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Abstract: Limited resolution is one of the most important factors hindering the application of remote
sensing images (RSIs). Single-image super resolution (SISR) is a technique to improve the spatial
resolution of digital images and has attracted the attention of many researchers. In recent years,
with the advancement of deep learning (DL) frameworks, many DL-based SISR models have been
proposed and achieved state-of-the-art performance; however, most SISR models for RSIs use the
bicubic downsampler to construct low-resolution (LR) and high-resolution (HR) training pairs.
Considering that the quality of the actual RSIs depends on a variety of factors, such as illumination,
atmosphere, imaging sensor responses, and signal processing, training on “ideal” datasets results
in a dramatic drop in model performance on real RSIs. To address this issue, we propose to build a
more realistic training dataset by modeling the degradation with blur kernels and imaging noises.
We also design a novel residual balanced attention network (RBAN) as a generator to estimate super-
resolution results from the LR inputs. To encourage RBAN to generate more realistic textures, we
apply a UNet-shape discriminator for adversarial training. Both referenced evaluations on synthetic
data and non-referenced evaluations on actual images were carried out. Experimental results validate
the effectiveness of the proposed framework, and our model exhibits state-of-the-art performance in
quantitative evaluation and visual quality. We believe that the proposed framework can facilitate
super-resolution techniques from research to practical applications in RSIs processing.

Keywords: remote sensing images (RSIs); super resolution (SR); real-world degradation; deep
learning (DL); balanced attention

1. Introduction

Remote sensing images (RSIs) captured using satellites or aircraft are essential in many
applications such as environmental surveys [1,2], disaster monitoring [3,4], and resource
censuses [5,6]. Spatial resolution is one of the most important metrics of RSIs that advanced
satellites or aircraft researchers have been striving to improve; however, the high cost
of high-performance imaging systems and harsh imaging conditions in space limit the
resolution of RSIs to sub-meter levels. Single image super resolution (SISR) is a technique
for reconstructing high-resolution (HR) images from low-resolution (LR) observations [7–9].
It is widely employed in a range of scenarios such as mobile devices, medical imaging, and
remote sensing. It has been a research hotspot in the field of low-level image processing
for decades.

SISR is an ill-posed problem since high-frequency information is lost during imaging.
A single LR image may correspond to multiple HR solutions [7,10,11]. To address this
problem, many practical frameworks have been proposed, which can be grouped into
three categories: (i) interpolation-based methods, (ii) reconstruction-based methods, and
(iii) learning-based methods. Interpolation-based methods estimate missing pixel values
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with different interpolation functions such as bilinear, bicubic, and spline [12]. These
methods are commonly used to scale images due to their high computational efficiency but
often lead to over-smoothed results. Reconstruction-based methods attempt to investigate
image degradation processes, such as out-of-focus, motion, aliasing, and noise, and build
models to implement the inverse process. Reconstruction-based methods can recover
sharp details with prior information of the degradation process, but suffer from heavy
computation and reconstruction artifacts. Learning-based approaches learn the mapping
between LR and HR images in the collected dataset and try to generalize to images outside
the dataset. In recent years, convolutional neural networks (CNN) have received increasing
attention due to their excellent nonlinear representation and feature extraction capabilities.
Many CNN-based methods are proposed to solve the SISR problem and achieve state-of-the-
art performance. Lu [13] proposed a multi-scale residual neural network (MRNN), which
adopts the multi-scale properties to reconstruct high-frequency information accurately for
the super resolution (SR) of RSIs. Xiong [14] modified the loss function and the structure of
the super-resolution generative adversarial network (SRGAN) for SR of RSIs.

Deep learning (DL) methods have achieved promising results on SR of RSIs, but there are
still some problems. Current datasets for the SR of RSIs, such as AID [15], UCMERCED [16],
and RSIs-CB256 [17], are not designed for real-world situations. Since the HR observations
for RSIs datasets are difficult to obtain, most RSIs datasets actually contain only LR images.
To build input–target pairs to train the deep neural network, most studies [18–20] employ a
simple strategy of generating lower resolution (abbreviated as LR’) images from LR images
with bicubic interpolation. Networks trained on LR’–LR pairs can achieve satisfactory
results on the test dataset since the test images are also LR’ images instead of the actual
RSIs; however, the LR’–LR mapping is quite different from the LR–HR mapping. Due to
the imperfect illumination, atmospheric propagation, lens imaging, sensor quantification,
etc., the RSIs suffers from image degradation such as blur and noise. In addition, the image
degradation can be mitigated through downsampling; therefore, the learned mapping
comes from clean LR’ images to contaminated LR images instead of the expected mapping
from contaminated LR images to clean HR images. This is the main reason why many pre-
vious studies can achieve excellent experimental results, but face performance degradation
in practical scenarios.

To address this issue, inspired by recent advanced research [21–23], we apply a frame-
work to construct realistic datasets by modeling real-world degradation in remote sensing
images. As the realistic SISR task is more complicated than the ideal SISR task, we also
propose a novel neural network with a balanced attention mechanism to achieve better
performance. More specifically, we classify the degradation of RSIs into two categories,
blur and noise. The blur simulates the diffraction limit of a lens, the disturbance of atmo-
sphere, and the relative movement of image platforms to the Earth. The noise includes
different kinds of imaging noise and JPEG compression noise. Blur kernels and noise
patterns are collected and randomly used to synthesize realistic LR images and construct
LR–HR training pairs. By training on realistic datasets, the performance of the model under
real-world conditions can be significantly improved. As for the network, we propose a
residual balanced attention network (RBAN) that integrates the residual in the residual
structure and a balanced attention mechanism. A modified UNet model is adopted as a
pixel-wise discriminator to achieve more realistic SISR results. Thorough experiments were
conducted and the results demonstrate the effectiveness of the proposed framework and
neural network.

The contributions of this study are highlighted as follows: (i) We propose a framework
integrating blur kernel estimation and noise pattern extraction to model the degradation
of remote sensing images; (ii) we construct a realistic RSIs dataset based on the open
source Aerial Image Dataset (AID) for training and testing, which greatly enhances the
performance of models on real RSIs; (iii) we propose a novel SISR model termed residual
balanced attention network (RBAN) and apply a modified UNet model as the discrimi-
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nator to improve perceptual performance. The proposed model achieves state-of-the-art
performance on the realistic RSIs dataset.

