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Single-Image Super-resolution Using
Sparse Regression and Natural Image Prior

Kwang In Kim and Younghee Kwon

Abstract—This paper proposes a framework for single-image

super-resolution. The underlying idea is to learn a map from input

low-resolution images to target high-resolution images based on

example pairs of input and output images. Kernel ridge regression

(KRR) is adopted for this purpose. To reduce the time complexity of

training and testing for KRR, a sparse solution is found by combining

the ideas of kernel matching pursuit and gradient descent. As a

regularized solution, KRR leads to a better generalization than simply

storing the examples as it has been done in existing example-based

algorithms and results in much less noisy images. However, this may

introduce blurring and ringing artifacts around major edges as sharp

changes are penalized severely. A prior model of a generic image

class which takes into account the discontinuity property of images is

adopted to resolve this problem. Comparison with existing algorithms

shows the effectiveness of the proposed method.

Index Terms—Computer vision, machine learning, image enhance-

ment, display algorithms

✦

1 INTRODUCTION

Single-image super-resolution refers to the task of constructing
a high-resolution enlargement of a single low-resolution image.
This problem is inherently ill-posed as there are generally
multiple high-resolution images that can be reduced to the
same low-resolution image. Accordingly, for this problem, one
has to rely on strong prior information. This information is
available either in the explicit form of a distribution or energy
functional defined on the image class [1], [2], [3], [4], and/or in
the implicit form of example images which leads to example-
based super-resolution [5], [6], [7], [8], [9], [10], [11], [12], [13].

Previous example-based super-resolution algorithms can
roughly be characterized as nearest neighbor (NN)-based esti-
mation: during the training phase, pairs of low-resolution and
corresponding high-resolution image patches (sub-windows of
images) are collected. Then, in the super-resolution phase, each
patch of the given low-resolution image is compared to the
stored low-resolution patches, and the high-resolution patch
corresponding to the nearest low-resolution patch and satisfy-
ing a certain spatial neighborhood compatibility is selected as
the output. For instance, Freeman et al. [6] posed the image
super-resolution as the problem of estimating high-frequency
details by interpolating the input low-resolution image into
the desired scale (which results in a blurred image). Then, the
super-resolution is performed by the NN-based estimation of
high-frequency patches based on the corresponding patches of
input low-frequency image and resolving the compatibility of
output patches using a Markov network.
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Although this method (and also other NN-based methods)
has already shown impressive performance, there is still room
for improvement if one views the image super-resolution as a
regression problem, i.e., finding a map from the space of low-
resolution image patches to the space of target high-resolution
patches. It is well known in the machine learning community
that NN-based estimation suffers from overfitting when the tar-
get function is highly complex or the data is high-dimensional
[14], which is the case for image super-resolution. Accordingly,
it is reasonable to expect that NN-based methods can be
improved by adopting learning algorithms with regularization
capability to avoid overfitting.

Indeed, attempts have already been made to regularize the
estimator. Chang et al. [12] regularized the NN estimator by
representing the input and target image patches with linear
combinations (calculated from locally linear embedding) of
stored training patches (k-NNs) while Datsenko and Elad [13]
proposed a maximum a posteriori (MAP) framework where the
prior penalizes the deviation of the solution from a weighted
average of k-NNs. The weights are then chosen in a manner
similar to robust regression such that the contributions of the
outliers are weakened.

A rather straightforward approach would be to regular-
ize the regressor directly. Based on the framework of Free-
man et al. [6], [7], Kim et al. [15] have posed the problem of
estimating the high-frequency details as a regression problem
which is then resolved by support vector regression (SVR).
Meanwhile, Ni and Nguyen [16] utilized SVR in the frequency
domain and posed the super-resolution as a kernel learning
problem. While SVR produced a significant improvement over
existing example-based methods, it has drawbacks in building
a practical system: 1. as a regularization framework, SVR
tends to smooth sharp edges and produce oscillations along
the major edges (ringing artifacts). These might lead to low
reconstruction error on average, but is visually implausible; 2.
SVR results in a dense solution, i.e., the regression function
is expanded in the whole set of training data points and
accordingly is computationally demanding both in training and
in testing: optimizing the hyper-parameters based on cross-
validation indicated that the optimum value of ǫ for the ǫ-
insensitive loss function of SVR is close to zero [15].

