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We discuss single inclusive hadron production from a high-energy quark scattering off a strong target
color field in the color glass condensate formalism. Recent calculations of this process at the next-to-
leading-order accuracy have led to negative cross sections at large transverse momenta. We identify the
origin of this problem as an oversubtraction of the rapidity divergence into the Balitsky-Kovchegov
evolution equation for the target. We propose a new way to implement the kinematical restriction on the
emitted gluons to overcome this difficulty.
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I. INTRODUCTION

Hadronic reactions at modern collider energies reach a
kinematical domain where gluon densities can be non-
perturbatively large even at short-distance scales where the
QCD coupling is weak. A convenient effective theory of
QCD in this regime is provided by the color glass
condensate (see e.g. [1]), which describes the nonlinear
small x degrees of freedom in a hadron or nucleus as a
classical color field. An ideal way to study these dense
color fields is to probe them with simple dilute probes in a
high-energy collision, such as in deep inelastic scattering
or forward particle production in proton-nucleus collisions.
In the latter case, the dilute probe is provided by the
relatively well understood large x partons of the probe
proton which, at forward rapidity, scatter off the small x
color field of the target.
Several calculations [2–6] of forward single inclusive

particle production in this framework have provided a
good description of available experimental data using the
leading-order expression for the cross section [7]. As is
often the case in QCD, the leading-order calculations leave
the overall normalization of the cross section quite uncer-
tain. It would, therefore, be desirable to systematically go to
higher orders in perturbation theory in these cross-section
calculations. Similar developments towards higher order
have recently taken place concerning the (Balitsky-
Kovchegov (BK) [8,9] or JIMWLK) high-energy evolution
equations [10–18] and DIS cross sections [19,20].
An important advance in pushing the CGC framework to

NLO accuracy was the calculation [21,22] of NLO single
inclusive particle production in forward proton-nucleus
collisions (see also the earlier works [2,23,24]). We will
here refer to the cross section formulas derived in
Refs. [21,22] as the “CXY” result according to the authors.
Here it was shown that the divergences in the rapidity (or
longitudinal momentum) and transverse momentum inte-
grals appearing in the NLO calculation can be factorized
into the BK and DGLAP evolution of the target and

projectile, respectively. In a subsequent calculation [25],
it was shown that in the large transverse momentum limit
the calculation reduces to the appropriate tree-level process
in collinear factorization, although in this case without a
factorization of the rapidity divergence.
In the first numerical implementation [26] of the fac-

torization framework of [21,22], the NLO corrections
turned out to be large and negative at large transverse
momenta of the produced particles, to the extent that the
total cross section becomes negative. A solution to this
problematic behavior has been suggested to lie in the
detailed implementation of the factorization of the rapidity
divergence [27] or in a kinematical constraint that must be
imposed on the phase space of emitted gluons [28]. Indeed,
a recent implementation [29] of this phase space constraint
has alleviated the problem, without however removing it
completely.
In this paper, we suggest an alternative way of imple-

menting BK factorization in the calculation of Chirilli et al.
[21,22] that combines aspects of these previous works. Our
suggestion includes, as in [27], an explicit rapidity factori-
zation scale in the “hard functions” of the NLO part of the
cross section. Since the dependence of the cross section on
this scale cancels against the rapidity scale to which the
target is evolved, the total cross section formulation is
explicitly independent of this factorization scale. Here we
suggest implementing the “kinematical constraint” or, more
precisely, ordering in light cone energy, by making this
factorization scale dependent on the transverse momentum
of the produced particle. We show that this allows for a
renormalization prescription that makes the negative large
momentum contribution to the cross section arbitrarily
small. Combined with a corresponding form of the BK
equation this should in the future make it possible to resum
the problematic contributions at large transverse momen-
tum similarly as recently suggested for the NLO BK
equation [16,18].
For simplicity we will here only address the quark

channel q → q and perform numerical calculations only
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for the Golec-Biernat and Wüsthoff (GBW) [30] para-
metrization of the dipole cross section. The Gaussian k⊥
spectrum at leading order in the GBW model has the
advantage for the purpose of this paper of being very
clearly distinct from the power-law behavior of the NLO
contributions. This exacerbates the problem of negative
cross sections and should therefore put any attempt to
stabilize the perturbative expansion to a more stringent test.
A fuller phenomenological analysis of single inclusive
particle production would require implementing also the
gluon initiated channel, and a more realistic BK-evolved
dipole cross section. Ultimately this should include a
solution of the NLO BK equation [16,18] and a simulta-
neous NLO fit to DIS data. At present we leave these
further steps for future work.
This paper is structured as follows. We will first, in

Sec. II briefly recall CXY results [21,22] for the NLO
corrections to the cross section in the quark-initiated

channel and how the factorization into DGLAP and BK
evolution is performed there. We will then discuss the
introduction of an explicit rapidity factorization scale as
advocated in [27] and explicitly show the modification to
the NLO spectrum resulting from a variation of this scale in
Sec. III. We then, in Sec. IV, discuss imposing the addi-
tional “kinematical” constraint of k− ordering (see e.g.
[31]) on the rapidity factorization, which we implement as a
momentum dependence of the rapidity factorization scale.
Section V then concludes with a brief discussion of
possible future steps.

