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Abstract

We proposed a deformable patches based method for sin-

gle image super-resolution. By the concept of deforma-

tion, a patch is not regarded as a fixed vector but a flexi-

ble deformation flow. Via deformable patches, the dictio-

nary can cover more patterns that do not appear, thus be-

coming more expressive. We present the energy function

with slow, smooth and flexible prior for deformation model.

During example-based super-resolution, we develop the de-

formation similarity based on the minimized energy func-

tion for basic patch matching. For robustness, we utilize

multiple deformed patches combination for the final recon-

struction. Experiments evaluate the deformation effective-

ness and super-resolution performance, showing that the

deformable patches help improve the representation accu-

racy and perform better than the state-of-art methods.

1. Introduction

Single image super-resolution (SR) [4, 8, 9, 11, 12, 23]

is a technology that recovers a high-resolution (HR) image

from one low-resolution (LR) input image. It is more ill-

posed than SR on the image sequence [5, 14] since there is

no interlaced sampling information between frames for sin-

gle image SR. A key point in single image SR problem is

what extra information or prior could be used for estimating

the HR details. The most common SR method is analyti-

cal interpolation based on simple smoothness assumption.

Moreover, more sophisticated priors, e.g. the edge statistics

priors [6, 17], are also exploited in SR literature.

Recent progresses show that the image patches exhibit

promising ability to express a variety of local structures

[9, 16, 22, 25]. By using patches, the example-based SR ap-

proaches estimate HR details by seeking for the most simi-

lar one [9] or the best linear combination of them [4, 12, 23].

Another research direction [8, 11] utilizes the self-similarity

based on the fact that local image structures tend to repeat

within and across the scales.

An inevitable difficulty in SR is the correspondence am-

Figure 1. The idea of deformable patches. The dictionary may not

contain the patches in dictionary space. But the basic patch can be

deformed to a potential patch to fit the input LR patch. Thus the

dictionary can express more patterns using the finite basic patches.

biguity between HR and LR patches. In other words, we

may find several different HR patches corresponding to the

same LR patch, regardless of what prior is applied. This

may lead to the artifacts or blurring textures. In example-

based SR, a trivial solution is to make the dictionary large

enough to cover as many visual patterns as possible. But

this makes the patches correspondence even more ambigu-

ous. To address this problem, an alternative method is the

joint learning of HR/LR patch dictionary. This leads to a

more compact dictionary [12, 21, 23], however, the prob-

lem still remains due to inherent large ambiguities.

If we allow one or more HR patches to deform to match

the LR patches, it becomes more likely to find the true HR

patches among the deformed versions of basic patches in

dictionary. On basis of this idea, we use patches as a de-

formation field rather than a fixed vector. As shown in Fig-

ure 1, it can represent a bundle of deformed variants, mak-

ing the dictionary capable of covering more visual patterns.

The deformation allows continuous warping of basic patch,

with rotation and translation transforms as the particular

cases, which potentially corresponds to a manifold of image

patch subspace in practice. The deformation field is similar



Figure 2. Overview of the proposed method. The input LR image is interpolated to the HR image size and cropped into LR patches. For

each LR patch, we choose the best basic patches via deformation similarity. After being deformed, these patches are weighted combined.

Here we select 3 patches from real experiment for illustration. Note that he super-resolved result is very similar to the ground truth.

to that arising when modeling optical flow [7, 13], but it has

not been used for patch modeling or super-resolution.

In this paper, we propose a novel deformable-patch-

based method for single image SR, aiming to improve per-

formance by exploiting a more expressive dictionary. Fig-

ure 2 illustrates the framework of our method. The main

contributions of this paper are summarized as below:

1. We propose a deformable patches model for single im-

age SR problem, making the dictionary more expres-

sive.

2. We develop an effective patch matching strategy to se-

lect the best basic patch for deformation, based on a

deformation cost between the LR input and HR patch.

3. We extend our deformation model of single patch to a

weighted combination of several deformed candidates

for more robust and reliable HR estimation.

