.

3.1. Generative Network Structure
3.1.1. Laplacian Pyramid

Recently, the Laplacian pyramid framework has shown a powerful capability using
a coarse-to-fine model as Figure 2 shown. Considering the remarkable performance, we
adapt this framework as our pre-trained module. In our network, the generator takes
a noise variable z as its input and produces an image, I. Normally, down(•) denotes a
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down-sample operator to blur and extract an s×s image, I, and down(I) becomes a new
size, s/2 × s/2. Meanwhile, up(•) represents an up-sample operation to double the size of
the image, so that up(I) turns into a larger image (2 s × 2 s).

Figure 2. The sample of the Gaussian pyramid and the Laplacian pyramid, where the upward arrow
denotes an up-sample operator, and the downward arrow represents a down-sample operator.

Resampling can be used to keep specific information (so that target information is
not lost) and to consciously change the distribution of the samples to suit the training and
learning of subsequent models.

• We construct a Gaussian pyramid G(I) = [I1, I2, . . . , IN]; here, I1 = I and IN is N
recursive applications of down(•) to I. The IN can be viewed as the Nth number of
levels in the pyramid. In addition, the top level has to retain a certain size because the
image has too few pixels to recover (we usually set N = 3 in the pre-trained module).
We initialize the down-top levels with the Gaussian kernel w, and then remove the
even lines:

IN(i, j) =
2

∑
m=−2

2

∑
n=−2

w(m, n) · IN−1(2i + m, 2j + n) (1)

• The image LN(I) denotes the Nth levels of the Laplacian pyramid, which is made
up of two adjacent levels in the Gaussian pyramid. Then, we up-sample the smaller
image with the up(•) operator, so that the image LN(I) sizes can be expressed as:

LN(I) = GN(I)− up(GN+1(I)) = IN − up(IN+1) (2)

Obviously, each level corresponds to a scale image. As a low-frequency residual, the
top-level image can be equal to the Gaussian pyramid, such as GN(I) = LN(I). The finest
image in the pre-trained module is calculated by combining the Laplacian pyramid image
with the backward recurrence, and the resultant IN can also be viewed as:

IN = up(IN+1) + LN(I) (3)

The initial image is IN = LN(I), and the finest image is I1 = IN . In summary,
beginning with the coarsest level, we alternately up-sample and add a particular scale
image, LN(I), from the following finer level. Finally, we can calculate the finest image in
the pre-trained module.

3.1.2. Convolutional Skip-Connections

The typical CNN algorithms have been proven to exhibit great advantages for SR
tasks [33]. These CNN-based algorithms extract effective and robust features from LR
information using convolutional layers such as SRCNN, VDSR, and DRRN. The convolution
and ReLU operator can be viewed as:
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f (x) = max(w⊗ x + b, 0) (4)

However, some GAN methods are not successfully applied to image super-resolution.
The authors of DCGAN utilize a cascade convolutional network to generate image repre-
sentations. Although the above algorithm extracts the image features using a convolutional
neural network, the cascade architecture limits the generator to learn deep semantic fea-
tures. We argue that feature maps from the intermediate layers may contain some latent
information that are crucial for image representations. Therefore, it is important for our
generator to employ some convolutional skip-connections and then to extract feature maps
from the intermediate layers, which effectively avoids deep semantic loss. The deployed
convolutional skip-convolutions can be represented by the following in Figure 3.

Figure 3. The convolutional skip-connections for our parallel architecture, with 5 blocks in the
network. The 1st block can extract some coarse features, and 3 convolutional skip-connections (from
the 2nd to the 4th blocks) are used to carry semantic information for the generated images. The last
convolutional layer generates the synthesized images in the 5th block.

The convolutional skip-connections play a significant role in both the forward propaga-
tion and the backward propagation. On the one hand, each convolutional skip-connection
introduces a convolutional layer that is compared with traditional skip-connections, which
slightly adjusts the feature maps that are extracted during the forward propagation. On the
other hand, our convolutional skip-connections alleviate the gradient vanishing problem in
the backward propagation, because the gradient is passed directly by our convolutional
skip-connections.