II. SINGLE INCLUSIVE PARTICLE
PRODUCTION AT NLO

Our starting point are the CXY formulas derived in
Ref. [22]. We will concentrate here on the quark channel,
for which we write the CXY result as:

dNpA→hX

d2pdyh
¼

Z
1

τ

dz
z2

Dh=qðzÞxpqðxpÞ
Sð0Þðk⊥Þ
ð2πÞ2

þ αs
2π2

Z
dz
z2

Dh=qðzÞ
Z

1

τ=z
dξ

1þ ξ2

1 − ξ

xp
ξ
q

�
xp
ξ

��
CFIðk⊥; ξÞ þ

Nc

2
J ðk⊥; ξÞ

�

−
αs
2π2

Z
dz
z2

Dh=qðzÞ
Z

1

0

dξ
1þ ξ2

1 − ξ
xpqðxpÞ

�
CFIvðk⊥; ξÞ þ

Nc

2
J vðk⊥; ξÞ

�
; ð1Þ

where

Iðk⊥; ξÞ ¼
Z

d2q
ð2πÞ2 Sðq⊥Þ

�
k − q

ðk − qÞ2 −
k − ξq

ðk − ξqÞ2
�
2

ð2Þ

J ðk⊥; ξÞ ¼
Z

d2q
ð2πÞ2

2ðk − ξqÞ · ðk − qÞ
ðk − ξqÞ2ðk − qÞ2 Sðq⊥Þ −

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

2ðk − ξqÞ · ðk − lÞ
ðk − ξqÞ2ðk − lÞ2 Sðq⊥ÞSðl⊥Þ ð3Þ

Ivðk⊥; ξÞ ¼ Sðk⊥Þ
Z

d2q
ð2πÞ2

�
k − q

ðk − qÞ2 −
ξk − q

ðξk − qÞ2
�
2

ð4Þ

J vðk⊥; ξÞ ¼ Sðk⊥Þ
�Z

d2q
ð2πÞ2

2ðξk − qÞ · ðk − qÞ
ðξk − qÞ2ðk − qÞ2 −

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

2ðξk − qÞ · ðl − qÞ
ðξk − qÞ2ðl − qÞ2 Sðl⊥Þ

�
: ð5Þ

Here we have slightly altered the notation of [22] by
including transverse momentum integrals in the functions
I ;J and leaving out an overall integration over the
impact parameter b, thus our expression is for the multi-
plicity and not the cross section. The kinematical variables
are defined as p ¼ zk, xp ¼ p⊥eyh=ðz

ffiffiffi
s

p Þ, τ ¼ zxp,
xg ¼ p⊥=ðz

ffiffiffi
s

p Þe−yh , p⊥ ¼ jpj, q⊥ ¼ jqj, k⊥ ¼ jkj, and
l⊥ ¼ jlj. Most important for our discussion here is the
momentum fraction ξ: the fragmenting quark carries a
fraction ξ of the incoming quark longitudinal momentum.

Thus the incoming quark has a momentum fraction xp=ξ of
the incoming proton, where xp is the probe momentum
fraction in leading-order kinematics. The radiated gluon in
the NLO terms carries a longitudinal momentum fraction
1 − ξ: i.e. the limit ξ → 1 corresponds to the soft gluon
emission that must be resummed into BK evolution of
the target.
These cross sections are all expressed in terms of the

Fourier transform of the fundamental representation dipole
operator:
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Sðk⊥Þ ¼ Sðk⊥;bÞ ¼
Z

d2re−ik·rSðrÞ; ð6Þ

Sðr ¼ x − yÞ ¼
	

1

Nc
TrUðxÞU†ðyÞ



: ð7Þ

The dipole is related to the notation of [22] by an overall
integration over the impact parameter:

F ðk⊥Þ ¼
Z

d2b
ð2πÞ2 Sðk⊥;bÞ: ð8Þ

In the following, we leave out the explicit impact parameter
dependence of Sðk⊥;bÞ from our notation. Due to the
unitarity of the Wilson lines U the dipole cross section
satisfies the normalization condition

Z
d2k
ð2πÞ2 Sðk⊥Þ ¼ 1: ð9Þ

The expressions here use the mean field approximation,
replacing the expectation value of the product of two dipole
operators by the product of two expectation values
Sðq⊥ÞSðl⊥Þ. The superscript (0) refers to the fact that at
this stage the dipole operator in the leading-order part of (1)
is the unrenormalized “bare” dipole operator.
As noted in [22], several important features are already

visible in these expressions. First, the terms with an explicit
coefficient CF (i.e. I and Iv) vanish in the limit ξ → 1 but
have collinear divergences in the transverse momentum
integration. These are nicely treated in [22] by dimensional
regularization in the transverse momentum integrals and
factorized into the DGLAP evolution of the quark distribu-
tion function qðxÞ and the fragmentation function Dh=qðzÞ.
For these “CF terms,” we will here follow the treatment of
[22]. The termswith a coefficientNc=2 (wewill denote these
as the “Nc terms” in the following), i.e.J andJ v, have finite
transverse integrals1 but are finite in the limit ξ → 1. Thus,
they produce a rapidity divergence due to the explicit factor
1=ð1 − ξÞ in the expression for the multiplicity. If one takes
the largeNc limit, there are additional cancellations between
someCF andNc terms that are used in [22]; wewill, however,
not take this limit here.