The current work extends the framework of Kim et al. [15].1

Kernel ridge regression (KRR) is utilized in place of SVR. Since
the L2-loss adopted by KRR is differentiable, we construct
the sparse basis set based on the combination of the kernel
matching pursuit (KMP) [18] and gradient descent, and thereby
reduce the time complexity of training and testing for regres-
sion. As the regularizer of KRR is the same as that of SVR,
the problem of ringing artifacts still remains. This is resolved
by exploiting a prior over image structure which takes into
account the discontinuity of pixel values across edges.

2 LEARNING IMAGE SUPER-RESOLUTION

Adopting the framework of Freeman et al. [6], [7], for the
super-resolution of a given image, we firstly interpolate the
input into the desired scale using cubic spline interpolation
(henceforth referred to as ’interpolation’). Then, the high-
frequency details which are missing in the interpolation (X)
are estimated based on its band frequency components (LX)

1. A short version of this paper appeared in the proceedings of
DAGM2008 [17].
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Fig. 1. Overview of super-resolution shown with examples: (a) input image is interpolated into the desired scale, (b) a set of

candidate images is generated as the result of regression, (c) candidates are combined based on estimated confidences; The

combined result is sharper and less noisy than individual candidates, which however shows ringing artifacts, and (d) post-processing

removes ringing artifacts and further enhances edges.

extracted by applying the Laplacian to X . The estimate (Y ) can
then be added to X to produce the super-resolved image.

A local patch-based regression (cf. Sect. 2.1) is adopted for
the estimation: LX is scanned with a patch (of size M , or√

M ×
√

M ) to produce a patch-valued regression result (of
size N ) for each pixel. As the output patches overlap with
their neighbors, this results in a set of candidates for each pixel
location which constitutes a 3-D image Z. Each candidate is
obtained based on different local observation of input image
and accordingly contains different partial information of the
underlying high-resolution image. A single high-resolution
image is then obtained as a convex combination for each
pixel of the set of candidate pixels based on their estimated
confidence. To enhance the visual quality around the major
edges, the results are post-processed based on the prior of
natural images proposed by Tappen et al. [1] (cf. Sect. 2.2).
Figure 1 summarizes the super-resolution process.

2.1 Regression and Combination

The training patch pairs for the regression are randomly sam-
pled from a set of low-resolution and corresponding desired
high-resolution images (cf. Sect. 3). To avoid that the learning
is distracted by uninformative patterns, the patches whose
norms are close to zero are excluded from the training set.
Furthermore, to increase the efficiency of the training set, the
data are contrast-normalized [7]: during the construction of the
training set, both the input patch and corresponding desired
patches are normalized by dividing them by the L1-norm of
the input patch. For an unseen image patch, the input is again
normalized before the regression and the corresponding output
is inverse normalized.

For a given set of training data points
{(x1,y1), . . . , (xl,yl)} ⊂ R

M ×R
N , we minimize the following

regularized cost functional for the regressor f = {f1, . . . , fN}:

E(f) =
1

2

∑

i=1,...,N

(

∑

j=1,...,l

(f i(xj) − yi
j)

2 + λi‖f i‖2
Hi

)

, (1)

where yj = [y1
j , . . . , yN

j ]⊤ and Hi is a reproducing kernel Hilbert
space (RKHS). Due to the reproducing property (i.e. 〈f, k(x, ·)〉H =
f(x)), the minimizer of above functional is expanded in kernel
functions:

f i(·) =
∑

j=1,...,l

ai
jk

i(xj , ·), for i = 1, . . . , N,

and

‖f i‖2
Hi =

∑

m,n=1,...,l

ai
mai

nki(xm,xn), for i = 1, . . . , N,

where ki is the reproducing kernel [19] for Hi, e.g., to be a
Gaussian kernel

ki(x,y) = exp

(

−‖x − y‖2

σi
k

)

.