The rest of this paper is organized as follows. In Section 2, related works about CNN-
based SISR methods and RSIs SISR methods are summarized. In Section 3, the framework
and model are proposed. Section 4 details the experimental results of the proposed method
and compares it with the state-of-the-art methods. Conclusions are drawn in Section 5.

2. Releated Work
2.1. CNN-Based SISR Methods

Since the advent of CNN, it has outperformed traditional methods in a growing
number of computer vision tasks, including SISR. To solve the SISR problem with CNN,
Dong et al. [24] proposed a shallow super-resolution CNN (SRCNN), which can learn the
mapping from interpolated LR images to HR images. SRCNN outperforms state-of-the-art
traditional SISR methods such as K-SVD [25] and ANR [26], and attracts more researchers
to study the CNN-based SISR methods. Later, Caballero et al. [27] proposed to use the
pixel-shuffle layer to improve the spatial resolution of feature maps so that computations
could be performed in LR space to reduce the computational effort. SRCNN contains
only three convolutional layers, which limits its performance. To deepen the network and
obtain stronger learning ability, Kim et al. [28] applied the residual learning strategy and
proposed a 20-layer very deep super resolution (VDSR) model. Due to its larger receptive
field, the reconstruction performance of VDSR is much better than that of SRCNN, and the
residual learning strategy has become the standard configuration for CNN-based SISR
since then. Inspired by VDSR, Ledig et al. [29] proposed SRResNet, which employs the
residual learning strategy both globally and locally. Ledig also proposed the generative
adversarial training framework SRGAN, which enables photo-realistic SISR. Since SRGAN,
GAN-based methods have become the dominant framework for better perceptual results.
By removing the batch normalization layer in SRResNet, Lim et al. [30] proposed an
optimized residual block module and an enhanced deep super-resolution network (EDSR).
Inspired by the channel attention mechanisms commonly used in high-level computer
vision problems such as classification and detection, Zhang et al. [31] proposed a deep
residual channel attention network (RCAN). Subsequently, Liang et al. [23] successfully
adopted the shifted windows transformer module in SISR and proposed a state-of-the-art
model SwinIR. Anwar [32] proposed a densely residual Laplacian network (DRLN), which
employs cascading residual structure to allow low-frequency information flow to focus on
learning high and mid-level features.

Nowadays, SISR has become one of the most important tasks in many computer vision
challenges such as NTIRE [9] and AIM [8]. With the practical application of super-resolution
technology, researchers began to realize the limitations of previous studies. The common
practice for building super-resolution training datasets is to collect a large number of HR
images and downsample them using bicubic interpolation; however, in real-world imaging,
bicubic interpolation is insufficient to describe the degradation process; therefore, the focus
of SISR research in recent years has gradually shifted to real-world SISR that takes into
account degradations such as blur and noise. One of the representative strategies is to
directly collect and align LR–HR pairs. Zhang et al. [33] captured images with a zoomable
lens in different magnifications and carefully aligned the LR and HR images spatially.
Trained on real-world LR–HR pairs, Zhang’s network achieved much better results on
real-world images than networks trained on synthetic datasets. An alternative strategy is
to model the degradation process and try to synthesize more realistic LR observations from
HR images. Bell-Kligler et al. [21] proposed to use blur kernels to model the degradation
and GANs to estimate the kernels. Another strategy is to train the network with unpaired
real-world LR and HR images. Yuan et al. [34] proposed a cycle-in-cycle GAN, which treats
the SISR as a domain translation task from LR space to HR space.
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2.2. SISR of RSIs

Due to the huge demand for high spatial resolution in many remote sensing tasks
such as scene classification, object detection, and instance segmentation, SISR has become a
research hotspot in RSIs processing. Nguyen and Milanfar [35] first decomposed LR images
with discrete wavelet transform (DWT), then used an interpolation algorithm to upsample
the wavelet coefficients, and finally inverse transformed the coefficients to generate HR
images. Based on maximum posterior probability, Li et al. [36] proposed a generalized
hidden Markov tree model (MAP-uHMT) that uses a hybrid Gaussian model to represent
the wavelet coefficients of an image and a hidden Markov tree to capture the dependencies
between multiscale wavelet coefficients. Pan et al. [37] proposed a dictionary learning
method for SISR of RSIs that combines compressed sensing and structural self-similarity.

In recent years, CNN-based methods have become the mainstream of SISR for RSIs
due to their outstanding performance and extensive applicability. Lei et al. [38] proposed
a SISR model named local–global combined networks (LGCNet) for RSIs based on CNN.
LGCNet applied a novel ‘multifork’ structure to learn multilevel representations of RSIs
including local details and global environmental priors. Jiang et al. [39] proposed a deep
distillation recursive network (DDRN) effective for video satellite image SR. DDRN uses
dense connections to create more linked nodes and a distillation compensation mechanism
to compensate for high-frequency information to reconstruct more accurate SR images.
Ma et al. [40] proposed a method that incorporates DWT to decompose LR images and
recursive ResNet to predict high-frequency components; then, the reconstructed HR image
can be obtained via inverse DWT. Zhang et al. [18] proposed a multiscale attention network
(MSAN) to extract the multilevel features of RSIs. A scene-adaptive super-resolution
strategy was also applied to more accurately describe the structural features of different
scenes in MSAN. Guo et al. [41] designed a novel dense generative adversarial network
(NDSRGAN) that integrates a multilevel dense network and a matrix mean discriminator
for aerial imagery SR reconstruction.

3. Methodology

In this section, we introduce the proposed framework as shown in Figure 1. The frame-
work is mainly divided into three stages. The first is to estimate blur kernels and noise
patches from the real RSIs dataset, which is detailed in Section 3.2. The second is to generate
a realistic synthetic training dataset with the real RSIs dataset and collected blur kernels
and noise patches, which is detailed in Section 3.1. The third is to train a novel network
based on the synthetic dataset, which is detailed in Section 3.3.