III. CHOOSING THE RAPIDITY
RENORMALIZATION SCALE

A. Explicit subtraction scale

In the CXY calculation, the rapidity divergence is sub-
tracted by defining a renormalized dipole cross section as

Sðk⊥Þ ¼ Sð0Þðk⊥Þ

þ 2αsNc

Z
1

0

dξ
1 − ξ

½J ðk⊥; 1Þ − J vðk⊥; 1Þ�: ð10Þ

Expressed in coordinate space, this reduces to amore familiar
looking form in terms of an integral form of the BK
renormalization group equation [8,9]

Sðx− yÞ ¼ Sð0Þðx− yÞ−αsNc

2π2

Z
1

0

dξ
1− ξ

Z
d2z

×
ðx− yÞ2

ðx− zÞ2ðy− zÞ2 ½Sðx− yÞ−Sðx− zÞSðz− yÞ�:

ð11Þ
As pointed out in [27], this subtraction really should include
an explicit rapidity factorization scale. The remaining NLO
cross section would then depend on this factorization scale,
which cancels at this order in perturbation theory against the
rapidity up to which the dipole cross section in the leading-
order cross section is evolved. This is completely analogous
with the subtractionof the collinear divergences intoDGLAP
evolution in the CF terms, which leaves the NLO cross
sections explicitly dependent on a transverse momentum
factorization scale. Let us now accordingly include the
rapidity factorization scale and subtract the rapidity diver-
gence as

Sðk⊥Þ ¼ Sð0Þðk⊥Þ

þ 2αsNc

Z
1

ξf

dξ
1 − ξ

½J ðk⊥; 1Þ − J vðk⊥; 1Þ�: ð12Þ

The original choice of [22] simply corresponds to ξf ¼ 0 in
our notation. With this subtraction, and the factorization of
the transverse divergence into DGLAP evolution, the cross
section now becomes

dNpA→hX

d2pdyh
¼

Z
1

τ

dz
z2

Dh=qðzÞxpqðxpÞ
Sðk⊥Þ
ð2πÞ2 þ CF

αs
2π2

Z
dz
z2

Dh=qðzÞ
Z

1

τ=z
dξ

xp
ξ
q

�
xp
ξ

�
I finiteðk⊥; ξÞ

þ Nc

2

αs
2π2

Z
dz
z2

Dh=qðzÞ
�Z

ξf

τ=z
dξ

1þ ξ2

1 − ξ

xp
ξ
q

�
xp
ξ

�
J ðk⊥; ξÞ −

Z
ξf

0

dξ
1þ ξ2

1 − ξ
xpqðxpÞJ vðk⊥; ξÞ

þ
Z

1

ξf

dξ
1

1 − ξ
½KðξÞ −Kð1Þ�

�
; ð13Þ

1To see this for the virtual term J v, one has to note that at large q one can use the normalization (9) to perform the l integral, leading to
a cancellation between the UV divergences in the two terms of J v.
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with

I finiteðk⊥; ξÞ ¼ π

Z
d2r
ð2πÞ2 SðrÞ

�
PqqðξÞ ln

c20
r2⊥μ2

�
e−ik⊥·r⊥ þ 1

ξ2
e−i

k⊥
ξ ·r⊥

�
− 3δð1 − ξÞe−ik⊥·r⊥ ln c20

r2⊥k2⊥

�

þ Sðk⊥Þ
2π

�ð1þ ξ2Þ lnð1 − ξÞ2
1 − ξ

�
þ
− 2

1þ ξ2

ð1 − ξÞþ
I21ðk⊥; ξÞ; ð14Þ

where Pqq is the quark-quark splitting function

PqqðξÞ ¼
�
1þ ξ2

1 − ξ

�
þ
; ð15Þ

and the functions I21ðk⊥; ξÞ and KðξÞ are defined
according to

I21ðk⊥; ξÞ ¼
Z

d2q
ð2πÞ2

ðk − ξqÞ · ðk − qÞ
ðk − ξqÞ2ðk − qÞ2 Sðq⊥Þ

þ 1

4π
Sðk⊥Þ lnð1 − ξÞ2; ð16Þ

KðξÞ¼ ð1þξ2Þ
�
xp
ξ
q

�
xp
ξ

�
J ðk⊥;ξÞ−xpqðxpÞJ vðk⊥;ξÞ

�
:

ð17Þ
In these expressions, we used the plus prescription,
Z

1

x0

dxðfðxÞÞþgðxÞ ¼
Z

1

x0

dxfðxÞ½gðxÞ − gð1Þ�

− gð1Þ
Z

x0

0

dxfðxÞ; ð18Þ

where fðxÞ is singular at x ¼ 1 and gðxÞ is a regular
function.
Now we can see that if ξf is chosen to be very close to

one (i.e. if one makes sure to subtract only terms that have a
very large energy logarithm), the contribution of the last Nc
term (integrated from ξf to 1) is negligible ∼ð1 − ξfÞ. The
first two Nc terms, on the other hand, yield a large
logarithmic contribution ∼ lnð1 − ξfÞ from the upper limit
of the integration.

