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Abstract—Single-image super-resolution driven by multihy-
pothesis prediction is considered. The proposed strategy exploits
self-similarities existing between image patches within a single
image. Specifically, each patch of a low-resolution image is
represented as a linear combination of spatially surrounding
hypothesis patches. The coefficients of this representation are
calculated using Tikhonov regularization and then used to
generate a high-resolution image. Experimental results reveal
that the proposed algorithm offers significantly higher-quality
super-resolution than bicubic interpolation without the cost of
training on an extensive training set of imagery as is typical of
competing single-image techniques.

I. INTRODUCTION

Image super-resolution (SR) has seen increasing interest

within the image-processing community because it offers

solutions to overcome resolution limitations of low-cost digital

imaging systems and imperfect imaging environments. A

popular paradigm is to synthesize a new high-resolution (HR)

image by using one or more low-resolution (LR) images [1].

Existing SR algorithms in the literature can be classified as

multi-image SR (e.g., [2, 3]) or example-based SR (e.g., [4–

6]). In classical multi-image SR, an HR image is obtained

from a set of LR images of the same scene at subpixel

misalignments. However, this approach is numerically limited

to only a small increase in resolution [7]. In example-based

SR, the correspondences between HR and LR image patches

are learned from known LR/HR image pairs in a database,

and then the learned correspondences are applied to a new LR

image for SR. The underlying assumption is that the missing

HR details can be learned from the HR database patches.

In this vein, Yang et al. [8] proposed a sparse coding to

learn a dictionary on HR and LR images such that the LR

and HR images share the same sparse representation. Finally,

Glasner et al. [9] combined both the classical multi-image and

example-based SR techniques and exploited patch redundancy

within as well as across scales to reconstruct the unknown HR

image.

In this paper, we propose an SR method that exploits self-

similarities of image patches within a single image using the

multihypothesis (MH) prediction strategy from [10]. Specif-

ically, the MH paradigm is employed for single-image SR

wherein each patch of an LR image is represented as a lin-

ear combination of spatially surrounding hypothesis patches.

The coefficients of this representation are calculated using

Tikhonov regularization [11] and then used to generate a high-

resolution image.

The remainder of our discussion is organized as follows.

In Sec. II, we overview Yang’s algorithm [8] for image SR

via sparse representation. In Sec. III, we present our method

using MH prediction for image SR. In Sec. IV, we examine

experimental results and give analysis in comparison with

other algorithms. Finally, we make some concluding remarks

in Sec. V.

II. SUPER-RESOLUTION VIA SPARSE REPRESENTATION

In general, single-image SR aims to recover an HR image

X from a given LR image Y of the same scene. Typically,

the observed LR image Y is assumed to be a blurred and

down-sampled version of the HR image X; i.e.,

Y = DLX, (1)

where D and L are the down-sampling operator and a blurring

filter, respectively.

Inspired by a recent flurry of activity in compressed sensing

and sparse representation, Yang et al. [8] proposed SR based

on an assumption that the LR and HR image patches share

the same sparse representations. Specifically, given two dic-

tionaries Dh and Dl for the HR and LR images, respectively,

for each LR patch y from Y , the sparsest representation of y

can be formulated as the ℓ1 minimization problem,

α̂ = argmin
α

‖Dlα − y‖
2

2
+ λ ‖α‖

1
. (2)

The HR patch x̂ is then reconstructed using the same sparse

representation vector α̂ as

x̂ = Dhα̂. (3)

In order to learn the dictionary pair {Dh,Dl}, a set of HR

training patches Xh = {x1, x2, . . . , xn} are sampled from

the collected HR image database. Y l = {y1, y2, . . . , yn} are

the corresponding LR image patches generated by (1). In [8],

Yang et al. proposed to train a coupled dictionary so that the

HR patches and the corresponding LR patches share the same

sparse representation. The joint dictionary-training process is

formulated as

{Dh,Dl, Z} = argmin
Dh,Dl,Z

1

N

∥

∥Xh −DhZ
∥

∥

2

2

+
1

M

∥

∥Y l −DlZ
∥

∥

2

2
+ λ

(

1

N
+

1

M

)

‖Z‖
1
, (4)
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where N and M are the dimensions of the HR and LR image

patches in vector form, and Z =
[

z1 z2 · · ·
]

is the sparse

coefficient matrix formed by placing the sparse representation

vectors as columns of the matrix.

Yang’s method performs well if, in fact, the input LR

image patches are similar to the ones in the training set.

However, one limitation of this method is that the sparse-

representation problem of (2) must be solved for each patch

in Y . Another limitation is that its performance relies heavily

on the availability of suitable HR training images. To address

these issues, we propose to exploit the self-similarities of

image patches within a single image; details of our approach

follow in the next section.