2. Related Work

For single image SR, the most popular methods are bi-

linear and bicubic interpolations based on the “smoothness”

assumption, which is simple but easily leads to the artifacts

and blurring effect around the image discontinuities such as

edges and corners. In contrast, the edge statistics prior is

more sophisticated and effective. Representative work in-

cludes Fattal [6], Sun et al. [17] and Tai et al. [18]. Never-

theless, a few of parameters are far too insufficient to han-

dle more complex cases in an image. Meanwhile, gradi-

ent cue is very sensitive to the noise. Recent studies show

that image structures tend to repeat themselves within and

across scales. On basis of this observation, many HR details

can be recovered from self-examples instead of the external

database. Glasner et al. [11] and Freedman [8] show that

the self-examples can be helpful in the case of discontin-

uous structures. But for uniform textures, the false edges

tend to occur.

Example-based SR methods usually use a universal set

of example patches to predict the missing high frequency

details. For a reliable HR details prediction, Freeman et al.

[9] proposed a MRF method solved by belief propagation

to impose neighborhood consistency constraints. Another

way is to make the learned relationship (e.g. couple dictio-

nary) more generative and compact. Neighbor embedding

based method[3, 4, 10] is inspired by LLE algorithm from

manifold learning. Under the assumption of manifold lo-

cal consistency for HR and LR patches, the HR details is

predicted based on linear combination of its K neighbors

estimated by corresponding LR neighbors. Similarly, Yang

et al. [22, 23] use sparse representation for corresponding

HR/LR dictionary elements with shared coefficients, lead-

ing to a compact and powerful dictionary. As the extension,

He et al. [12] use beta process for sparse coding, allowing a

mapping function between HR and LR coefficients. Never-

theless, all of these methods mentioned above use patches

as a fixed vectors. This requires an extremely large dictio-

nary to cover the input patch structures or linear combina-

tion components. Another work Ye [24] is related to ours.

They use deformable patches for digit image recognition.

But the deformation in their paper is actually a rigid affine

transformation, i.e. scaling, rotating and translating at given

interval to form the new patches. There is no degradation as

that in SR problem.

Moreover, our work is also related to classical optical

flow approaches. Under the smoothness assumption, Horn-



Schunck method [13] exploits a first order Taylor series ex-

pansion to model the flow field. We follow the similar but

different way. The deformation in our work is imposed on

the patches at different resolution rather than of between

two adjacent image frames in optical flow. And also, our

application is different, i.e., we deform patches to give them

the ability to appear in different shapes, hence making the

dictionary more expressive.

3. Deformable Patches for Super-resolution

In this section, we present a deformable patch model for

super-resolution and develop the algorithm to obtain the so-

lution.

For single image super-resolution, the LR patch Y is a

blurred and downsampled version of the HR patch X:

Y = DHX + n (1)

where D is the downsampling matrix, H the blurring ma-

trix, and n is the noise term. All the patches here are vec-

torized for matrix representation.

The degradation gives the fundamental constraint that

the estimated HR patch should be consistent with the LR in-

put via degrading. The deformable patch is under the same

constraint in our deformation model.

3.1. Deformation on Single Patch

3.1.1 Deformation Model

We start to present our model with the premise that we have

got a basic HR patch Bh for deformation. Our mission is

to deform the patch to fit the observed LR input. In Sec-

tion 3.2 we will elaborate on how to choose the appropri-

ate patch from the dictionary. Note that Bh is also used

for denoting the intermediate result of HR patch estimation

since we solve the problem via alternative iteration (see Sec-

tion 3.1.2).

Given the basic HR patch Bh, we normalize it first and

then formulate the final HR patch Br via deformation as

follow:

Br = αφ(Bh) + β (2)

Here we consider two type of deformation: the local warp

φ(Bh) along x and y dimension and the intensity transfor-

mation by contrast α and mean value β. In this paper, firstly

we focus on the local warp φ(Bh) and ignore α and β by

normalizing the patches. Then we estimate them separately

after we get the local warped patch.

For the local warp function φ(Bh), we model the defor-

mation in the horizontal direction u and vertical direction

v separately, i.e. the deformation field u(x,y),v(x,y). In

later notation, we ignore the grid index x and y for simplic-

ity. Now the explicit form of φ is as follow:

φ(Bh) = Bh(x+ u,y + v) (3)

where x and y denote the image grid indices. Obviously,

within a small patch, large deformation field is not reason-

able, so the assumption of slow deformation field can be

applied naturally. Under this assumption, φ has the follow-

ing form via first order Taylor expansion:

φ(Bh) ≈ Bh +Bhx ◦ u+Bhy ◦ v

= Bh + diag(Bhx)u+ diag(Bhy)v
(4)

where the operator ◦ denotes point-wise multiplication.