Specifically, we use small 3 × 3 kernels for the convolutional layers, as inspired by
Gross et al. [31], and we use the activation function ReLU as our first block. From the
second to fourth blocks, a series of fractional-strided convolutions (FSC) are applied to
all convolutional layers, as proposed by Radford. Considering that batch normalization
(BN) is usually utilized to counteract the internal covariate shift [34], the BN helps to
bridge between the fractional-strided convolutions and ParametricReLU. For the activation
function PReLU, the mathematical formulation can be expressed as:

PReLU = max(x, 0) + a max(0, x) (5)

where x denotes the input signal, and the parameter a is learnable for the PReLU in the
negative portion, which effectively alleviates the “dead feature” in the zero gradients [35].
In the fifth block, the convolutional layer generates a plausible-looking image, with the
goal of fooling the discriminative model D.

3.2. Discriminative Network Structure

The discriminator constantly improves the learning ability to distinguish between
generated images and real images during the training procedure. As shown in Figure 1, our
discriminative network is optimized in structure compared with the traditional discriminator.

Specifically, we employ 10 convolutional layers sized at 3 × 3 kernels. To obtain
more context, the size of the receptive field is increased by a factor of 2, from 64 to 512.
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Considering that the sizes are proportional to the layers, we follow the available framework
of the VGG19 network. Similar to the generator, there are three CBL modules in our
discriminative network. Each CBL module contains the convolutional layers BN and
LReLU. We also employ two convolutional skip-connections after each CBL module, which
can obtain more high-frequency details to distinguish the images. The convolutional layers
are used to extract abundant features. The 512 results are followed by a dense layer and
a flattened layer. These operations map each multidimensional input onto another one-
dimensional vector. Then, the vectors are fed into fully connected layers to combine the
features from the previous layers. Finally, a sigmoid function with one node produces a
probability for the classification.

3.3. Perceptual Loss Function

A two-player minimax game proposed by Goodfellow et al. [9] has been proven to
show a relatively good performance for loss functions. Firstly, the authors incorporate
noise z from the distribution in the generative model G over data x as an input variable
pz(z). Secondly, they map the input z to the data space G(z; θ) over the generative network.
During the training procedure, the generator has enough capacity to fool the discriminative
model in order to maximize the probability that the discriminator believes the fake samples
from the real images. The generative model G is trained to minimize the log(1− D(G(z))).
Thirdly, the discriminative model D constantly improves its learning ability, and then it
distinguishes whether the images are from the generator or from the data distribution.
Likewise, they maximize the log(D(x)) for the discriminator. The value function for the
GAN is composed as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (6)

When G and D have been sufficiently trained, they will reach a stationary point where
they both converge to a Nash equilibrium. Then, the discriminative model D can be
denoted in Equation (7) via a fixed G.

D#
G(x) =

pdata (x)
pdeta(x) + pg(x)

(7)

When reaching a stationary Nash equilibrium for pg = pdata, we use D#
G(x) to denote

D(x) for simplicity, and Equation (8) can be reformulated as:

max
D

V
(

D#, G
)
= Ex∼pdata

[
log D#

G(x)
]
+ Ez∼pz

[
log
(

1− D#
G(G(z))

)]
(8)

= Ex∼pdata

[
log

pdata (x)
pdata (x) + pg(x)

]
+ Ez∼pz

[
log

pg(x)
pdata (x) + pg(x)

]
(9)

=
∫

x
pdata (x) log

0.5×pdata (x)
pdata (x)+pg(x)

2
dx +

∫
x

pg(x) log

0.5×pg(x)
pdata (x)+pg(x)

2
dx (10)

= 2 log
1
2
+
∫

x
pdata (x) log

pdata (x)
pdata (x)+pg(x)

2
dx +

∫
x

pg(x) log

pg(x)
pdata (x)+pg(x)

2
dx (11)

= 2 log
1
2
+ 2 JSD

(
pdata (x)‖pg(x)

)
(12)

Here, the JSD(x||y) function is the abbreviation of the Jensen–Shannon Divergence
between the generative model and the data distribution [26]. However, the above loss
function exhibits some limitations. For instance, the discriminator only focuses on whether
the input is effectively distinguished (true or false), but there is no penalty for D when
it misclassifies those fake samples. This easily causes the gradient vanishing problem
where a saddle point may be found. Inspired by LSGAN, Mao et al. [30] adopted the least
squares loss function for the discriminative model. Based on this observation, we employed
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an energy-based regularization term as part of our loss function, to further improve the
accuracy of the GAN. Since the center pixels in the synthesized images were correlated
with their neighboring ones, we argued that the generator could autonomously converge
to reach a point where there is lower energy and it is more stable, under the conditions of a
regularization term.