Equation (1) is the sum of individual convex cost functionals
for each scalar-valued regressor f i and the minimum can
obtained analytically. However, this requires the construction
and inversion of N kernel matrices ([Ki

(m,n)]l,l = ki(xm,xn),
for i = 1, . . . , N ) in training and N × l kernel evaluations in
testing, which becomes prohibitive even for a relatively small
number of training data points (e.g., l ≈ 10, 000) (cf. [17] for
details).

In this paper, this problem is approached by trading the
complexity off with the optimality of the solution by 1. tying
the regularization parameter and the kernel parameter for the
regressors (i.e. λ = λi and σk = σi

k for i = 1, . . . , N ) and 2.
finding the minimizer of (1) only within the span of a sparse
basis set {k(b1, ·), . . . , k(blb , ·)} (lb ≪ l):

f i(·) =
∑

j=1,...,lb

ai
jk(bj , ·), for i = 1, . . . , N.

In this case, by sharing the evaluations of kernel functions, the
time complexity of patch-valued regression reduces down to
the case of scalar-valued regression, and eventually, the time
complexity of testing becomes O(M × lb). Since the solution is
obtained by

A = (KbxK
⊤
bx + λKbb)

−1
KbxY,

where [Kbx(m,n)]lb,l = k(bm,xn), [Kbb(m,n)]lb,lb = k(bm,bn),
Y = [y⊤

1 , . . . ,y⊤
l ]⊤, and [A(j,i)]lb,N = ai

j , for a given fixed
set of basis points B = {b1, . . . ,blb}, the time complexity of
training is O(l3b + l× lb ×M). In general, the total training time
depends on the method of finding B.

Since the cost functional (1) is a differentiable function of
the basis points B, it can afford gradient-based optimization as
already demonstrated in the context of sparse Gaussian process
regression [20]. Assuming that the evaluation of the derivative
of k with respect to a basis vector takes O(M)-time, which
is the case for a Gaussian kernel ( ∂

∂b
k(x,b) = 2

σk
k(x,b)(x −

b)), the evaluation of derivatives of (1) with respect to B and
corresponding coefficient matrix A takes O(M × l × lb):2

2. With a slight abuse of the Matlab notation, A(m:n,:) stands for
the submatrix of A obtained by extracting the rows of A from m to
n. Likewise, A(:,m) is defined as the m-th column of A.
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∂

∂A
E(f) = Kbx

(

K
⊤
bxA − Y

)

+ λKbbA

∂

∂bj

E(f) =
∂Kbx(j,:)

∂bj

(K⊤
bxA − Y)A⊤

(j,:)

+λ
∂Kbb(j,:)

∂bj

AA
⊤
(j,:), for j = 1, . . . , lb. (2)

However, due to the non-convexity of (1) with respect to B,
naı̈ve gradient descent is susceptible to local minima and ac-
cordingly a good heuristic is required to initialize the solution.

The KMP is adopted for this purpose. In KMP (with pre-
fitting) [18], the basis points are selected from the training data
points in an incremental way: for given n− 1 basis points, the
n-th basis point is chosen such that the cost functional (1) is
minimized when A is optimized accordingly.3

The basic idea is to assume that at the n-th step of KMP, the
chosen basis point bn plus the accumulation of basis points
obtained until the (n − 1)-th step (Bn−1) constitute a good
initial search point. Then, at each step of KMP, Bn can be
subsequently optimized by gradient descent. Naı̈ve implemen-
tation of this idea is still very expensive. To reduce further
the complexity, the following simplifications are adopted: 1. In
the KMP step, instead of evaluating the whole training set for
choosing bn, only lc (lc ≪ l) points are considered; 2. Gradient
descent of Bn and corresponding A(1:n,:) are performed only at
the every r-th KMP step. Instead, for each KMP step, only bn

and A(n,:) are optimized. In this case, the gradient of (1) with
respect to bn can be evaluated at O(M × l)-cost.4 Furthermore,
similarly to [21], for a given bn the optimal A(n,:) can be
analytically calculated at the same cost (cf. [17]).