Blur kernel 
estimation

Noise patch 
estimation

Noise patch dataset

…

Blur kernel dataset

…

Equation (2)

Ireal IHR

Equation (3)

ILR

Building the paired image dataset

Remote sensing image dataset 

…

 



ISR

RBAN

Super-resolution reconstruction

Figure 1. Framework of real-world degradation modeling. Remote sensing images in the original
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dataset are not paired. First, the blur kernels and noise patches are collected from the original dataset,
forming K and N . Then, the paired dataset is generated using K, N and real RSIs. At last, a novel
network is trained to estimate SR results from LR inputs.

3.1. Realistic Degradation for SISR of RSIs

Previous SISR methods of RSIs model the imaging process as follows

ILR = IHR↓s, (1)

where ILR and IHR denote the LR and HR remote sensing images, respectively, and s
denotes the downsample scale factor. This makes it easy to generate LR images from real
RSIs and train a network for reverse mapping; however, the model in Equation (1) is too
simplistic and distorts the actual degradation process of RSIs. RSIs in real-world conditions
contain blur and noise due to the imperfect illumination, atmospheric propagation, lens
imaging, sensor quantification, etc. In addition, the downsampling process can suppress
blur and high-frequency noise; therefore, the network based on Equation (1) will learn
a mapping from clean LR images to realistic HR images, which is inconsistent with the
desired mapping from realistic LR images to clean HR images. This is why previous
methods suffer from performance degradation when dealing with real-world RSIs.

To settle the aforementioned problem, we proposed to construct a realistic training
dataset for SISR of RSIs using the following degradation model

IHR = Ireal↓c, (2)

ILR = (IHR ⊗ k)↓s + n, (3)

where k and n represent the blur kernel and noise, respectively. Ireal indicates the real RSIs
in the dataset, IHR indicates the clean HR image generated by downsampling the real RSIs
and ILR indicates the synthetic realistic LR image. c and s are the downsampling scales of
HR and LR images, respectively. The blur kernel and noise are collected from the dataset of
real RSIs, so a more realistic dataset can be constructed by randomly combining the blur
kernels, noise patches, and real RSIs. With the realistic dataset, a more robust CNN can be
trained. The whole pipeline of constructing paired LR–HR images with real RSIs is shown
in Algorithm 1.

Algorithm 1 Realistic data pairs generation

Input: Real RSIs set X
Output: Realistic image pairs {ILR, IHR}
Initialize kernel dataset K = ∅
Initialize noise dataset N = ∅
for all Ireal that Ireal ∈ X do

Estimate k from Ireal by solving Equation (4) and add k to K
Crop n from Ireal
if n meets Equation (5) then

Add n to N
end if

end for
for all Ireal that Ireal ∈ X do

Generate IHR using Equation (2)
Randomly select ki ∈ K, nj ∈ N
Generate ILR using Equation (3)

end for
return {ILR, IHR}
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(1) Blur: Blur is a common degradation during the imaging of RSIs. We model the blur
of RSI as a convolution with a blur kernel (filter). In earlier research, the blur kernel of a LR
image was usually assumed to be the point spread function (PSF) of the camera; however,
blur can be caused by a variety of reasons such as limited lens aperture, defocus, relative
motions between image platforms, and the Earth. Thus, the blur kernel of a known imaging
system may vary under different circumstances. It has been proved by Michaeli [42] that
the correct SR blur kernels can be recovered directly from low-resolution images.

(2) Noise: Noise is another common degradation that can be divided into two main
categories, imaging noise and processing artifacts. Imaging noises are caused by un-
desired responses of sensor during image capture. Imaging noises caused by different
factors satisfy different statistical distributions, such as Gaussian distribution and Poisson
distribution. Due to the limited download bandwidth of satellites or airplanes, RSIs is
usually compressed with JPEG algorithm; however, the JPEG compression results in loss of
high-frequency information and introduces undesired artifacts.

3.2. Estimation of Blur Kernel and Noise Patches

In this section, we detail the methods for estimating blur kernels and noise patches.
(1) Blur kernel estimation: There are mainly two strategies to build the blur kernel

dataset. One is to model kernels with isotropic or anisotropic Gaussian distributions and
generate kernels with random parameters within a preset range. Another strategy is to
estimate and collect kernels from real images. We adopt the second strategy and apply a
modified version of KernelGAN [21] presented by Ji et al. [22]. The authors hypothesized
that the correct SR kernel maximizes the recurrence of patches between LR and HR images.
As shown in Figure 2, KernelGAN is composed of a generator G and a discriminator D. G
is a five-layer full convolutional neural network and is trained to produce downsampled
patches of the input image. D is trained to distinguish downsampled image patches from
original image patches. Then, the kernel can be explicitly extracted by convolving all the
layers of G sequentially with stride 1.

Input image

Crop

Crop

D

10

Figure 2. Blur kernel estimation with KernelGAN. D tries to differentiate between real patches and
those generated by G (fake). G learns to downsample the image while fooling D.

The KernelGAN is designed to solve the following problem

arg min
k
‖(Ireal ⊗ k)↓s − Ireal↓s‖1 +

∣∣1−∑ ki,j
∣∣

+
∣∣∑ ki,j ·mi,j

∣∣+ |1− D((Ireal ⊗ k)↓s)|
. (4)

The first term in the above equation encourages the downsampled image to preserve
important low-frequency information of the source image. The second term constrains k to
sum to 1 and the third term penalizes non-zero values near the boundaries with a constant
mask. At last, the discriminator D(·) ensures the consistency of source domain.

(2) Noise estimation: Since the noise in the image is a mixture of a series of noise
sources, such as thermal noise, read noise, signal disturbance, and JPEG compression. It is
difficult to accurately calibrate the type and weight of each noise source; however, we find
that image variances in flat scene regions, such as water surface or bare land, are mainly
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caused by noise. Based on this assumption, we can decouple noise and content by using a
simple but effective rule:

σ(ni) < v, (5)

where σ(·) denotes to calculate variance, v is the threshold of variance, and ni is the image
patch after subtracting the mean. The process of collecting noise patches is shown in
Figure 3.