B. Analytical considerations

It is instructive to see how these expressions for the
subtracted cross section behave in the opposite limits of
small and large transverse momentum for the produced
quark. At large transverse momentum the result can be
easily obtained from [25], where the unsubtracted cross
sections have been matched to collinear perturbation
theory. In the large k⊥ limit, only the radiative corrections
contribute and the leading behavior comes from

Iðk⊥; ξÞ ≈
ð1 − ξÞ2

k4⊥
αs2π

2

NcS⊥
xGðx; μÞ; ð19Þ

J ðk⊥; ξÞ ≈
2ξ

k4⊥
αs2π

2

NcS⊥
xGðx; μÞ; ð20Þ

where the integrated gluon distribution is

xGðx; μÞ ¼ NcS⊥
αs2π

2

Z
d2q
ð2πÞ2 q

2Sðq⊥Þ; ð21Þ

with S⊥ the transverse area of the target hadron.
It is easy to see that if we replace the expression of I in

Eq. (1) by its large k⊥ limit (19), the CF term will yield a
positive contribution. On the other hand, the large k⊥
behavior of J (20) means that the subtracted Nc term in
Eq. (13),

Z
1

ξf

dξ
1

1 − ξ
½KðξÞ −Kð1Þ�; ð22Þ

will yield a contribution that behaves as a power in k⊥ and is
negative due to the growing ξ dependence ofK in this limit.
Forvaluesofξf close to0, themagnitudeof this negative term
is larger than the one of the (positive) CF term. Therefore, if
the leading-order cross section falls rapidly at large k⊥ (as in
the GBW parametrization), the leading large k⊥ behavior
comes from the NLO corrections and the cross section is
negative. Thus the negativity of theNLOcross section canbe
traced back to the fact that the unsubtracted cross section at
large k⊥ is proportional to ξ. Subtracting, as in CXY (see
(10), the integral over the whole ξ interval multiplied by the
cross section at ξ ¼ 1 subtracts a very large finite contribu-
tion in addition to the divergent part. This oversubtraction of
the rapidity divergence is what makes the cross section
negative at large transverse momenta. This was the main
point in [27], where the authors showed that reintroducing a
part of this oversubtractedcontributionagainmakes the cross
section positive. When we increase ξf towards 1, the large
negative contribution dies away.
For practical purposes, this is not a formalism that we

would wish to use for extremely small transverse momenta,
since the independent vacuum fragmentation picture of
hadron production is probably not a valid physical picture
there. However, from a formal point of view it can be
instructive to see what happens in the small k⊥ limit. The
fact that BK evolution preserves the dilute limit SðrÞ → 1
when r → 0, i.e. the sum rule (9), tells us that the quantity
ðJ ðk⊥; 1Þ − J vðk⊥; 1ÞÞ, which is positive in the large k⊥
limit, must be negative in some other regions of phase
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space. Indeed, if we denote by δSðk⊥Þ the contribution that
is added to Sðk⊥Þ in one rapidity step of BK evolution, the
sum rule ensures that the k integral of δSðk⊥Þ is zero. At
large k⊥, ðJ ðk⊥; 1Þ − J vðk⊥; 1ÞÞ is positive. Therefore, if
we increase ξf we subtract a smaller but positive contri-
bution and thus the cross section increases. On the other
hand, at smaller k⊥ we expect ðJ ðk⊥; 1Þ − J vðk⊥; 1ÞÞ to
be negative and the cross section to decrease with increas-
ing ξf .
As both J and J v are free of IR and UV divergences, we

can estimate their leading-order behavior by using

Z
q0

0

d2q
ð2πÞ2

2ðl − qÞ · ðk − qÞ
ðl − qÞ2ðk − qÞ2 ¼ 1

2π
ln

q2
0

ðl − kÞ2 ð23Þ

with jq0j > k⊥; jq0j > l⊥, which allows us to figure out the
small k⊥ limit of J and J v as

J ðk⊥; ξÞ ≈
Sðq⊥0Þ
2πξ

ln
Q2ξ2

k2ð1 − ξÞ2 ; ð24Þ

J vðk⊥; ξÞ ¼
Sðk⊥Þ
2π

Z
d2l
ð2πÞ2 Sðl⊥Þ ln

ðl − ξkÞ2
k2ð1 − ξÞ2

≈
Sðk⊥Þ
2π

ln
Q02

k2⊥ð1 − ξÞ2 : ð25Þ

Here Q and Q0 are some hard momentum scales which are
much larger than k⊥ and q⊥0 is chosen such that the integral
of Sðq⊥Þfðq⊥Þ equals to Sðq⊥0Þ½FðQÞ − Fð0Þ� with
Fðq⊥Þ the integral of the function fðq⊥Þ. From the above
expressions, we see that both J and J v have logarithmic
divergences at ξ ¼ 1 and k⊥ ¼ 0. It is known that
ðJ ðk⊥; ξÞ − J vðk⊥; ξÞÞ should be finite at ξ ¼ 1, and thus
the lnð1 − ξÞ2 terms in Eqs. (24) and (25) must have the
same coefficient. Therefore Sðq⊥0Þ has to be Sðk⊥Þ at
ξ ¼ 1. This also tells us that, at ξ ¼ 1, ln k2⊥ cancels out
between the real and virtual terms. Clearly, there is a ln k2⊥
behavior in ðJ ðk⊥; ξÞ − J vðk⊥; ξÞÞ when ξ ≠ 1.