At the n-th step, the lc-candidate basis points for KMP are
selected based on a rather cheap criterion. One approach might
be to choose data points which show the largest distances
between the corresponding function outputs obtained at the
(n−1)-th step and the desired training outputs (i.e., to use the
training error). However, this might tend to choose outliers as
they will show relatively large training errors for regularized
regression. To avoid this problem, the neighborhood context of
each data point is exploited: we define a cost functional which
measures the distance between the current function output and
the output of a localized KRR

C(xj) = ‖K⊤
bx(1:n,:)Abx(1:n,:) − g̃j(xj)‖2,

for j = 1, . . . , l,

where g̃j = [g̃1
j , . . . , g̃N

j ] is the localized KRR centered at
the given input xj , which is obtained by collecting nearest
neighbors (NNs) of xj and training the full KRR based on
only these NNs. The candidate points are then chosen as
the training data points corresponding to the lc-largest values
of C. As a regularization method, the use of localized KRRs
can effectively single out the outliers. Furthermore, in the
preliminary experiments with 10,000 data points (where it was

3. In the original form of KMP, the regularization was implicitly
performed by controlling the number of basis points lb (i.e., λ = 0).
However, in the current problem, for a given upper bound of lb,
we constantly observed a better generalization performance when we
assign lb with that upper bound and control λ instead.

4. It should be noted that [[Kbx]⊤
n−1,l

[A]n−1,N ]l,N (cf. (2)) is stored
at the (n − 1)-th step. Accordingly, at the n-th step, augmenting a
single row of Kbx and A, respectively is sufficient for calculating the
gradient.
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Fig. 2. Performance of different sparse solution methods eval-

uated in terms of the cost functional (1) for the case of magnifi-

cation factor 3; A fixed set of hyper-parameters were used for all

cases such that the comparison can be made directly in (1). The

performance of randomized algorithms (random selection, k-

means, gradient descent) are calculated as averages of results

from 20 different experiments with random initializations. The

lengths of error bars correspond to twice the standard devia-

tions.

possible to train the full KRR),5 it turned out that the outputs
of localized KRR on training data points are very close to the
full KRR outputs: the average squared distance between the
outputs of full KRR and localized KRR was less than 1% of
the mean squared training error of full KRR. Accordingly, they
could be regarded as a rough estimation of full KRR solution
which one might have obtained by training on all l data points.
However, it should be noted that the localized KRRs cannot be
directly applied for regression as they might interpolate poorly
on non-training data points.

To gain an insight into the performance of our basis construc-
tion method, a set of experiments has been performed with
different sparse solution methods, including random selection
(of basis points from the training set), KMP, k-means algorithm
(clustering of training data points), naı̈ve gradient descent
(with basis initialized by k-means), and the proposed combi-
nation of KMP and gradient descent.6 Fig. 2 summarizes the
results. The KMP showed an improved performance over the
k-means algorithm and random selection which build the basis
set without reflecting the cost functional to be optimized. Both
of the two gradient descent methods outperformed KMP which
chooses the basis points from the training set. The improved
performance of gradient descent in combination with KMP
could be attributed to the better initialization of the solution
for the subsequent gradient descent step.

As the result of the patch-based regression step, N can-
didates are generated for each pixel location. This setting is
motivated by the observation that 1. by sharing the hyper-
parameters and basis points, the computational complexity of
patch-valued learning reduces to the scalar-valued learning;
2. the candidates contain information of different input image
locations which are actually diverse enough such that the

5. For preliminary experiments mentioned in this paper, we used
only 10,000 training data points for training the regression part to
facilitate fast evaluation.