Substract

mean

Image patch Noise patch ni

Figure 3. Noise patches extraction from real RSIs.

3.3. Residual Balanced Attention Network (RBAN)

(1) Network architectures: Let us denote ILR ∈ RC×H×W and IHR ∈ RC×sH×sW as LR
and HR image, respectively, where C, H, and W are the size of channel, height, and width
respectively; s is the scale factor. The goal of the network is to obtain the SR estimation
ISR ∈ RC×sH×sW as close as the ground truth IHR for a given LR input ILR. As shown
in Figure 4, the proposed RBAN model mainly consists of three parts: shallow feature
extraction, deep feature extraction, and reconstruction.

At the beginning of the network, there is a convolutional layer for extracting shallow
features from the LR input image. The mapping function of this part can be written as

FSF = f k3s1
conv(ILR), (6)

where f k3s1
conv denotes the convolutional function with kernel size 3 and stride 1.

The deep feature extraction part is located after the shallow feature extraction part.
It consists of multiple residual balanced attention groups (RBAG), one convolutional
layer, and one balanced attention module (BAM). The deep feature extraction part has a
skip connection to provide a shortcut from input to output, which is also known as the
global residual strategy. In each RBAG, there are a group of basic residual blocks (RB),
a convolutional layer and a BAM. There is also a skip connection from the input to the
output of RBAG. The mapping function of the deep feature extraction part can be written as

FDF = MBAM

(
f k3s1
conv

(
Mn

RBAG

(
· · ·M1

RBAG(FSF)
)))

+ FSF, (7)

MRBAG(F) = MBAM

(
f k3s1
conv

(
Mm

RB

(
· · ·M1

RB(F)
)))

+ F, (8)

where MRBAG is the mapping function of RBAG, MBAM denotes the mapping function
of BAM, and fReLU denotes the mapping function of ReLU activation layer. RB is the
basic unit of SISR network, which usually consists of convolutional layers and activation
layers, such as the batch normalization (BN) and the rectified linear unit (ReLU). In this
work, we apply the RB structure that used in EDSR [30], which consists of a convolutional
layer, a rectified linear unit (ReLU) and another convolutional layer in sequence. There is
also a skip connection from the input to the output of RB. The mapping function of RB is
formulated as

MRB(F) = f k3s1
conv

(
fReLU

(
f k3s1
conv(F)

))
. (9)

In the end, an upsampler and a convolutional layer make up the reconstruction part.
The upsampler is used to upscale the feature maps from LR space to HR space. The upsam-
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plers are different for different scale factors. As shown in Figure 4, two pixel shuffle layers
and two convolutional layers are interleaved in a ×4 upsampler. A convolutional layer lo-
cated after the upsampler converts the feature map into the SR image output. The mapping
function of reconstruction part can be written as

ISR = f k3s1
conv(MUP(FDF)), (10)

MUP(F) = fps

(
f k3s1
conv

(
fps

(
f k3s1
conv(F)

)))
, (11)

where MUP is the mapping function of the upsampler, fps denotes the mapping function of
the ×2 pixel shuffle layer.
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Figure 4. Network architectures of the residual balanced attention network (RBAN) generator and
the modified UNet discriminator. The basic unit of RBAN is the residual balanced attention group
(RBAG), which is mainly composed of a group of residual blocks (RB). The balanced attention module
(BAM) is an essential component in RBAN and RBAG to improve performance. The modified UNet
model is employed as a pixel-wise discriminator for more realistic reconstructions. It consists of
multiple encoders and decoders to extract and reconstruct features at multiple scales.

(2) Balanced attention module (BAM): Attention mechanism is an important strategy
in SISR model, which emphasizes the different importance between channels or spatial
locations by assigning weights to feature maps. To improve the performance of the model,
we employ the balanced attention module (BAM) [43]. BAM models interdependence of
different channels and spatial locations at the same time. The mapping functions of BAM
can be written as

MBAM(F) = F · fsigmoid

(
f k7s1
conv( fMaxPool(F))

)
· fsigmoid

(
f k1s1
conv

(
fReLU

(
f k1s1
conv( fAvePool(F))

)))
, (12)

where fMaxPool denotes the map function of maximum pooling layer, fAvePool denotes the
map function of average pooling layer, f k7s1

conv denotes the convolutional function with kernel
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size 7 and stride 1, f k1s1
conv is the convolutional function with kernel size 1 and stride 1, fsigmoid

is the sigmoid map function.
As shown in Figure 4, BAM contains two paths for channel attention and spatial

attention, respectively. In the channel attention path, the input C× H ×W feature map
is turned into a C× 1× 1 channel-wise feature map by the average pooling layer. Then,
two 1× 1 convolutional layers and a sandwiched ReLU layer implement the ‘squeeze-and-
excitation’ operation. Afterwards, the sigmoid layer turns the feature map into a C× 1× 1
channel-wise output weight vector. In the spatial attention path, the input C× H ×W
feature map is turned into a 1× H ×W spatial-wise feature map by the max pooling
layer. Then, a 7× 7 convolutional layer and a sigmoid layer turn the feature map into
a 1× H ×W spatial-wise output weight vector. Finally, two output weight vectors are
broadcast-multiplied with the input feature map to obtain the attention result.

(3) Discriminator Model: Adversarial learning is a strategy commonly used in recent
models for realistic SISR results. These models are also known as generative adversarial
networks (GAN). In standard GAN-based SR models, the generator model G is trained to
produce HR estimations from input images such that the discriminator model D cannot
distinguish them from ground-truth HR images.

In this article, we use the RBAN model as generator and employ a modified UNet
discriminator as shown in Figure 4. The convolutional layer in the discriminator with a
kernel size of 4 and a stride of 2 extracts features while downscaling the spatial resolution.
Spectral normalization layers and leaky ReLU layers are used to ensure the training stability.
↑ denotes the upsample operation with bilinear interpolation. Different from the standard
VGG-style discriminator that only estimates the realness of the whole image, the UNet-
based discriminator estimates the realness of each pixel, which produces accurate gradient
feedback for local textures.