In the GBWmodel, it is possible to study analytically the
behavior of the subtraction term. In this model, the dipole
cross section is given by

SðrÞ ¼ e−r
2Q2

s=4; ð26Þ

which leads to

Sðk⊥Þ ¼
4π

Q2
s
e−k

2⊥=Q2
s : ð27Þ

For simplicity, we will consider here that the saturation
scale Qs is a constant. In this model, the real Nc term reads

J ðk⊥; ξÞ ¼ 2

�
I21ðk⊥; ξÞ −

e−k
2⊥=Q2

s

Q2
s

lnð1 − ξÞ2

−
1

k2⊥
ð1 − e−k

2⊥=Q2
s Þð1 − e−k

2⊥=ðξ2Q2
s ÞÞ
�
; ð28Þ

with

I21ðk⊥; ξÞ ¼
e−k

2⊥=ðξQ2
s Þ

ξQ2
s

�
Ei

�
k2⊥
ξQ2

s

�
− Ei

�
k2⊥ðξ − 1Þ
ξ2Q2

s

�

− Ei

�
k2⊥ð1 − ξÞ

ξQ2
s

��
þ e−k

2⊥=Q2
s

Q2
s

lnð1 − ξÞ2;

ð29Þ

where EiðxÞ is the exponential integral function,
EiðxÞ ¼ −

R∞
−x dt

e−t
t , and the virtual term reads

J vðk⊥; ξÞ ¼ 2
e−k

2⊥=Q2
s

Q2
s

�
Γ
�
0;
k2⊥ξ2
Q2

s

�
þ ln ξ2 − lnð1 − ξÞ2

�
:

ð30Þ

Thus, the subtraction term is

J ðk⊥; 1Þ − J vðk⊥; 1Þ ¼ 4
e−k

2⊥=Q2
s

Q2
s

�
−γE þQ2

s

k2⊥
−
Q2

s

k2⊥
cosh

�
k2⊥
Q2

s

�
þ Eiðk2⊥=Q2

s Þ þ Eið−k2⊥=Q2
s Þ

2
þ ln

�
Q2

s

k2⊥

��
: ð31Þ

With this expression one can explicitly show that

Z
d2k½J ðk⊥; 1Þ − J vðk⊥; 1Þ� ¼ 0; ð32Þ

as required to satisfy the sum rule (9).
At small k⊥, J and J v read

J ðk⊥; ξÞ ≈
2

Q2
s

�
−
γE
ξ
þ 1

ξ
ln

Q2
sξ

2

k2⊥ð1 − ξÞ2 −
k2⊥
Q2

s

�
; ð33Þ

J vðk⊥; ξÞ ≈
2

Q2
s

�
−γE þ ln

Q2
s

k2⊥ð1 − ξÞ2
�
; ð34Þ

and the subtraction term behaves like

J ðk⊥; 1Þ − J vðk⊥; 1Þ ≈ −
2k2⊥
Q4

s
: ð35Þ

In Fig. 1, we show the behavior of J ðk⊥; 1Þ − J vðk⊥; 1Þ as
a function of k⊥ for a fixed saturation scale Qs ¼ 1 GeV.
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We observe that, as expected from the general limit (20),
the subtraction term is positive at large k⊥. The precise
functional form ∼k2⊥ of the small k⊥ behavior, on the other
hand, is specific to the GBW model. This confirms
explicitly that when we increase ξf , we are subtracting
less of the positive contribution in the large k⊥ region and
less of the negative contribution at small k⊥. Therefore we
would expect that the subtracted multiplicity will increase
at large k⊥ and decrease at small k⊥ in the GBW model
with the increasing of ξf .

C. Numerical results in the GBW model

In this section, we illustrate the features we have
discussed so far using the GBW model to parametrize

the dipole cross section SðrÞ. Again we focus on the
contribution of the quark channel q → q. In this model, the
saturation scale Qs at a given x is parametrized by

Q2
s ¼ cA1=3Q2

s0

�
x0
x

�
λ

; ð36Þ

where A is the atomic number of the target and the values
of the other parameters are c ¼ 0.56, Qs0 ¼ 1 GeV,
x0 ¼ 3.04 × 10−4, λ ¼ 0.288 [30]. In the following, the
x value at which we evaluate Qs is given by
x ¼ xg=ð1 − ξfÞ, where xg corresponds to the leading-order
kinematics: xg ¼ p⊥

z
ffiffi
s

p e−yh . Since in the GBW model the

dipole cross section has a simple Gaussian form, it is
possible to perform some integrals analytically. This avoids
the need to deal with several oscillatory integrals in the
numerical implementation which is thus simpler. It also
enhances the difference in the behaviors of the leading and
next-to-leading contributions at large kT . Indeed, the
leading-order contribution is proportional to the Fourier
transform of SðrÞ, which is also Gaussian, while at large kT
the NLO corrections have a power law behavior, as can be
seen from Eqs. (19) and (20).
The expression for dσpA→hX=d2pdyh in the GBW model

can be found in Ref. [22] in the large Nc limit. Here we
need to keep Nc finite because we want to have a clear
separation between the CF terms, which are associated with
the collinear divergence, and the Nc terms which are
associated with the rapidity divergence. In this case, the
multiplicity reads