6. For this and all the other experiments in this paper, we set the
size of interval r and the number of candidate basis points lc to 10
and 100, respectively.
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combination can boost the performance: for the magnification
factor 2 case, constructing an image by choosing the best and
the worst (in terms of the distance to the ground truth) can-
didates from each spatial location of Z resulted in an average
peak signal-to-noise ratio (PSNR) difference of 7.84dB (cf. the
accompanying technical report [22] for details). Certainly, the
ground truth is not available at actual super-resolution stage
and accordingly a way of constructing a single pixel out of N
candidates is required.

In this paper, the final estimation of the pixel value for an
image location (x, y) is obtained as the convex combination of
candidates given in the form of a softmax:7

Y (x, y) =
∑

i=1,...,N

wi(x, y)Z(x, y, i),

where

wi(x, y) = exp

(

−di(x, y)

σC

)

/

∑

j=1,...,N

exp

(

−dj(x, y)

σC

)

and {d1(x, y), . . . , dN (x, y)} is the estimation of distances be-
tween the unknown desired output and each candidate. This
estimate is calculated using a set of linear regressors:

di(x, y) = |PZ(x, y)⊤Wi|, for i = 1, . . . , N,

where PZ(x, y) is a vector constructed by concatenating all
columns of a spatial patch (of size R × R × N ) of Z centered
at (x, y) and the parameters {Wi} are optimized based on
the patch-based regression results (Z) for a subset of training
images (cf. Sect. 3).

There are a few hyper-parameters to be tuned: for the
regression part, the input and output patch sizes (M and N ,
respectively), KRR parameters (σk and λ), and the number of
basis points (lb) and for the combination part, the input patch
size (R) and the weight parameter (σC ). We fix lb, N , and R
at 300, 25(5 × 5), and 49(7 × 7), respectively. These values are
determined by trading the quality of super-resolution off with
the computational complexity. We observed constant increase
of the performance as lb increases and becomes larger than 300.
Similar tendency was also observed with increasing N(< M)
and R while the run-time complexity increases linearly with
all these parameters.

The remaining hyper-parameters are chosen based on error
rates of super-resolution results for a set of validation images.
However, directly optimizing these many parameters is com-
putationally very demanding, especially due to the large time
complexity of choosing basis points. With 200,000 training data
points, training a sparse KRR for a given fixed parameters
took around a day on a 3GHz machine (for the magnification
factor 2 case). To retain the complexity of the whole process
at a moderate level, we firstly calculate a rough estimation of
parameters based on a fixed set of basis points which is ob-
tained from the k-means algorithm. Then, the full validation is
performed only at the vicinity of the rough estimation. For the
distance measure of k-means clustering, we use the following
combination of Euclidean distances from both the input and
output spaces, which leaded to an improved performance (in
terms of the KRR cost (1)) over the case of using only the input
space distance:

d([xi,yi], [xj ,yj ]) =
√

‖xi − xj‖2 + (σX/σY)‖yi − yj‖2,

7. Discussion on alternative combination methods can be found in
[22].

TABLE 1

Parameters for experiments

Mag. factor 2 3 4
M 7 × 7 9 × 9 13 × 13
σk 0.05 0.011 0.006
σC 0.04 0.17 0.12
λ 0.5 · 10−7 0.1 · 10−7 0.5 · 10−7

σN 127 80 70
σR 1 1 1

TM1 2.2 2.2 1.1
TM2 0.95 0.5 1.0

where σX and σY are variances of distances between pairs
of training data points in the input space and output space,
respectively.