We also enhance the discriminator with relativistic GAN (RGAN) [44] framework.
Unlike D in standard GANs, which estimates the probability that an input image (IHR or
ISR) is ground truth or estimated, D in RGAN predicts the probability that the ground-
truth image IHR is relatively more realistic than the estimated one ISR. Assuming the
discriminator output of standard GAN as

D(I) = fsigmoid(C(I)), (13)

where fsigmoid is the sigmoid mapping function, C(I) is the non-transformed discriminator
output. The discriminator output of RGAN is formulated as

DRGAN(IHR, ISR) = fsigmod(C(IHR)− E[C(ISR)]), (14)

where E[·] denotes taking average for all data in the mini-batch.

3.4. Loss Function

The objective of the SISR can be formulated as

θ = arg min
θ

1
N

N

∑
n=1

LG(Gθ(In
SR), In

HR), (15)

where G is the generator model parameterized by θ, LG is the loss function of the generator,
N is the number of training images, n = 1, 2, · · · , N.

Considering the realistic degradation process, more effective constraints should be
imposed on the network during training. Thus, we combine pixel loss, perceptual loss,
and adversarial loss with weighted average. The synthetic loss is formulated as

LG = αLpixel + βLperceptual + γLadversarial, (16)

where α, β and γ are the weight coefficients to balance three loss terms.
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The pixel loss is to measure the pixel-wise difference between the ground-truth HR
image and estimated SR image. It is the basic component of the loss function and plays an
irreplaceable role in ensuring network convergence. We choose to use the l1 function as the
pixel loss, denoted as

Lpixel =
1

CHW ∑
c,h,w
|G(ILR)− IHR|, (17)

where C, H, and W are the channel number, height, and width of the evaluated im-
ages, respectively.

The perceptual loss is to measure the differences between two images using features
extracted with a pretrained 19-layer VGG network. As a commonly used image classifica-
tion network, the pretrained VGG can extract high-level semantic information from input
images, which helps to improve the quality of network output images. In this work, we
use the VGG network truncated at the Conv5-4 layer to extract features and l1 function to
calculate the difference between feature maps

Lperceptual =
1

CHW ∑
c,h,w
| fVGG54(G(ILR))− fVGG54(IHR)|, (18)

where fVGG54 is the map function of the truncated VGG network.
As for the adversarial loss, the loss functions are calculated under the RGAN frame-

work, formulated as

Ladversarial =− E[log(1− DRGAN(IHR, G(ILR)))]

− E[log(DRGAN(G(ILR), IHR))]
, (19)

LD =− E[log(DRGAN(IHR, G(ILR)))]

− E[log(1− DRGAN(G(ILR), IHR))]
, (20)

where LD is the loss function of the discriminator.

4. Experiments and Analysis
4.1. Experimental Settings

(1) Datasets: In the experiments, we used three widely usedremote sensing datasets,
including AID [15], UCMERCED [16], and RSIs-CB256 [17]. These datasets are all RGB
image datasets originally used for aerial scene classification; therefore, these datasets
contain a variety of scenes, such as oceans, lands mountains, and buildings, which are
very suitable for evaluating the generalization ability of networks in practical conditions.
AID contains 10,000 images of 600 × 600 pixels in 30 scenes, with resolutions ranging from
8 to 0.5 m. UCMERCED is a 21-class remote sensing image dataset. Each class consists of
100 images, each of which is of 256 × 256 pixels. RSIs-CB256 is a remote sensing image
dataset with a spatial resolution of 0.3–3 m and a pixel size of 256 × 256. It contains
35 categories and more than 24,000 images.

We use AID to build the realistic training dataset considering that its image size
is more suitable for the degradation modeling. At first, we use KernelGAN [21,22] to
collect all possible blur kernels in AID to construct the blur kernel dataset K. Secondly,
we extract noise patches according to Equation (5) and construct the noise patch dataset
N . Then, we use AID, K, and N to generate the realistic training dataset according to
Equations (2) and (3). The downsampling scales c and s in the experiments are 2 and 4,
respectively. For each image, k and n are randomly selected to increase the diversity of
training samples. Finally, we randomly select 9500 image pairs as the training dataset and
500 image pairs as the test dataset for referenced evaluation. To compare the performance of
networks trained with realistic dataset and ideal dataset, we also build an ideal AID training
dataset with bicubic downsampling. In the ‘ideal’ dataset, the 4× bicubic downsampled
HR images are labeled as LR images. As for UCMERCED and RSIs-CB256, to reduce
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time consumption, we randomly select 500 images from UCMERCED and RSIs-CB256,
respectively, for non-referenced evaluation. In other words, the images in the UCMERCED
and RSIs-CB256 dataset are not downsampled but directly used as network input to
generate the corresponding SR images.

(2) Implementation details: During the training phase, the LR images were randomly
cropped to 48×48 as inputs, the super-resolution scale was 4×, and the batch size was
set as 16. Image flips and rotations were randomly used for data augmentation. Both
the proposed model and other compared methods were trained for 2 × 105 iterations
(337 epochs) using the ADAM optimizer. We set β1 = 0.9, β2 = 0.999, and ε = 1× 10−8 in
ADAM. The learning rate was initialed as 1× 10−4 and halved every 2 × 104 iterations.
The proposed model was implemented with PyTorch framework and trained on a NVIDIA
GTX3090 GPU.

(3) Evaluation metrics: We employ 4 widely used referenced image quality assess-
ment metrics including peak signal-to-noise ratio (PSNR) [45], structure similarity index
(SSIM) [46], independent feature similarity (IFS) [47], and learned perceptual image patch
similarity (LPIPS) [48] in this work. We also adopt 2 widely used non-referenced image
quality assessment metrics including natural image quality evaluator (NIQE) [49] and
entropy-based non-reference image quality assessment (ENIQA) [50] in this work. Since
the main energy of images is concentrated in the low-frequency area pixel-wise referenced
metrics such as PSNR and SSIM average differences per pixel, thereby focusing on the flat
parts of the images. Feature-based metrics such as IFS and LPIPS calculate differences in
the feature spaces, thereby paying more attention on the high-frequency components of
images. Non-referenced metrics such as NIQE and ENIQA are also defined on feature
spaces, thus they also focus on the edge parts of the images. To sum up, all these metrics
are somewhat one-sided and require comprehensive consideration.