dNpA→hX

d2pdyh
¼

Z
1

τ

dz
z2

Dh=qðzÞxpqðxpÞ
Sðk⊥Þ
ð2πÞ2 þ CF

αs
2π2

Z
dz
z2

Dh=qðzÞ
Z

1

τ=z
dξ

xp
ξ
q

�
xp
ξ

�
1

4π

×

�
PqqðξÞSðk⊥Þ

�
ln

Q2
s

μ2eγE
þ L

�
−
k2⊥
Q2

s

��
þ 2Sðk⊥Þ

�ð1þ ξ2Þ lnð1 − ξÞ2
1 − ξ

�
þ

þ 1

ξ2
PqqðξÞS

�
k⊥
ξ

��
ln

Q2
s

μ2eγE
þ L

�
−

k2⊥
ξ2Q2

s

��
− 8π

1þ ξ2

ð1 − ξÞþ
I21ðk⊥; ξÞ − 3δð1 − ξÞSðk⊥Þ

×

�
ln

Q2
s

k2⊥eγE
þ L

�
−
k2⊥
Q2

s

���
þ Nc

2

αs
2π2

Z
dz
z2

Dh=qðzÞ
�Z

ξf

τ=z
dξ

1þ ξ2

1 − ξ

xp
ξ
q

�
xp
ξ

�
J ðk⊥; ξÞ

−
Z

ξf

0

dξ
1þ ξ2

1 − ξ
xpqðxpÞJ vðk⊥; ξÞ þ

Z
1

ξf

dξ
1

1 − ξ
½KðξÞ −Kð1Þ�

�
ð37Þ

where

LðxÞ ¼ −γE − Γð0; xÞ − ln x; ð38Þ

and the expressions for J and J v in the GBW model can
be read from Eqs. (28) and (30), respectively. Besides the

absence of the impact parameter integration, there are two
differences with the corresponding expressions given in
Ref. [22]: first, we keep terms proportional to CF − Nc=2
which vanish in the large Nc limit taken in Ref. [22].
Second, we modify the rapidity divergence subtraction by
using the cutoff ξf introduced previously.
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FIG. 1. The subtraction term J ðk⊥; 1Þ − J vðk⊥; 1Þ as a func-
tion of k⊥ in the GBW model for Qs ¼ 1 GeV.
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In Fig. 2, we show the multiplicity dNpAu→h−X=d2pdyh
as a function of p⊥ in the GBW model for ξf ¼ 0 which
corresponds to the choice made in Ref. [22]. We takeffiffiffi
s

p ¼ 200 GeV, αs ¼ 0.2, μ2 ¼ 10 GeV2 and yh ¼ 3.2.
For the collinear PDFs qðxÞ and fragmentation functions
Dh=qðzÞ we use the MSTW 2008 [32] and DSS [33]
parametrizations, respectively, both at next-to-leading
order. As observed in Ref. [26], when ξf ¼ 0 the NLO
multiplicity is negative when p⊥ is larger than a certain
value, of the order of the saturation scale. As discussed
above, this negativity comes from theNc terms. This can be
seen from the same figure where we also show the effect of
including only the NLO corrections proportional to CF or
Nc. At large transverse momentum the CF corrections are
positive while the Nc corrections are negative and large
enough to make the total NLO multiplicity negative. We
observe that when including only the NLO contributions
proportional to Nc the multiplicity becomes negative very
close to the point where p⊥ ≈Qs. To see more clearly the
behavior of the NLO corrections at small transverse
momentum, we show in Fig. 3 the ratio of the NLO and
LO multiplicity for p⊥ ≤ 2.5 GeV when including only the
CF or Nc contributions or both. One can note that, already
for values of p⊥ of the order of 2 GeV, both the CF and Nc
contributions are of the same order of magnitude as the
LO term.
As discussed in Sec. III, instead of subtracting the whole

ξ interval when subtracting the rapidity divergence (10),
one can introduce an explicit cutoff ξf to determine which
contributions are included in the renormalized dipole cross
section (12). We recall that, compared to the results shown
above for ξf ¼ 0, only the Nc terms are affected by this
procedure. In Fig. 4, we show the multiplicity for several
fixed values of ξf as a function of p⊥. We observe that, for
the reason exposed in Sec. III B, values of ξf close to 1 lead

to a positive multiplicity up to larger values of p⊥. In
particular, for ξf ≳ 0.999, the multiplicity is positive up to
p⊥ ¼ 8 GeV. In Fig. 5, we show the ratio NLO/LO for
several values of ξf and p⊥ ≤ 2.5 GeV. Here we see that
values of ξf very close to 1, corresponding to a positive
multiplicity at large p⊥, lead to a NLO multiplicity smaller
than at leading order at moderate p⊥. In Fig. 6, we show the
same ratio with a fixed value of the saturation scale,
Qs ¼ 1 GeV. Here we see clearly that, as could be expected
from the small k⊥ behavior of the subtraction term (35),
larger values of ξf lead to smaller cross sections at small p⊥
and larger cross sections at large p⊥.
To conclude this section, it appears that the choice of the

value of ξf can have an important impact on the final
results, both at small and large transverse momentum. In
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FIG. 4. Multiplicity as a function of p⊥ in the GBW model at
NLO for different values of ξf compared with the LO result. The
vertical dashed line corresponds to Qs ≈ p⊥.
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FIG. 3. Ratio of the multiplicity at next-to-leading and leading
order for ξf ¼ 0, when including only the CF or Nc NLO
corrections or both. The vertical dashed line corresponds
to Qs ≈ p⊥.