It should be noted that the optimization of hyper-parameters
for the regression and combination parts should not be sepa-
rated: choosing the hyper-parameters of regression part based
on cross-validation of regression data (pairs of input and
output patches) leaded to much more conservative estimation
(i.e., σk and λ are larger) than the case of optimizing jointly
the regression and combination parts. This can be explained by
(further) regularization effect of the combination part which
can be regarded as an instance of ensemble estimator. It has
been well known that in general, ensembles of individual
estimators can lead to lower variances (expectation of variance
of the output for a given set of training data points) and ac-
cordingly are smoother than individual estimators (Ch. 7 of [23]
and references therein). This makes the optimization criteria a
non-differentiable function of hyper-parameters and prevents
us from using a rather sophisticate parameter optimization
methods, e.g., gradient ascent of the marginal likelihood [20].

In the experiments, we focused on the desired magnifica-
tion factors at {2, 3, 4} along each dimension. Application to
other magnification factors should be straightforward. Table 1
summarizes the optimized parameters.

2.2 Post-processing Based on Image Prior

As demonstrated in Fig. 1, the result of the proposed
regression-based method is significantly better than the inter-
polation. However, detailed visual inspection along the major
edges (edges showing rapid and strong change of pixel values)
reveals ringing artifacts. In general, regularization methods
(depending on the specific class of regularizer) including KRR
and SVR tend to fit the data with a smooth function. Accord-
ingly, at the sharp changes of the function (edges in the case
of images), either edges are smoothed or oscillation occurs
to compensate the resulting loss of smoothness. This might
happen for all the levels of images demonstrating the discon-
tinuity. However, the magnitude of oscillation is in proportion
to the magnitude of changes and accordingly only visible at
the vicinity of major edges. While this problem can indirectly
be resolved by imposing less aggressive regularization at the
edges, a more direct approach is to rely on the prior knowledge
of discontinuity of images. In this work, we use a modification
of the natural image prior (NIP) framework proposed by
Tappen et al. [1] to the pixels at the vicinity of edges:
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(a) (b)

Fig. 3. Factor graph representation for the optimization of (3):

(a) NIP term (message propagation from node j to node i) and

(b) deviation penalty term of node j; the message from the

observation variable node yj to the factor node [j] is a constant.

P ({x}|{y}) =
1

C

∏

(j,i∈NS(j))

exp

[

−
( |xj − xi|

σN

)α]

·
∏

j

exp

[

−
(

xj − yj

σR

)2
]

, (3)

where {y} represents the observed variables corresponding to
the pixel values of Y , {x} represents the latent variable, NS(j)
stands for the 8-connected neighbors of the pixel location j, and
C is a normalization constant. With the objective of achieving
the maximum probability (equivalently, the minimum energy
as the inverse of (3)) for a given image, the second product
term has the role of preventing the final solution flowing far
away from the input regression-based super-resolution result
Y , while the first product term (NIP term) tends to smooth the
image based on the costs |x̂j − x̂i|. The role of α(< 1) is to
re-weight the costs such that the largest difference is stressed
relatively less than the others and accordingly large changes
of pixel values are relatively less penalized. Furthermore, the
cost term |x̂j−x̂i|α becomes piece-wise concave with boundary
points (i.e., boundaries between concave intervals) at NS(j)
such that if the second term is removed, the minimum energy
for a pixel j is achieved by assigning it with the value of a
neighbor, rather than a certain weighted average of neighbor-
hood values which might have been the case when α > 1.
Accordingly, this distribution prefers a strong edge rather than
a set of small edges and can be used to resolve the problem
of smoothing around major edges. The optimization of (3) is
performed by a max-sum type belief propagation (BP) similarly
to [1]. To facilitate the optimization, we reuse the candidate set
generated from the regression step so that the best candidates
are chosen by the BP. Accordingly, all possible outputs for each
pixel location are constrained to be the N candidates generated
during the regression step.