4.2. Experiments on Referenced Evaluation

(1) Setup: As there is no research that considers the degradation process for the SR of
RSIs as far as we know, we compared the proposed method with 6 classic SISR networks,
including SRCNN [24], VDSR [28], DDBPN [51], EDSR [30], SRGAN [29], and DRLN [32].
The bicubic interpolation was also used as a baseline. For a fair comparison, the non-GAN-
based models were all trained with only the l1 pixel loss, while SRGAN was trained with the
same loss component weights mentioned in the original paper. Experimental results under
3 kinds of settings are provided to verify the effectiveness of the degradation modeling.
The first setting was to train and test models on the ‘ideal’ AID dataset, where the LR
images were downsampled with only bicubic interpolation, as denoted in Equation (1).
The second setting was to train models on the ‘ideal’ AID dataset and test on the realistic
AID dataset. The realistic dataset was built using the proposed degradation framework,
as denoted in Equation (3). In the third setting, the models were trained and tested on
the realistic AID dataset. In other words, in the first and second settings, the models were
exactly the same but the test datasets were different. In the second and third settings,
the test datasets were the same but the models were different.

(2) Results: The average quantitative evaluation metrics of 8 methods on the AID
dataset are shown in Table 1, where the first and second best results are marked in red and
green, respectively. Visual examples and corresponding evaluation metrics are provided
in Figure 5. Since both bicubic and realistic AID datasets are synthesized, all referenced
and non-referenced metrics are provided. The experimental results can be interpreted from
two perspectives.
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Bicubic SRCNN VDSR DRLNDDBPN EDSR SRGAN RBAN-UNet

①

Airport

Ground truth

Commercial

Ground truth

②

③

①

②

③

PSNR / SSIM / IFS
LPIPS / NIQE / ENIQA

Figure 5. Visual comparison and assessment metrics of the proposed model and 7 other methods
on 2 test images from the AID dataset, “airport_15” and “commercial_67”, at a ×4 scale factor.
The performances are compared under 3 settings: ¬ train and test on bicubic AID dataset,  train on
bicubic AID dataset and test on realistic AID dataset, and ® train and test on realistic AID dataset.
Since both the bicubic and realistic AID dataset are synthesized, all referenced and non-referenced
metrics are provided.
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Table 1. Quantitative evaluation results of all methods on the AID dataset with three settings.

Train Test Methods PSNR↑ SSIM↑ IFS↑ LPIPS↓ NIQE↓ ENIQA↓

Bicubic AID Bicubic AID

Bicubic 25.73 0.7267 0.8416 0.5532 6.402 0.4534

SRCNN [24] 26.54 0.7670 0.8629 0.4309 7.412 0.3288

VDSR [28] 27.00 0.7861 0.8736 0.3805 7.140 0.2815

DDBPN [51] 27.10 0.7906 0.8759 0.3741 6.854 0.2836

EDSR [30] 27.24 0.7960 0.8794 0.3688 6.739 0.2862

SRGAN [29] 26.10 0.7527 0.8605 0.3273 6.307 0.1720

DRLN [32] 27.43 0.8034 0.8822 0.3499 6.706 0.2702

RBAN-UNet 27.25 0.7944 0.8752 0.2710 5.318 0.2082

Bicubic AID Realistic AID

Bicubic 23.65 0.6332 0.7417 0.7207 7.112 0.5602

SRCNN [24] 23.93 0.6483 0.7556 0.6478 7.663 0.5053

VDSR [28] 23.90 0.6479 0.7563 0.6493 7.425 0.5077

DDBPN [51] 23.91 0.6484 0.7570 0.6486 7.207 0.5143

EDSR [30] 23.91 0.6485 0.7576 0.6600 7.360 0.5217

SRGAN [29] 23.64 0.6338 0.7576 0.6270 5.615 0.4188

DRLN [32] 23.92 0.6488 0.7584 0.6672 7.265 0.5274

RBAN-UNet 23.88 0.6468 0.7570 0.6552 6.683 0.5349

Realistic AID Realistic AID

Bicubic 23.65 0.6332 0.7417 0.7207 7.112 0.5602

SRCNN [24] 24.81 0.6926 0.7803 0.5607 7.398 0.4013

VDSR [28] 25.14 0.7109 0.7936 0.4921 8.266 0.3299

DDBPN [51] 25.29 0.7180 0.8009 0.4827 7.915 0.3337

EDSR [30] 25.45 0.7250 0.8079 0.4750 7.404 0.3462

SRGAN [29] 24.14 0.6649 0.7877 0.3749 4.547 0.1647

DRLN [32] 24.83 0.7038 0.7840 0.5523 7.497 0.3814

RBAN-UNet 25.68 0.7336 0.8160 0.3548 5.736 0.2462
The first and second best metrics are marked in red and green respectively. ↑ denotes the higher the better and ↓
denotes the lower the better.

First, comparing the metrics for all 3 settings, all methods perform worse in the second
setting than in the first. There is significant blurring in the visualization of the second
setting. This indicates that models trained on bicubic dataset do not generalize well to
the actual degradation process such as blur and noise. Without considering degradation,
CNN-based methods are not qualified for practical use in SISR of remote sensing images.
Furthermore, as can be seen from Table 1 and Figure 5, all methods perform better in
the third setting than in the second setting. This indicates that the proposed degradation
modeling framework is rational and the estimation of blur and noise is effective. Models
trained with realistic dataset do have better generalization abilities for the super resolution
of real remote sensing images.