10-30

10-25

10-20

10-15

10-10

10-5

100

105

 0  1  2  3  4  5  6  7  8

FIG. 2. Multiplicity as a function of p⊥ in the GBW model at
leading and next-to-leading order and when including only the CF
or Nc NLO corrections. The vertical dashed line corresponds
to Qs ≈ p⊥.
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the following, we propose a way to fix the value of this
parameter based on physical considerations.

IV. ORDERING IN LIGHT CONE ENERGY

It has recently been emphasized [31] that, in order to
have a stable BK evolution beyond leading order, the gluon
cascade resummed by the evolution should be ordered in
the light cone energy k− of the projectile. The requirement
of ordering in k− can equivalently be thought of as an
ordering in its conjugate variable xþ, which is the light cone
lifetime or “Ioffe time” of fluctuations in the projectile [28].
In many works, this feature is known as the “kinematical
constraint” or as imposing “exact kinematics” [25,29,34], a
terminology that we will comment on in Sec. V. Imposing
k− ordering has also been one ingredient in the program of
“small-x resummation” in the context of the linear BFKL
evolution [35–38]. Since we are working in a frame where

we consider the gluons as being emitted from the probe, the
emitted gluon always has a smaller kþ momentum than its
parent quark; the emissions are therefore naturally ordered
in kþ. The requirement of k− ordering, on the other hand,
must be imposed separately.
At leading order, the physical picture of the scattering is

that of an incoming collinear quark (i.e. with only a kþ
momentum component) that acquires a transverse momen-
tum and light cone energy (k and k−) from the target.
Considering the production of a quark with a fixed k, the
light cone energy required is

k−LO ¼ k2

2kþ
¼ k2

2xpPþ : ð39Þ

The fraction of the target momentum required to set the
produced quark on shell is defined by the leading-order
kinematics as xg ¼ k−LO=P

−, where P− is the momentum of
the target. Thus we can write 1=ð2xpPþÞ ¼ xgP−=k2.
We now want to implement k−-ordering in the calcu-

lation of the single inclusive cross section. For this purpose
let us consider the emission of a gluon from the incoming
quark that is present in all of the contributing diagrams.
Labeling the transverse momentum of the incoming quark
as q and radiated gluon as l (cf. Fig. 7), the light cone
energy introduced from the gluon emission is

Δk−qg ¼
1

2xpPþ

�
l2

1 − ξ
þ ðq − lÞ2

ξ
− q2

�

¼ xgP−

k2

ðl − ð1 − ξÞqÞ2
ξð1 − ξÞ ; ð40Þ

where 1 − ξ is the momentum fraction of the emitted gluon.
In some diagrams, the splitting happens before the inter-
action with the target and q ¼ 0, in final state radiation
diagrams q⊥ ∼Qs. Similarly, for some diagrams, but not
all, the quark does not interact with the target after the
emission and q − l ¼ k. In general, the momenta l, q in
Eq. (40) are integrated over in the diagram, whereas the
transverse momentum k is that of the produced quark and is
kept fixed (at a fixed fragmentation z). It appears as an
overall prefactor in (40) when the incoming quark longi-
tudinal momentum xpPþ is expressed in terms of the target
variables xg and P− and is therefore common to all
diagrams contributing to the cross section.

FIG. 7. Gluon emission.
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FIG. 5. Ratio of the multiplicity at next-to-leading and leading
order for different values of ξf . The vertical dashed line
corresponds to Qs ≈ p⊥.
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FIG. 6. Ratio of the multiplicity at next-to-leading and leading
order for different values of ξf with Qs ¼ 1 GeV.
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We now want to derive a renormalization group
equation describing the target. This means that emissions
in a certain kinematical regime have to be subtracted
from the cross section and absorbed into a redefinition of
the target, as was done in Eq. (10). In particular, this
kinematical regime to be subtracted should include the
limit ξ ¼ 1. Now the requirement of a k− ordering in the
evolution means that the subtraction criterion should be a
condition on Δk−. Since Δk− ∼ 1=ð1 − ξÞ for ξ → 1, this
means that fluctuations around ξ ¼ 1 with Δk− larger
than a certain factorization scale should be subtracted.
Thus, our renormalization scheme is defined by the
condition that all the contributions with ξ ≥ ξfðk⊥Þ are
to be subtracted from the cross section. Most importantly,
we want the subtracted region to include contributions
with

Δk−qg ¼
xgP−

k2

ðl − ð1 − ξÞqÞ2
ξð1 − ξÞ ≳ xfP−; ð41Þ

where xf is in principle an arbitrary factorization scale
that will appear both in the leading-order term as the
rapidity up to which the target must be evolved, and in
the hard factors of the NLO cross section.
We emphasize that (41) is not a (momentum con-

servation) kinematical constraint for the process, but a
renormalization condition specifying which parts of phase
space should be subtracted from the cross section. A
natural choice that resums all the large energy logarithms
into the evolution is to take xf ≈ xg. In the typical
kinematical regime when all the transverse momenta
are of the same order, Δk−qg ∼ xg=ð1 − ξÞ≳ xf for all ξ,
and we can safely subtract the whole ξ interval as done in
[21,22]. However, when the produced quark momentum
k is much larger than the typical target scale Qs, there
are configurations where the k−-ordering condition (41) is
not satisfied for all ξ, because l is integrated over in a
range that includes typical target scales l⊥ ∼Qs. Thus we
should, for large k, only subtract values of ξ close to 1
that satisfy