Bhx and Bhy are the derivatives of Bh along the x and

y dimensions respectively. The point-wise multiplication

is equal to the matrix multiplication using diagonal matrix.

Note that all the patches and u, v are their vectorized ver-

sion here and later.

Taking the degradation Eq.(1) into account, we form the

energy function to be minimized as the total of error term

Eerror and prior term Eprior:

E(u,v) = ||DHBr − Pl||
2 + ψ(u,v)

= ||Pd + Pxu+ Pyv||
2

︸ ︷︷ ︸

Eerror

+ψ(u,v)
︸ ︷︷ ︸

Eprior

(5)

where

Pd = DHBh −
Pl − β

α
Px = DHdiag(Bhx)

Py = DHdiag(Bhy)

(6)

In the error term Eerror, Pd denotes the difference between

the normalized LR patch Pl and the degraded version of the

HR patch Bh. Here we give initialized α and β using the

standard deviation and mean value of Pl. This is reasonable

when Bh is normalized beforehand. Px and Py denotes the

degradation and point-wise multiplication process imposed

on u and v. Minimizing error term Eerror follows the basic

constraint that the deformed and degraded HR patch should

be consistent with the input LR patch.

The prior term Eprior = ψ(u,v) is the motion prior to

regularize the deformation filed. Plenty of research work is

about that[13, 15]. When choosing a prior for the patch de-

formation field, we consider the slowness and smoothness

as well as the deformation flexibility.

The slowness prior is related to the intensity of deforma-

tion field (u,v), while the smoothness prior has the form of

the first order or second order derivatives of (u,v). Then

we get the following prior form:

ψ(u,v) = µ(||u||2
2
+ ||v||2

2
) + λ(||∇u||2

2
+ ||∇v||2

2
)

+ η(||∇2u||2 + ||∇2v||2)
(7)

where ∇ and ∇2 denote the gradient and Laplace operator

respectively. µ, λ and η is the regularization constant to

control the contribution of the prior components.
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Figure 3. A deformation field example via different single prior.

From left to right: the basic HR patch and the input low patch, the

deformation field on µ = 0.1, λ = 0.1 and η = 0.1 respectively

We give an example of the deformation field regularized

by three different priors. Figure 3 indicates that using slow-

ness prior individually leads to a rather low intensity of the

deformable filed. With regard to the first order derivative

prior, if the ideal warping is not shift-like, this prior also

suppresses the deformation field intensity to reduce the pos-

sible change within the neighborhood. By contrast, the field

using second order derivative prior has similar trend with

first order, but it is more flexible and natural. So in this

paper, we choose µ = 0, λ = 0 and η = 0.1.

By applying the above prior, the energy function Eq. (5)

resembles the objective function in optical flow. The differ-

ence is that we estimate the patch deformation in different

scales connected by the degradation D and H rather than

the two adjacent frames. With the help of deformation, we

can estimate the HR details more precisely.

3.1.2 Optimizing for Energy Function

In this subsection, we solve the minimization problem of

Eq.(5). After the normalization of the basic and input

patches, there are two variables Bd = φ(Bh) and (u,v)
to estimate. In our algorithm, they are updated alternatively

until convergence.

First we calculate the deformation field (u,v). Given

the basic HR patch Bh, the minimization of Eq.(5) is a

quadratic problem under the L2 norm regularization. Here

Bh denotes the deformed patch Bk−1

d in the k-th iteration

or the HR patch from the dictionary in the 1-st iteration, For

simplicity, we make the following notation:

M =

[
u

v

]

G =
[
Px Py

]

Γ = µ+ λ

[
−∇2 0
0 −∇2

]

+ η

[
(∇2)2 0

0 (∇2)2

]

Then Eq.(5) has the form of:

E(M) = ||Pd +GM ||2 +M⊤
ΓM (8)

Let the derivative of E be zero, we can easily get the

optimized deformation field:

M = −(G⊤G+ Γ)−1G⊤Pd (9)

For the similar problem, Horn-Schunck method[13] gives

an iterative solution via Euler-Lagrange Equation. It is nec-

essary for the optical flow estimation on overall image pix-

els because the closed-form solution involves an extremely

large matrix inversion which is impossible for computation.

However, our deformation occur within small local patches

e.g. 7 × 7 patches. Then G⊤G + Γ is just a matrix of the

size 98 × 98. So it is feasible to get the direct solution by

Eq. (9).

After obtaining the motion filed (u,v), the deformed

patches Bd can be estimated according to Eq. (4).