Second, comparing all 8 methods (focus on the 3rd setting), RBAN-UNet achieves the
best performance. The bicubic upsample method achieves the worst performance because it
uses information from a very limited neighborhood area to estimates unknown pixel values,
and its interpolation operation process does not vary with the image content. SRCNN
performs much better because its multi-layer convolutional structure forms a much larger
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receptive field and the non-linear mapping enables SRCNN to achieve better computation
for different image content. Based on SRCNN, the global residual structure of VDSR make it
possible to stack more convolutional layers, which is beneficial to improve the performance.
DDBPN adopts an iterative upscale and downscale strategy and dense connections in
the network, which enables it to learn the interdependencies between LR images and HR
images and achieves a better performance. EDSR performs better than DDBPN because its
local residual strategy and efficient residual block design enable its super deep structure.
DRLN achieves the best performance on bicubic dataset but performs much worse on
realistic dataset because it lacks a targeted design to deal with degradation factors. SRGAN
achieve worse PSNR, SSIM, and IFS results than EDSR, but better LPIPS, NIQE, and ENIQA
results, because SRGAN is trained with perceptual loss and GAN framework. This proves
a fundamental fact that introducing more details into SR images can increase the perceptual
performance and may lead to pixel-wise performance degradation. Another fact is that
non-referenced metrics prefer images with more details, but at the same time, these metrics
have difficulty distinguishing between natural details and artifacts. The SR results of
SRGAN do have more details, but many of them are artifacts and can not substantially
improve the quality of SR images. To sum up, the perceptual loss and GAN framework
are double-edged swords for improving SR performance. As for the proposed method,
RBAN can serve as a good backbone by using the residual in residual structure and the
residual balanced attention mechanism. Based on RBAN and SRGAN, RBAN-UNet applies
pixel loss to balance perceptual loss and adversarial loss and uses a modified UNet as
the pixel-wise discriminator in RGAN framework. RBAN-UNet achieves 4 optimal and
2 sub-optimal among 6 metrics under the 3rd setting, which is the best performance in
all comparison methods. It can also be seen from the visualization that the results of
RBAN-UNet contain sharper edges but do not introduce invalid textures. RBAN-UNet
finds a good balance between details and cleanliness. The effectiveness of the proposed
model is verified.

4.3. Experiments on Non-Referenced Evaluation

(1) Setup: In addition to the quantitative evaluation of all methods on the AID dataset
using referenced metrics, we also evaluated all methods on the UCMERCED and RSIs-
CB256 datasets. All methods were trained without any information from the UCMERCED
and RSIs-CB256 datasets, which provides a good condition for evaluating the validity and
generalization ability of all methods. Since the experiments were performed directly on
the real images in UCMERCED and RSIs-CB256 datasets rather than the downsampled
images, only non-referenced metrics are provided. The experiment results are provided
with 2 kinds of settings: training on the ‘ideal’ AID dataset or realistic AID dataset.

(2) Results: The average quantitative evaluation metrics and visualization of 8 methods
tested on the UCMERCED dataset are shown in Table 2 and Figure 6, respectively. Models
trained on the realistic AID dataset achieve higher metrics and better visualizations than
models trained on bicubic AID dataset. This proves that the models do not overfit to the
AID dataset and indeed gain generalization ability to deal with the degradation process.
Horizontally comparing all 8 methods with the non-referenced metrics, SRGAN achieves the
optimal metrics and RBAN-UNet achieves the sub-optimal metrics; however, as is mentioned
above, NIQE and ENIQA are non-referenced feature-based image quality assessment metrics;
therefore, images with more details, textures, and even artifacts are easy to achieve higher
NIQE and ENIQA scores, which can be confirmed from the referenced evaluation experiments.
From an intuitive point of view, SRGAN introduces lots of artifacts or invalid textures, which
does not substantially improve the quality of reconstructed images; therefore, considering both
visualization and non-reference metrics, it can be concluded that RBAN-UNet achieves the
best performance on the UCMERCED dataset. The experiment results of RSIs-CB256 dataset
shown in Table 3 and Figure 7 also support this conclusion. These experiments demonstrate
that the proposed framework and model can effectively improve the performance of remote
sensing image super resolution under practical conditions.
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Table 2. Quantitative evaluation results of all eight methods on the UCMERCED dataset with
two settings.

Train Methods NIQE↓ ENIQA↓

Bicubic AID

Bicubic 6.362 0.5368

SRCNN [24] 7.431 0.4336

VDSR [28] 7.337 0.4073

DDBPN [51] 7.265 0.4064

EDSR [30] 6.848 0.4209

SRGAN [29] 5.719 0.2827

DRLN [32] 6.400 0.4219

RBAN-UNet 5.237 0.3827

Realistic AID

Bicubic 6.362 0.5368

SRCNN [24] 7.940 0.3907

VDSR [28] 6.295 0.3791

DDBPN [51] 6.085 0.3646

EDSR [30] 5.961 0.3909

SRGAN [29] 4.329 0.1516

DRLN [32] 7.033 0.4091

RBAN-UNet 4.709 0.3169
The first and second best metrics are marked in red and green respectively. ↑ denotes the higher the better and ↓
denotes the lower the better.

Table 3. Quantitative evaluation results of all eight methods on the RSIs-CB256 dataset with
two settings.

Train Methods NIQE↓ ENIQA↓

Bicubic AID

Bicubic 6.896 0.5670

SRCNN [24] 6.424 0.4941

VDSR [28] 6.169 0.4876

DDBPN [51] 6.091 0.4908

EDSR [30] 6.159 0.5011

SRGAN [29] 5.453 0.4019

DRLN [32] 6.133 0.5003

RBAN-UNet 5.308 0.5393

Realistic AID

Bicubic 6.896 0.5670

SRCNN [24] 6.780 0.4452

VDSR [28] 6.194 0.4462

DDBPN [51] 6.178 0.4475

EDSR [30] 6.426 0.4847

SRGAN [29] 3.979 0.2143

DRLN [32] 6.123 0.4917

RBAN-UNet 4.953 0.4369
The first and second best metrics are marked in red and green respectively. ↑ denotes the higher the better and ↓
denotes the lower the better.
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4.943 / 0.5105 4.855 / 0.5937 4.602 / 0.5330 4.336 / 0.46394.532 / 0.5283 4.439 / 0.4856 5.005 / 0.3269 3.048 / 0.3294