In the original NIP framework, the second term is replaced
by the reconstruction constraint which measures the distance
between the input low-resolution image and an image recon-
structed from the high-resolution configuration according to
the down-sampling model (blurring and sub-sampling) [1],
[24]. The reconstruction constraint corresponds to a generative
model, and with the suitable prior (e.g., NIP), provides a
MAP framework. However, without the existence of multiple
images, which might have guided better the reconstruction, re-
lying on the reconstruction constraint in the proposed method
could result in noisy images as the down-sampling process
has the effect of removing noises and can make it harder

Fig. 4. Gallery of test images (disjoint from training images): we

refer to the images in the text by its position in raster order.

to penalize the noisy configuration. (cf. [5]).8 Furthermore,
we have found that it is not straightforward to control the
contribution of NIP part to prevent this effect as it often leaded
to a piece-wise constant image. Accordingly, in this work, we
simply penalize the deviation from the regression output (Y )
which is far less noisy. The main disadvantage of the proposed
scheme in comparison to the original NIP is that the intuitive
probabilistic interpretation of super-resolution process [1] is
no longer possible. However, on the other hand, since the
resulting message structure is significantly simpler than the
original version, the optimization can be made much faster:

ν[j]→j(xj) = −1

2

( |xj − yj |
σR

)2

µ[i,j]→i(xi) = max
xj

[

µj→[i,j](xj) − 1

2

( |xj − xi|
σN

)α]

µj→[i,j](xj) = ν[j]→j(xj) +
∑

k∈NS(j)\i

µ[j,k]→j(xj).

These (logarithms of) messages can be derived from (3) based
on the factor graph representation of Fig. 3. The message ν[j]→j

represents the reconstruction constraint at the variable node j
while the other two messages correspond to the propagation
of a belief from j to i based on the NIP cost. The outgoing
message µj→[i,j] from j to the factor node [i, j] is composed of
the sum of ν[j]→j and all the messages from the neighboring
factor nodes of j except for the node [i, j]. The message µ[i,j]→i

is calculated as the maximum of the sum of µj→[i,j] and (the
logarithm of) the NIP cost over all the latent values xj .

The major edges are found by thresholding each pixel based
on the L2 norm of the Laplacian and the range of pixel values
in the local patches, i.e., classifying a pixel into ’major edge
class’ if the norm of Laplacian and the maximum difference
of pixel values within a local patch are larger than thresholds
TM1 and TM2, respectively (cf. Table 1; see [22] for details of
parameter optimization). While the improvements in terms of
PSNR are not significant (e.g., for the case of magnification
factor 2, on average 0.0003dB from the combined regression
result) the improved visual quality at major edges demonstrate
the effectiveness of using the prior of natural images (Figs. 1
and 5).

3 EXPERIMENTS

For training and quantitative evaluation, a set of pairs of
high-resolution and corresponding low-resolution images were

8. In original work of Tappen et al. [1], the set of possible configura-
tions is much more constrained than that of our method: candidates are
2× 2-size image patches rather than individual pixels. Accordingly, in
their method this problem is not as serious as the case of naı̈vely using
the reconstruction constraint in the proposed method (cf. Appendix in
the supplementary material for more discussion).
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TABLE 2

Performance of different example-based super-resolution

algorithms: mean improvement (standard deviation) of PSNR

values from the input interpolation

Mag. factor 2 3 4
NN 0.11(0.42) N/A -0.85(0.56)
LLE -0.18(0.31) -0.17(0.45) -0.25(0.32)
NIP -0.50(0.51) N/A N/A
SVR 1.31(0.41) 0.82(0.30) 0.79(0.44)