III. SUPER-RESOLUTION USING MULTIHYPOTHESIS

PREDICTION

Given a single LR image Y of size N × N and a scale

factor s, we want to reconstruct the HR image X of size sN×
sN . In the first step, Y is magnified to sN × sN by bicubic

interpolation. This interpolated, middle-resolution (MR) image

is denoted as Xm. Y is then partitioned into non-overlapping

patches of size B ×B. For each LR patch y, a corresponding

sB × sB MR patch exists in Xm at the same spatial location

as y in Y .

For each MR patch xm in Xm, multiple hypothesis patches

are generated from the spatially surrounding patches in a

search window in Xm. We extract all the patches in the search

window and place them as columns in the hypothesis matrix

H of size s2B2×K, where K is the number of hypotheses; H

thus contains all the predictions for patch xm. This hypothesis

generation is described in Fig. 1. Simultaneously with the

generation of hypothesis matrix H , all the sB×sB hypothesis

patches are blurred and down-sampled by a factor of s using

(1) to form patches with the size of B × B. All the down-

sampled hypothesis patches are then collected as columns of

hypothesis matrix H l of size B2 × K for the corresponding

LR patch y.

To find a prediction that is as close to y as possible, we

want to solve

ŵ = argmin
w

∥

∥y − H lw
∥

∥

2

2
, (5)

where w is a column vector that holds the weights for all the

hypotheses in H l. However, observing that (5) is an ill-posed

least-squares problem (i.e., usually B2 6= K), we adopt the

methodology of [10] and invoke Tikhonov regularization [11]

which imposes an ℓ2 penalty on the norm of w. Consequently,

(5) is reformulated as

ŵ = argmin
w

∥

∥y − H lw
∥

∥

2

2
+ λtik ‖Γw‖

2

2
, (6)

where Γ is the Tikhonov matrix, and λtik is the regularization

parameter. As proposed in [12], we use a diagonal Γ in the

form of Γjj =
∥

∥y − hl
j

∥

∥

2

2
, where hl

j are the columns of H l

and j = 1, . . . ,K. The solution for (6) is calculated as

ŵ =

(

(

H l
)T

H l + λ2

tikΓ
T Γ

)−1
(

H l
)T

y. (7)

With the weights calculated from (7), we form the HR patch

x̂ in estimated image X̂ as

x̂ = Hŵ. (8)

The reconstruction resulting from (8) yields an estimate, X̂ ,

of the HR image. To enforce a global reconstruction constraint,

we further project this initial reconstructed HR image onto

the solution space of Y = DLX (similar to as done in [8]),

computing

X∗ = argmin
X

‖DLX − Y ‖
2

2
+ λ′

∥

∥

∥
X − X̂

∥

∥

∥

2

2

. (9)

We can then iteratively improve the reconstruction by using

this X∗ as the MR image Xm to repeat the hypothesis-

generation and HR-image-reconstruction procedures. The en-

tire SR process is summarized as Algorithm 1.

IV. EXPERIMENTAL RESULTS

In our experiments, we magnify eight 128 × 128 LR

grayscale images using both Yang’s method and our proposed

MH-based approach by a factor of s = 2 using the processes as

described in the previous sections. To magnify the LR image

by a factor of s = 4, we first magnify the LR image by a factor

of s = 2, and then magnify the resulting image by again by a

factor of s = 2 to achieve the final result. Peak signal-to-noise

ratio (PSNR), root mean squared error (RMSE), and structural

similarity (SSIM) [13] are used as quality measures.

For Yang’s sparse-representation SR, LR patches of size 5×
5 with an overlap of 4 pixels between adjacent patches are used

in all experiments as suggested in [8]. The implementation1 is

from the authors and is used with their pre-trained 1024×1024

dictionary.

For SR using MH prediction, two iterations (MaxIter =

2) are used with LR patches fixed to size 4 × 4 in Y , and

search-window size fixed to 2 for hypothesis generation for

magnifying the image by a factor of s = 2. We note that

more iterations and a larger search-window size could improve

performance, but we found that two iterations and a search-

window size half of the patch size gave satisfactory results. To

achieve fast reconstruction for s = 4, we use only one iteration

(MaxIter = 1) in each constituent s = 2 magnification process.

For the Lagrange parameter in (6), we set λtik = 0.01 in all

our experiments.

Quantitative results are presented in Table I, while visual

comparisons of the reconstructed HR images using various

algorithms are shown in Figs. 2 and 3 for upscale factors

of s = 2 and s = 4, respectively. From the results, we

can see that Yang’s sparse-representation SR yields superior

image quality as compared to our proposed method; this is

due largely to the fact that a meaningful HR training set is

used. However, our method, which exploits the self-similarities

of image patches within a single-image, effectively avoids

the complex dictionary-training procedure required by Yang’s

approach. Our proposed technique, on the other, outperforms

1http://www.ifp.illinois.edu/˜jyang29/ScSR.htm
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bicubic interpolation by about 1 dB PSNR on average for an

upscale factor of 2. In addition, in terms of reconstruction time

as shown in Table II, our proposed approach runs much faster

than Yang’s approach for s = 4.