In our adversarial network, the generator and discriminator have different percep-
tional loss functions, respectively. There are three parts for the generative loss function,
which includes content loss, adversarial loss, and energy-based regularization. We define
the content loss as the MSE between the synthesized images G(z) from the generator and
the real images x, from the data distribution. The content loss ensures the G(z) and x
are closer to perceptual similarity during the training. While having enough capacity to
fool the discriminative model, this encourages the adversarial loss to minimize the error
(D(G(z))− 1) as little as possible. Although each pixel xi in the images has more or less
correlation with neighbors of xj in the batch x1, . . . , xn, there are significant differences
between the pixels on the edge. According to [36], we adopt the energy-based regulariza-
tion E(zi, zj) to restrict the relationship between the center pixels and the neighboring ones
generated by G. Our generative loss function can be formulated as follows:

LG(x, z) = n1‖G(z)− x‖2
F + n2‖D(G(z))− 1‖2

F + n3 ∑
i,j

E
(
zi, zj

)
(13)

Here, || • ||F denotes the Frobenius norm, and the coefficients n1 = 1, n2 = 0.1, and
n3 = 0.1 in our experiment. The energy-based regularization ∑i,j E

(
zi, zj

)
for the calculation

is as follows:

∑
i,j

E
(
zi, zj

)
=

16

∑
i=1

16

∑
j=1

G
(
zi, zj

)
· exp

(
−
∥∥zi − zj

∥∥2

2a2

)
+
(
1− G

(
zi, zj

))
· exp

(
−
∥∥1− | zi − zj

∥∥2

2b2

)
(14)

where zi, zj represents the center pixel and its 16 connected pixels, respectively. G(zi, zj)
denotes the gradient to reduce the error probability. In the Equation (10), we set a = 1 and
b = 1 for simplicity. Note: {

G
(
zi, zj

)
= 0 if zi = zj

G
(
zi, zj

)
= 1 otherwise

(15)

Likewise, the discriminator as a classifier can determine whether the images are from
the generator or the data distribution, if given training time. Our discriminative loss
function not only calculates the MSE in the case of discriminator misclassification, but
it also has enough capacity to distinguish between real images and generated images.
Therefore, the discriminative loss function effectively avoids mode collapsing and increases
the performance accuracy. Therefore, we have the following loss function:

LD(x, G(z)) =
1
2
‖D(x)− 1‖2 +

1
2
‖D(G(z))‖2 (16)

In summary, our perceptual loss function, including the generative and discriminative
parts, is significant for our network, since it refines the high-frequency details and corrects
the errors between the real images and the generated images.

4. Experiments

In this section, we demonstrate the excellent perceptual performance of our network,
and we make visual and quantitive comparisons with several state-of-the-art algorithms.
There are three subsections as follows: First, we brief our algorithm; then, we introduce
some details in the modified network structure, such as the Laplacian pyramid, convolu-
tional skip-connections, and perceptual loss function; lastly, we compare the performance
with several existing algorithms based on public datasets to illustrate the effectiveness of
our algorithm.
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4.1. Experimental Dataset and Setting

To increase the diversity of the training samples, flipping and rotation techniques are
introduced into a large database. For example, we rotate the images by 0°, 90°, 180°, or 270°
to generate different directions. Then, we randomly flip between the horizontal or vertical
images. Additionally, there are four different scales, including ×0.9, ×0.8, ×0.7, and ×0.6 for
the training images to enlarge the multiscale samples. After data augmentation, the dataset
made up of 600,000 images from the ImageSet dataset [37] was divided into a validation set
and training set, with a ratio of 8:2. For testing, the benchmark datasets, including Set5 [35],
Set14 [38], BSD100 [36], and Urban100 [39] are adopted, respectively.

Most of the experiments are performed between the LR and HR images at a scale
factor of ×2, ×3, and ×4. For a fair comparison, the averaged peak signal-to-noise ratio
(PSNR), the structural similarity index (SSIM), and the information fidelity criterion (IFC)
are calculated for quantitative evaluation. In addition, the SR images for the methods,
which include SRCNN, VDSR, DRRN, and SRGAN, are obtained from Huang et al., and
are available online.