3.1.3 Estimation of α and β

The algorithm described in Section 3.1.2 is imposed on the

normalized version of the patches. In this section, we give

the estimation of α and β in Eq. (2). Here we suppose that

α and β are both scalars, to prevent the model from being

more complicated and ill-posed. By minimizing the differ-

ence between the degraded version of HR patch and input

LR patch, we have:

(α̂, β̂) = arg min
α,β

||Pl − αDHBd − β||2 (10)

This can be minimized by the pseudo inversion method to

get the least square estimation:

[
α̂

β̂

]

= (A⊤A)A⊤Pl (11)

where A =
[
DHBd 1

]
, 1 denotes the all-1 column vec-

tor with the same dimension of the degraded version of Bd.

Then, via Eq. (2), we can get the final single HR patch.

3.2. Patch Matching Strategy

In the previous section, we present our basic idea that

how we deform a basic HR patch to fit the LR input. In this

section, we are ready to elaborate on how to select the best

basic patch from the dictionary for a specific LR input.

For an arbitrary patch in the HR dictionary, we measure

its deformation similarity, i.e. the ability to fit the LR in-

put, instead of measuring the similarity of raw intensity or

gradient features. Intuitively, If a basic HR patch in the

dictionary is easy to deform to the input patch, two princi-

ples ought to be followed: 1) The deformed patch should

be consistent with the LR input after degradation. 2) The

deformation field (u,v) should be small and simple to con-

form the assumption of Taylor expansion in Eq. (4). These

two principles are also followed by energy function Eq. (5).

So naturally, we use the minimization of the energy function

as the deformation similarity for HR basic patch matching.

In Section 3.1.2, we give the closed-form solution of

Eq. (5) when calculating the deformation field. The defor-

mation similarity is defined as the minimized energy in the



first iteration. By substitute the solution Eq. (9), we have:

Sim(Bh,Pl) = P⊤

d Pd − P⊤

d G(G⊤G+ Γ)−1G⊤Pd

(12)

For each input LR patch, we traverse all the HR patches to

find the best patch for the HR estimation:

Bh = arg min
Bh

Sim(Bh,Pl) (13)

Now we get the explicit form for the deformable field and

the deformation similarity. Note that the degradation fac-

tors D and H are still unknown. They exist in the form

of H⊤D⊤DH , and H⊤D⊤Pl. Normally, D and H are

large cyclic matrix, and H is related to what blurring ker-

nel we use, which is very complicated. Here we use bicubic

downsampling for DH and bicubic upsampling followed

by back-projection [2] for H⊤D⊤. Therefore in our al-

gorithm, the LR patches is the enhanced bicubic upscaled

version, of the same size as HR patches. The LR dictionary

is also prepared by H⊤D⊤DH process on HR patches.

3.3. Combination of Deformed Patches

Figure 4. Several candidates selected from the dictionary by defor-

mation similarity. The input LR patch is on the left. From top to

bottom: the LR version, HR version and the deformed HR version.

The deformation similarity presented by the previous

section selects the best HR patch flexibly. Nevertheless,

it also allows improper patches to win. Although we are

deforming the HR patches, we see only the degraded ver-

sion due to the degradation factors D and H . Figure 4 give

an example of a winner during one matching precess. We

can see that the LR version of the winner matches the input

patch well, but other suboptimal patches show that its HR

version is not likely to be the best match. Another prob-

lem is that both the input patch and the raw patches from

the dictionary contain noise more or less. So the reliable

HR estimation can not be obtained by the single patch. In-

stead, to make the estimation more precisely, we perform

deformation on each of the M best HR patches {Bdi}
M
i

and combine the results by a weighted average:

Bk
d =

M∑

i=1

ωk
i B

k
di (14)

where for N ×N HR patches, k = {1, ..., N ×N} indexes

each pixels within the patch. In the other word, we assign

different weight configuration for each pixel. The weights

have the form ωk
i = 1

Z
exp(−(Bk

di − µk)
2/2σ2

k) with Z
the normalization factor. µk and σ2

k are the mean value and

variance of all the M pixels in k-th position of each patch.

4. Experimental Results

In this section, we evaluate our algorithm via the recon-

struction precision and visual quality. In both cases, our al-

gorithm can achieve better results than the competing meth-

ods in literatures.