V. CONCLUSION

In this paper, an algorithm for single-image SR based on

MH prediction was proposed. The proposed strategy exploited

self-similarities existing between image patches within a single

image. The fact that no HR training set is required for SR

based on this MH prediction makes it more practical than a

competing SR based on sparse representation since there is

no guarantee that a relevant HR training set is available for

low-resolution input images in all situations.
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MR image:

Fig. 1. Hypothesis generation within a search window.

Algorithm 1 SR Using MH Prediction

Input: Y (LR image), D (down-sampling operator), L (blurring filter), s

(scale factor), MaxIter (maximum number of iterations).
Output: SR image X∗.
Initialization: i = 1, Xm = Bicubic(Y ) (initial MR image).
for i = 1→ MaxIter do

for each patch xm ∈ Xm do

(1) Generate hypothesis matrix H for xm

(2) Generate hypothesis matrix Hl for LR patch y via (1)
(3) Solve the optimization problem defined in (6) for the weights
vector w

(4) Generate the HR image patch x̂ = Hw in estimated HR image

X̂

end for

Using gradient descent, find the closest image to X̂ which satisfies the
constraint defined in (9):

X∗ = argmin
X

‖DLX − Y ‖2
2

+ λ′

‚

‚

‚
X − X̂

‚

‚

‚

2

2

.

Update Xm ← X∗

end for
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TABLE I

PSNR (DB), RMSE, AND SSIM FOR s = 2 AND s = 4 SCALE FACTOR

s = 2 s = 4
Algorithm PSNR RMSE SSIM PSNR RMSE SSIM

Lenna

Bicubic 31.22 7.00 0.9282 28.85 9.21 0.9167
Yang 33.50 5.39 0.9536 30.28 7.81 0.942

Proposed 32.83 5.82 0.9487 29.87 8.18 0.9391

Barbara

Bicubic 29.57 8.47 0.8714 23.60 16.84 0.8140
Yang 30.93 7.25 0.8975 23.96 16.15 0.8398

Proposed 30.63 7.50 0.8920 23.88 16.31 0.8353

Goldhill

Bicubic 30.91 7.26 0.8760 27.66 10.55 0.8527
Yang 32.13 6.31 0.9083 28.27 9.84 0.8855

Proposed 31.61 6.70 0.8999 28.08 10.06 0.8808

Mandrill

Bicubic 25.75 13.16 0.7445 21.08 22.51 0.6897
Yang 26.42 12.18 0.8070 21.34 21.85 0.7541

Proposed 26.30 12.35 0.7988 21.31 21.93 0.7525

Peppers

Bicubic 31.17 7.05 0.9486 27.93 10.23 0.9385
Yang 33.64 5.30 0.9684 29.25 8.82 0.9578

Proposed 32.69 5.92 0.9608 28.65 9.42 0.9513

Couple

Bicubic 28.41 9.69 0.8470 25.38 13.72 0.8213
Yang 29.71 8.34 0.8879 26.12 12.64 0.8633

Proposed 29.29 8.75 0.8779 25.91 12.91 0.8568

Man

Bicubic 29.85 8.20 0.8828 26.86 11.57 0.8635
Yang 31.79 6.56 0.9217 28.01 10.20 0.9028

Proposed 31.08 7.12 0.9112 27.59 10.64 0.8958

Boat

Bicubic 28.38 9.72 0.8658 25.54 13.48 0.8443
Yang 30.01 8.05 0.9070 26.49 12.14 0.8862

Proposed 29.42 8.62 0.8965 26.18 12.51 0.8796

Average

Bicubic 29.41 8.82 0.8705 25.86 13.51 0.8426
Yang 31.02 7.42 0.9064 26.72 12.43 0.8790

Proposed 30.48 7.85 0.8982 26.43 12.74 0.8739

TABLE II

SR RECONSTRUCTION TIME FOR THE 128× 128 LENNA IMAGE ON A

QUADCORE 2.67-GHZ MACHINE FOR UPSCALE FACTOR OF s = 4

Magnification Algorithm Time (sec.)

s = 2
Yang’s (2 ×) 162.71
Proposed 198.94

s = 4
Yang’s (4 ×) 844.38
Proposed (4 ×) 410.45

(a) LR input

(b) HR output

Fig. 2. (a) The LR input image. (b) Results of the Lenna image magnified
by a factor of s = 2. Top-row (left to right): the original HR image, bicubic
interpolation (RMSE: 7.0); bottom-row (left to right): Yang’s method [8]
(RMSE: 5.39), our method (RMSE: 5.82).
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Fig. 3. Results of the Lenna image magnified by a factor of s = 4. Top-row (left to right): the original HR image, bicubic interpolation (RMSE: 9.21);
bottom-row (left to right): Yang’s method [8] (RMSE: 7.81), our method (RMSE: 8.18).
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