Our network is conducted on a workstation with an Intel i9 12900K CPU, a Linux
operating system, and two GeForce RTX3080Ti GPUs.

4.2. Implementation Details
4.2.1. Laplacian Pyramid Performance

Decreasing by a factor of 1/2 from the original size to 1/4 size in the Laplacian pyramid
framework, we obtain the LR images by using a down-sample operator on the HR images.
A multiscale Gaussian pyramid G(I) = [I1, I2, I3] has been built. As shown in Figure 4, we
use a bicubic kernel (3 × 3) with an up-sampling operation to match the size of the upper
layer. Specifically, we first up-sample the 1/4 size image by a factor of 2, and then connect
it to the 1/2 size image. Then, we up-sample the 1/2 size with a ×2 factor to match the
original-sized image. The up-sample operator on the small images (1/4 size, 1/2 size) are
from Equation (2). All path inputs that have the same size are fused into the Laplacian
pyramid image.

Figure 4. The Laplacian pyramid framework for our pre-trained module, which contains three
convolutional layers with 3 × 3 filter kernels, and two up-sampled operators by a factor of 2.

As shown in Table 1, we design different multipath inputs as contrast experiments.
We utilize the same parameter configuration to test the representative datasets on B100 and
Urban100. The quantitative results have shown that the more input paths, the higher the
PSNR. The extra size inputs can provide potential information for the Laplacian pyramid
image. Therefore, our pre-trained module not only exploits down-top levels of robust
information, but it also produces high-frequency samples for the generative model.
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Table 1. Comparison with different sized inputs on BSD100 and Urban100.

Inputs

PSNR(dB) Dataset
BSD100 Urban100

Original size 32.30 30.79

Original size + 1/2 size 32.38 30.88

Original size + 1/2 size +1/4 size 32.41 30.93

4.2.2. Convolutional Skip-Connections Performance

Noting that the feature maps from the intermediate layers may contain some latent
information, we compare the results from three different blocks of convolutional skip-
connections (CSC), based on Set14. In Table 2, the red line represents the first convolutional
skip-connection in Figure 3. Similarly, the blue line and green line denote the second
convolutional skip-connection and the third convolutional skip-connection, respectively.
These three convolutional skip-connections construct a parallel module, which can be
expressed as:

Iout = FBP(Iin) + fR(Iin) + fB(Iin) + fG(Iin) (17)

Table 2. Comparison with different convolutional skip connections in each input (for the color of
CSC module, refer to Figure 3).

Inputs
CSC 1st CSC (Red) 2nd CSC (Blue) 3rd CSC (Green)

(a)
√

(b)
√ √

(c)
√ √ √

Here, Iin and Iout denote the input and output image, respectively. The function FBP
is made up of FSC, BN, and PReLU, and we use FBP(Iin) to represent a cascade network.
For example, the function fR(Iin) denotes the first convolutional skip-connection with a red
line, which is similar to fB(Iin) and fG(Iin).

As shown in Figure 5, the image generated by the third CSC has richer details com-
pared with the other two groups. Thus, our parallel module including three CSCs recon-
structs the HR images with more semantic information and more refined feature maps.

Figure 5. Visual comparison with different inputs on the convolutional skip connections. (a) The
generative network has only red convolutional skip-connections. (b) There are 2 convolutional
skip-connections, including red and blue, in the generative network. (c) Our generative network is a
parallel architecture, which contains red, blue, and green convolutional skip-connections.

4.2.3. Perceptual Loss Function Performance

As stated in Section 3.3, the implementation of the perceptual loss function can be
trained to alleviate losses through the adversarial network. In our experiment, we evaluate
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the performance of three loss functions: SRGAN, EGAN without energy-based regular-
ization, and EGAN with energy-based regularization. The results are shown in Figure 6.
On one hand, EGAN has a smaller loss compared with SRGAN, which accelerates the
convergence speed. On the other hand, the energy-based regularization overcomes over-
fitting effectively, and gives the generated images more robust details. When the epochs
reach 5000, the loss caused by the generator and the discriminator becomes stable. The
converging speed of EGAN with energy-based regularization is the fastest, indicating that
the network has a better convergence speed. In other words, G obtained the capacity of
generating fake images, and D can also provide real-time feedback for G, which is beneficial
for tuning hyperparameters.