Proposed method 1.91(0.58) 1.34(0.47) 1.15(0.56)

obtained by blurring and subsampling9 a set of high-resolution
images (the test images are shown in Fig. 4). For comparison,
several different example-based image super-resolution meth-
ods were implemented, which include Freeman et al.’s fast
NN-based method [7], Chang et al.’s LLE-based method [12],
Tappen et al.’s NIP [1],10 and our previous SVR-based method
[15] (trained based on only 10,000 data points). Experiments
with Tappen et al.’s NIP were performed only at the magni-
fication factor 2 as it was not straightforward to implement
it for the other magnification factors. For the same reason,
Freeman et al.’s NN method was applied only to the case
of magnification factors 2 and 4. For comparison with non-
example-based methods which are not implemented by us,
we performed super-resolution on several images downloaded
from the websites of the authors of [3], [4], [6].11 To obtain
super-resolution results at image boundary, which are not
directly available as M > N for the proposed methods and
similarity for other example-based methods, the input images
were extended by symmetrically replicating pixel values across
the image boundary. For the experiments with color images,
we applied the model trained on intensity images to each RGB
channel and combined them.

Figures 5 and 6 show examples of super-resolution. All
the example-based super-resolution methods outperformed the
spline interpolation in terms of visual plausibility. The NN-
based method and the original NIP produced sharper images
at the expense of introducing noise which, even with the
improved visual quality, led to lower PSNR values than the
interpolations (Table 2). The results of LLE are less noisy.
However, it tended to smooth out texture details as observed
in the third image of Fig.5(c) and accordingly produced low
PSNR values. The SVR produced less noisy images, but it
generated smoothed edges and perceptually distracting ring
artifacts which have almost disappeared in the results of the
proposed method (e.g., the first and the fourth images of
Fig. 5(d)). Disregarding the post-processing stage, we measured
on average 0.60dB improvement of PSNRs for the proposed
method from the SVR (magnification factor 2 case). This could
be attributed to the sparsity of the solution which enabled
training on a large data set and the effectiveness of the

9. We use spline resampling which is naturally unbiased to any
specific direction in the generation of low-resolution images [22].

10. The original NIP algorithm was developed for super-resolving
the pixel subsampled image. Accordingly, for the experiments with
NIP, the low resolution images were generated by pixel subsampling.
The visual qualities of the super-resolution results are not significantly
different from the results obtained from spline resampling. However,
the quantitative results should not be directly compared with other
methods. The parameters used for experiments in the current work
simply follow those described in [1].

11. The original images and the results of [3], [4], and [6] are courtesy
of Shengyang Dai, Raanan Fattal, and William T. Freeman, respectively.

candidate combination scheme. Moreover, in comparison to
SVR, the proposed method requires much less processing time:
super-resolving a 256× 256-size image into 512× 512 requires
around 27 seconds for the proposed method and 18 minutes for
the SVR-based method on a 3GHz machine. For quantitative
comparison, PSNRs of different algorithms are summarized in
Table 2.

An interesting property of NN-based method is that it intro-
duced certain texture details which were absent in the input
low-resolution images and even in the ground truth images.
Sometimes, these ’pseudo textures’ provided more realistic
images than others (e.g., the fifth image of Fig. 5(b)). On the
other hand, the proposed method did not generate such new
texture details but instead provided a coherent enhancement
of existing texture and edge patterns (cf. Fig. 5(g)). As noted
in [4], a preference between the two techniques may depend
on the specific image and subjective concerns.

In comparison with non-example-based methods of
Dai et al. [3] and Fattal [4], the proposed method resulted
in a better preservation of texture details and more natural
transitions of pixel values across strong edges as shown in
the stripe pattern of Fig. 6(c). Furthermore, the results of the
proposed method look less jagged as observed in petals in the
first row of Fig. 6(f).

4 DISCUSSION

Except for the preprocessing part (interpolation and the cal-
culation of Laplacian), the proposed method is application
agnostic, i.e., the learning part is independent of specific
problem at hand. In principle, this generic learning part can
be applied to any problem when suitable examples of input
and target output images are available. Accordingly, future
work will include exploring the potential of learning-based
approaches, including the proposed method, for various image
enhancement and understanding applications. In the appendix
provided in the accompanying supplementary material of the
current paper, we show an application of the proposed method
to artifact removal of JPEG encoded images.
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