4.1. Dictionary and Experiments Setting

We start from the random selection of the high-resolution

images to form the HR dictionary. It is common to use

the natural image datasets and randomly select enormous

patch pairs as in [9, 12, 20, 22, 23]. However, not all the

patches in HR images have fine details due to camera focus-

ing. An image may contain clear focused foreground object

but blurring background. Furthermore, dense texture details

are not necessarily captured by the HR/LR patch pairs be-

cause they lose the details more easily during degradation

and then their HR details tend to form false textures, arti-

facts and blurring. Therefore the useful HR patches from

dataset are edges, corners and the structures that are still

remarkable in LR images.

Based on that, we combine the natural image dataset

with the logo dataset, in order to make the dictionary cover

both sharp edge patterns as well as the natural textures. The

combined dataset consists of 28 logo images and 34 natu-

ral images. Some of the examples are shown in Figure 2.

Finally we randomly select a number of HR/LR patch pairs

from the dataset. The raw patches extracted from the dataset

are pruned by eliminating the smooth patches with the LR

variance less than 10. LR part of the dictionary is used

for deformation field and deformation similarity calculation

(See Section 3.2).

In the experiments, the patch size is 7×7 and the regular-

ization constant is η = 0.1. In the patch matching step, we

choose M = 9 deformed patches for the weighted combi-

nation. The input image is scaled to the HR dimensions by

bicubic interpolation followed by back-projection[2]. The

experiments are conducted on 3× and 4× super-resolution.

For 4× case, we do 2× upscaling twice. For color im-

ages, super-resolution is done on Y channel in YCbCr color

space, and the other two channels are upscaled by bicubic

interpolation.

We evaluate the deformation effectiveness in term of

PSNR, High PSNR stands for good performance. If the

patches are set overlapped, the overlapped areas are aver-

aged for final result. However the averaging process leads

to blurring inevitably. So we incorporate the non-local

method[1] and back projection[2] as post processing step,

as other work[12, 23] does.



Figure 5. An intuitive deformation effect after applying deforma-

tion model and weighted combination (3×, dictionary size 30000

and overlap 0). From left to right: undeformed patch(UP), de-

formed patch(DP), weighted combined undeformed patch(UP+W)

and deformed patches plus weighted combination (DP+W).

4.2. Evaluations on Deformation

To evaluate the performance of deformable patches, we

first conduct the experiments on the test images, with the

pixels non-overlapped, in order to make comparison on the

single patch representation ability of deformable patches.

We take 2 dictionary learning methods (Sparse Coding Dic-

tionary Learning, SCDL [23] and Beta Process Joint Dic-

tionary Learning, BPJDL [12]) as competitors. The dic-

tionary size is chosen as 1024 in each case. In the end

of the section, we compare the final super-resolved result

on the test images with both self-similarity based methods

(Glansner et al. [11], Freedman[8]) and dictionary learning

methods (SCDL[23], BPJDL[12]).

The first experiment demonstrates the performance on

whether the deformation or weighted combination is used.

We compared the results when using single undeformed

patches (UP), deformed patches (DP), weighed combined

undeformed patches (UP+W) and deformed patches plus

weighted combination (DP+W). As shown in Figure 5, it

is remarkable that the deformed patches along the edges are

more consistent with the neighborhood. Via the multi-patch

weighted combination, the texture is much more natural,

less of jaggy and noise. Table 1 shows that performance

improves a lot by using proposed method, indicating that by

the help of the deformation and weighted combination, the

reconstruction accuracy improves a lot in terms of PSNR.

Another experiment is conducted on different dictio-

nary sizes. Two dictionary based methods (SCDL [23] and

BPJDL [12]) are evaluated as competitors. Figure 6 shows

the comparison on lena and zebra image. From the figure,

our result is superior to the other two competitors in most

cases. It is worthy to point out that our method can achieve

good performance even using smaller dictionary. Note that

the performance of our method is more stable as the size

of the dictionary decreases. When using dictionary smaller

than 10000, our method performs similarly to the dictionary

learning methods that use the dictionary of size more than

50000. The comparison validates the ability of proposed

Table 1. PSNR(dB) after applying deformation model and

weighted combination (3×, dictionary size 30000 and overlap 0).

UP: undeformed patch, DP: deformed patch, W: weighted combi-

nation.

Image UP DP UP+W DP+W

lena 29.3259 29.6104 30.4901 30.8557

zebra 22.5464 23.0735 24.4748 25.0028

cameraman 24.539 24.7518 25.4206 25.6633

oldman 27.914 28.1613 29.2855 29.6448

child 28.1921 28.4638 29.5217 29.8793

method that it makes the finite dictionary more expressive.