Figure 6. Convergence analysis on the loss functions between SRGAN and EGAN. Our loss func-
tion with energy-based regularization shows powerful performance, as well as a relatively fast
convergence.

Although most GAN algorithms have momentum during the training progress, we use
Adaptive Moment Estimation (Adam) [40] for all hyperparameters. This method not only
stores the average exponential decay in AdaDelta, but also keeps the average exponential
decay from the gradient M(t), which is similar to the momentum method.

M∗(t) =
M(t)

1− βt
1

(18)

V∗(t) =
V(t)

1− βt
2

(19)

Here, M(t) and V(t) are the gradients of first-order and second-order moment estima-
tions, respectively. We set the momentum to β1 = 0.9 and β2 = 0.999. The variables M∗(t)
and V∗(t) can be used as unbiased estimation to correct M(t), V(t).

4.3. Comparisons with the State-of-the-Art Algorithms

We compare the proposed EGAN with four state-of-the-art SR algorithms: SRCNN,
VDSR, DRRN, and SRGAN. Visual examples are shown from Figures 7–10, and the quanti-
tative results are provided in Tables 3 and 4. These experimental results shown that the
EGAN outperforms the other methods in terms of average PSNR, SSIM, and IFC metrics.
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There is a trade-off between the speed (time) and the performance (PSNR) by a
factor of 4 on the datasets, including Set5, Set14, BSD100, and Urban100. All algorithms
are trained on the ImageNet dataset for a fair comparison. In Table 3, we find that our
network solves the real-time SR task while displaying good performance. For example, our
algorithm achieves a 0.6 dB higher average PSNR than the SRGAN, with the same SR time.
Meanwhile, EGAN is also a fast method that is twice as fast as the DRRN, while reaching a
stable point. As shown in Table 3, the proposed method has better experimental results
compared with other algorithms under different scales. It shows that the convolutional
skip-connections in the network structure of this paper are practical for dealing with
super-resolution reconstruction problems. Our framework is beneficial for providing richer
details for the pre-trained module compared to a single input method, and it shows better
performance in real time.

Table 3. The average PSNR (dB) and SR time (s) for a magnification factor of ×4 is compared.

Algorithms SRCNN [3] VDSR [4] DRRN [6] SRGAN [22] EGAN

Datasets P(dB) T(s) P(dB) T(s) P(dB) T(s) P(dB) T(s) P(dB) T(s)

Set5 30.48 0.25 31.35 0.15 31.54 2.30 30.91 1.82 31.53 1.12

Set14 27.50 0.46 28.01 0.28 28.19 4.88 27.40 3.56 28.15 2.46

BSD100 26.90 0.22 27.29 0.17 27.32 2.69 26.84 2.02 27.41 1.42

Urban100 24.52 3.56 25.18 3.02 25.21 10.52 24.79 6.87 25.28 4.98

As reported in the visual examples, the generative HR images not only express more
pleasing effects, but they also have much sharper and more vivid contours under the deep
supervision of the discriminator. In Table 4, our algorithm achieves a greater score when
relying on the novel network structure. It is crucial for the plausible results, based on four
benchmark datasets, to use the Laplacian pyramid and the convolutional skip-connections.
In addition, the energy-based regularization strategy, which can capture high-frequency
details, has been adopted in our loss function.

Table 4. Benchmark results. Average PSNR, SSIM, and IFC on the datasets for comparison, increasing
by factors of 2, 3, and 4. Bold fonts represent the best results for each category.

Datasets Scale SRCNN [3] VDSR [4] DRRN [6] SRGAN [22] EGAN

× 2 36.66/0.9542/8.04 37.53/0.9587/8.19 37.74/0.9571/8.67 35.63/0.9418/8.23 36.96/0.9553/8.43

× 3 32.75/0.9090/4.66 33.66/0.9213/5.22 34.03/0.9244/5.40 31.82/0.8826/4.69 33.92/0.9234/5.47Set5
× 4 30.48/0.8628/3.00 31.35/0.8838 /3.50 31.68/0.8888/3.70 29.53/0.8304/3.12 31.64/0.8798/3.76

× 2 32.45/0.9067/7.79 33.03/0.9124/7.88 33.23/0.9136/8.32 31.04/0.9018/7.83 33.17/0.9123/8.25