4.943 / 0.5105 5.244 / 0.4904 5.195 / 0.5532 4.899 / 0.56624.618 / 0.5592 4.614 / 0.5432 4.139 / 0.2480 3.909 / 0.4806
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②
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Figure 6. Visual comparison and assessment metrics of the proposed model and the other eight meth-
ods on three test images from the UCMERCED dataset, “beach30”, “harbor69”, and “storagetanks87”,
at ×4 scale. The performances are compared under 2 settings: ¬ trained on bicubic AID dataset
and test on realistic UCMERCED dataset;  trained on realistic AID dataset and tested on realistic
UCMERCED dataset. As the images from UCMERCED dataset were directly used for test without
downsampling, only non-referenced metrics are provided.
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Figure 7. Visual comparison and assessment metrics of the proposed model and the other eight
methods on three test images from the RSIs-CB256 dataset, “city_building(57)”, “dam(83)”, and
“storage_room(715)”, at ×4 scale. The performances are compared under 2 settings: ¬ trained on
bicubic AID dataset and tested on realistic RSIs-CB256 dataset;  trained on realistic AID dataset and
tested on realistic RSIs-CB256 dataset. As the images RSIs-CB256 dataset were directly used for test
without downsampling, only non-referenced metrics are provided.
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5. Discussion

In addition, we conducted an ablation study to further discuss the effectiveness of
each proposed component. The quantitative and visual results are shown in Table 4 and
Figure 8, respectively.

Table 4. Ablation results of RBAN-UNet on the realistic AID dataset.

Models PSNR↑ SSIM↑ IFS↑ LPIPS↓ NIQE↓ ENIQA↓
Bicubic 23.652 0.6332 0.7417 0.7207 7.112 0.5602

RBAN-UNet (w/o degradation) 23.885 0.6468 0.7570 0.6552 6.683 0.5349

RBAN-UNet (w/o blur) 23.722 0.6411 0.7528 0.6316 6.649 0.5335

RBAN-UNet (w/o noise) 24.980 0.7053 0.7876 0.4403 5.239 0.2739

RBAN-UNet (w/o BAM) 25.610 0.7310 0.8137 0.3602 5.745 0.2487

RBAN-VGG 25.029 0.7186 0.8000 0.2722 4.877 0.1454

RBAN-UNet 25.676 0.7336 0.8160 0.3548 5.736 0.2462

The first and second best metrics are marked in red and green respectively. ↑ denotes the higher the better and ↓
denotes the lower the better.

Bicubic RBAN-Unet
 (w/o degradation)

RBAN-Unet
 (w/o blur)

RBAN-Unet
 (w/o noise)

RBAN-Unet
 (w/o BAM) RBAN-VGG RBAN-UNet

Center Parking School

Ground truthGround truthGround truth

Figure 8. Visual comparison and assessment metrics of the ablation study models on three test images
from the AID dataset, “center_233”, “parking_226”, and “school_33”, at ×4 scale.
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5.1. Impact of Blur Kernel Estimation

As shown in Table 4 and Figure 8, RBAN-UNet (w/o degradation) achieves the worst
performance among all discussed methods. RBAN-UNet (w/o degradation) denotes RBAN-
UNet without any modeling of the blur and noise. It is equivalent to the model trained on
bicubic dataset and tested on realistic dataset, as discussed in above subsections. RBAN-
UNet (w/o noise) denotes RBAN-UNet without modeling the noise. It achieves much better
metrics and sharper visual perception than RBAN-UNet (w/o degradation). Moreover,
the complete RBAN-UNet outperforms RBAN-UNet (w/o blur) and the RBAN-UNet
without modeling blur. These results confirm that the blur kernel estimation method
is effective and the blur kernels help the networks to perform sharper super-resolution
reconstructions.

5.2. Impact of Noise Patch Estimation

The complete RBAN-UNet model outperforms RBAN-UNet (w/o noise), which demon-
strates the effectiveness of noise patch estimation and that the noise patches help the net-
works to perform better super-resolution reconstructions; however, there is no significant
improvement in the results of RBAN-UNet (w/o blur) compared to RBAN-UNet (w/o
degradation). We think the reason is that the influence of blur kernel exceeds that of
noise patches.

5.3. Impact of BAM

The BAM that can be easily embedded in and removed from the model is a key
component in the RBAN-UNet. As can be seen in Table 4 and Figure 8, removing BAMs
from the model results in a significant drop in quantitative and perceptual performance
when compared with the complete RBAN-UNet. This confirms the effectiveness and
necessity of using BAM in network.

5.4. Impact of Discriminator

At last, we evaluated the function of the discriminator by replacing the discriminator
in RBAN-UNet with VGG. Although RBAN-VGG achieves the best perceptual results, it
introduces lots of invalid textures that are detrimental to understanding image content.
RBAN-UNet achieves the best performance by comprehensively considering quantitative
and perceptual results. It shows that the discriminator helps a lot to improve the perceptual
performance, and the modified UNet achieves a better balance between quantitative and
perceptual performances than VGG. The comparison confirms the effectiveness of the
modified UNet discriminator.

6. Conclusions

In this article, a real-world degradation modeling framework and a residual balanced
attention network with modified UNet discriminator (RBAN-UNet) have been proposed
for remote sensing image super resolution. The quality of real RSIs is affected by a series of
factors, such as illumination, atmosphere, imaging sensor responses, and signal processing,
resulting in a gap in the performance of previous methods between laboratory conditions
and actual conditions. To model the real-world degradation of RSIs, we propose to estimate
the blur kernels and noise patches in the dataset separately. Then, the blur kernels and noise
patches are used to construct a realistic dataset that follows the desired mapping function
from realistic LR images to clean HR images. Moreover, we develop a novel CNN model
to perform the SR reconstruction for RSIs. We use a residual in residual architecture as
the backbone and embed balanced attention modules (BAM) to improve the performance.
To generate more realistic results, a modified UNet pixel-wise discriminator is employed.
Detailed experiments were carried out to compare the proposed model with classic SISR
networks. Referenced experiments, non-referenced experiments, and ablation studies
validate that the degradation modeling framework improves the performance of models
dealing with real RSIs and the proposed RBAN-UNet model achieves a state-of-the-art
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performance in the real-world SISR problem for RSIs. In our future work, we will focus on
decoupling the degradation and images inside the network instead of explicitly collecting
the degradation datasets.
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