Table 2 compares the final results on the five images for

testing. From the table, self-similarity based methods[8, 11]

achieve lower PNSR than the other method, because they

focus on the edge enhancements more than reconstruction.

Overall BPJDL[12] performs better than SCDL[23] via the

introduction of the mapping matrix between the low/high

sparse coding coefficients. Finally, the proposed method

shows that the weighted combined deformable patches

achieve better performance than the state of art methods.
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Figure 6. The lena and zebra image reconstruction PSNR(dB)

when using the dictionaries of different size (3×, overlap 0). We

choose dictionary size ranging from 2000 to 100000 at the interval

of 1000 under 25000 and at the interval of 5000 above 25000.

4.3. Evaluations on Visual Quality

In this section, we compare the proposed method with

the recent representative work on single image super-

resolution[8, 11, 12, 20, 23] in terms of visual quality. The

work of Glasner et al. [11] and Freedman [8] are methods

based on self-similar examples, while Yang et al. [23] and

He et al. [12] use sparse coding for HR details estimation

within the same framework that we use. We also compare

Yang et al.’s another work [20] that exploits in-place exam-

ples for super-resolution.

Figure 7 demonstrates the super-resolution results by 4×



Table 2. PSNR(dB) of the final super-resolved test images (3×, dictionary size 30000 and overlap 6)

Image Bicubic Glasner [11] Freedman [8] SCDL [23] BPJDL [12] Proposed

lena 30.0986 30.3197 30.6928 31.6493 31.6755 31.7536

zebra 23.6214 25.7724 26.8935 27.2387 27.5010 27.7907

cameraman 25.1935 25.9155 25.5409 26.2110 26.2032 26.2221

oldman 29.4678 28.9615 30.2424 30.5824 30.6059 30.6666

child 29.3479 29.4468 29.7914 30.9166 30.9433 30.9467

on “chip” and “child” images. As shown in the figure,

Freedman [8] successfully preserves the edges though a lit-

tle blurring around it. However, many false edges occur

within the digits, making the true edge ambiguous. The

same effect occurs around the child’s iris. The sparse cod-

ing method [12, 23] generates more natural edges, but it is

hard to avoid the blurring and artifacts ,e.g. the pupil, since

the dictionary is fixed and support the patch space finitely.

The in-place example regression [20] can deal with the edge

better, but still lead too much blurring effect. The method

does not recover the true details in some areas, e.g. the right

corner of digit 9. Sparse coding based methods[12, 23] can

recover some key structure such as the child’s pupil, but still

they bring in severe blurring and noticeable artifacts around

the edges. By comparison, our method preserves the edge

better and can generate more natural textures. This can be

seen from the edge of the digits as well as the sharp re-

constructed structure around the child’s iris. Moreover, the

shape of the child’s pupil is well recovered.

Figure 8 shows more results on the natural images. The

motorbike image is from the PASCAL dataset, which is

contaminated severely by the JPEG compression. Our

method handles the case well. Note that the areas around

the tire and the damper are more free of jaggy and noise.

The flower image is from Berkeley Segmentation Dataset.

Overall, [8, 11] can enhance the edges, but some struc-

ture such as the spots on the beetles are not well recovered

(e.g. the shape distorts and false edges occur). Sparse cod-

ing based methods[12, 23] remain faithful to the shape, but

again bring much blurring to the results. The lena image

shows that the proposed method can recover the edges better

than the others. The details are much sharper, with less no-

ticeable artifacts. These experiments show that our method

performs better than the state of art methods.

5. Conclusion and Future Work

In this paper, we proposed a single image super-

resolution method using deformable patches. By consid-

ering each patch as a deformable field rather than a fixed

vector, the patch dictionary is more expressive. We also

apply minimized energy based deformation similarity and

weighted combination to make the final HR patch estima-

tion both flexible and reliable. For future work, we will

study the deformable patch ability for various of texture

e.g. logo, animal, flowers, people, cars et al. Moreover, It

is a worthy investigation to develop our method to handle

more complex cases in the real video sequences. In addi-

tion, we are going to extend our method to the dictionary

learning method rather than simple patch selection. An-

other plan is to combine the video-frame related informa-

tion, using the techniques similar to 3DSKR[19] and Non-

local Mean[16][25].
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