× 3 29.30/0.8215/4.34 29.77/0.8314/4.73 29.96/0.8349/4.88 28.76/0.8171/4.82 29.25/0.8324/4.99Set14
× 4 27.50/0.7513/2.75 28.01/0.7674/3.07 28.21/0.7720/3.25 26.52/0.7470/3.17 28.13/0.7602/3.29

× 2 31.36/0.8879/7.24 31.90/0.8960/7.17 32.05/0.8973/7.70 30.85/0.8342/7.32 31.98/0.8921/7.74

× 3 28.41/0.7863/3.37 28.82/0.7976/3.94 28.95/0.8004/4.21 27.80/0.7363/4.04 28.89/0.8005/4.35BSD100
× 4 26.90/0.7101/2.41 27.29/0.7251/2.63 27.36/0.7284/2.77 25.43/0.6633/2.59 27.11/0.7186/2.82

× 2 29.50/0.8946/8.00 30.76/0.9140/8.27 31.23/0.9188/8.92 29.75/0.9033/8.33 31.39/0.9202/9.01

× 3 26.24/0.7989/4.58 27.14/0.8279/5.19 27.53/0.8076/5.32 27.15/0.7076/5.32 27.61/0.8441/5.54Urban100
× 4 24.52/7.221/2.96 25.18/0.7524/3.41 25.44/0.7310/3.68 25.34/0.7310/3.51 25.40/0.7639/3.77
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Figure 7. Visual comparisons for ×2, ×3, and ×4 SR on Set5, image “woman” with scale factor ×2,
image “baby” with scale factor ×3, and image “butterfly” with scale factor ×4 are shown, respectively,
in the 3 lines.
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Figure 8. Visual comparisons for ×2, ×3, and ×4 SR on Set14, image “lenna” with scale factor ×2,
image “ppt3” with scale factor ×3, and image “baboon” with scale factor ×4 are shown, respectively,
in the 3 lines.
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Figure 9. Visual comparisons for ×2, ×3, and ×4 SR on BSD100, image “101087” with scale factor ×2,
image “148026” with scale factor ×3, and image “302008” with scale factor ×4 are shown, respectively,
in the 3 lines.
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Figure 10. Visual comparisons for ×2, ×3, and ×4 SR on BSD100, image “img009” with scale factor ×2,
image “img007” with scale factor ×3, and image “img077” with scale factor ×4 are shown, respectively,
in the 3 lines.
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5. Conclusions

We propose a super-resolution algorithm based on the Enhanced Generative Ad-
versarial Network (EGAN). To better learn the semantic features and to generate image
representations, the Laplacian pyramid and convolutional skip-convolutions frameworks
have been accepted. It is significant for the generative model to generate a plausible-looking
image. In addition, we also present a perceptual loss function, which can further refine
high-frequency details. Quantitative and qualitative evaluations in Tables 3 and 4 have
demonstrated that the proposed method performs better than other algorithms at the
same speed. For example, our algorithm achieves a 0.6 dB higher average PSNR than the
SRGAN, within the same SR time. Meanwhile, EGAN is also a fast method, and is twice
as fast as DRRN in reaching a stable point. Therefore, our algorithm achieves the best
score, considering both speed and performance. Nevertheless, our algorithm has some
limitations, such as the production of some nonsensical outputs, and it is unstable to train.
These problems will be studied in our future work.
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Abbreviations
The following abbreviations are used in this manuscript:

SR Super-Resolution
GANs Generative Adversarial Networks
EGAN Enhanced Generative Adversarial Networks
CNNs Convolutional Neural Networks
HR High-resolution
LR Low-resolution
SRCNN Super-Resolution Convolutional Neural Network
LapSRN Deep Laplacian Pyramid Network
DRRN Deep Recursive Residual Network
VAE Variational AutoEncoders
FSRCNN Fast Super Resolution Convolutional Neural Networks
VDSR Very Deep Convolutional Network
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DRCN Deeply Recursive Convolutional Network
DRRN Deep Recursive Residual Network
LapGAN Laplacian Pyramid of Generative Adversarial Network
DCGAN Deep Convolutional Generative Adversarial Network
SRGAN Super-Resolution using a Generative Adversarial Network
MSE Mean squared error
FSC Fractional-strided convolutions
BN Batch normalization
PSNR Signal-to-noise ratio
SSIM Structural similarity index
IFC Information fidelity criterion
CSC Convolutional skip-connections
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