Δk−qg ¼
xgP−

k2

Q2
s

1 − ξ
≥ xfP−; ð42Þ

or

1 − ξ ≤
Q2

s

k2

xg
xf

∼
Q2

s

k2
: ð43Þ

This line of argument leads us to our proposal to
implement k− ordering or the “kinematical constraint”
by subtracting a k⊥-dependent fraction of the ξ integral
from the cross section as

Sðk⊥Þ ¼ Sð0Þðk⊥Þ þ 2αsNc

Z
1

ξf ðk⊥Þ

dξ
1 − ξ

½J ðk⊥; 1Þ

− J vðk⊥; 1Þ�; ð44Þ

with

ξfðk⊥Þ ¼ 1 −min

�
xg
xf

Q2
s

k2
; 1

�
: ð45Þ

Note that since there is a factorization scale xg=xf in the
limit, we have the freedom to change this scale with a
factor of order 1. This change should cancel against a
corresponding change in the rapidity to which the dipole
amplitude is evolved. An alternate, somewhat smoother
form with the same parametric behavior would be

ξfðk⊥Þ ¼
k2⊥

k2⊥ þ ðxg=xfÞQ2
s
; ð46Þ

where we can vary the factorization scale xg=xf in an
interval such as 1

2
…2.

In practice, the two choices (45) and (46) lead to very
similar results. Therefore we will only show results
obtained with the smoother choice (46). In Figs. 8
and 9, we show the multiplicity as a function of p⊥ for
three values of the ratio xg=xf . In the three cases, the NLO
multiplicity still becomes negative for some value of the
transverse momentum. For xg=xf ¼ 1 or 2 this happens
approximately at the same point as for ξf ¼ 0, as can be
seen by comparison with Fig. 2. On the other hand, for
xg=xf ¼ 0.5 the multiplicity is positive up to a significantly
larger value of p⊥ of the order of 6 GeV. For comparison
we also show in Fig. 8 the results obtained by following the
approach of Ref. [29], where the original CXY subtraction
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FIG. 8. Multiplicity obtained using the parametrization (46) of
ξf for different values of

xf
xg
compared with the results at leading

order and when using the correction term Lq introduced in
Ref. [29].
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is used but a kinematical constraint is imposed which leads
to an additional correction term Lq. This additional term
extends the p⊥ range where the multiplicity is positive by
about 0.5 GeV, which is similar to what was obtained in
Ref. [29] in the same kinematics.
This is the main result of our paper: we have shown that

it is possible to choose a value of xg=xf which is still in its
“natural” range and extends significantly the region where
the NLO cross section has a reasonable physical behavior.
In the case we have studied here, the dependence on the
exact choice for the renormalization scale is stronger than
one would like, but we believe that this is due to two
aspects of the calculation that can be improved in the future.
First, we tried here to implement ordering in an effective
way by relying only on external scales to fix ξf . For more
accurate results, one should instead impose the ordering
(41) inside the transverse momentum integrals in J and
J v. This could lead to sizeable differences with the results
we have shown since, as can be seen from Fig. 8, our results
are still very sensitive to the value of ξf . Second, we have
used the GBW model to parametrize the dipole cross
section. While this has practical advantages like enabling
us to perform some integrals analytically, in this model the
leading and next-to-leading-order contributions have very
different behaviors at large transverse momentum: the
leading-order term behaves like a Gaussian, while the
next-to-leading-order corrections behave like a power
law. Therefore, at large transverse momentum, the behavior
of the multiplicity is governed entirely by the NLO
corrections, which is quite unnatural. On the other hand,
using a more physical dipole cross section, such as one
obtained by solving the Balitsky-Kovchegov [8,9] equa-
tion, should make the leading-order contribution behave
more like a power law. This means that the end result would
be less sensitive to the exact choice made for the para-
metrization of ξf . Taking a BK-evolved dipole cross section
instead of the GBWone would also make the cross section

formally independent of the factorization scale xf at this
order in αs, which should significantly reduce the factori-
zation scale dependence.

V. DISCUSSION AND OUTLOOK

To summarize, we have in this paper proposed to modify
the subtraction procedure of the rapidity divergence in the
calculation of single inclusive hadron production in the
hybrid formalism [21,22]. It has been hoped that imposing
ordering in the light cone energy of the probe could solve
the issue of large negative NLO corrections to the cross
section. We have here argued that the most natural way to
implement this ordering is to impose it on the kinematics of
the part that is subtracted from the cross section and
absorbed into the target. To explicitly demonstrate the
effect of our proposal, we have performed the calculations
at finite Nc for the GBW model. The part corresponding to
the rapidity divergence is proportional to Nc, whereas the
parts associated with DGLAP evolution have a color factor
CF. Compared to the CXY formulation, our suggestion
only modifies the Nc terms and leaves the CF terms
unchanged. Indeed, we have shown that such a modifica-
tion of the subtraction scale can lead to a more stable
perturbative expansion for this cross section at high p⊥. By
a suitable choice of the factorization scale xf , the stability of
the perturbative expansion can be extended to arbitrarily
high p⊥. This should be contrasted with the recent
calculation of Ref. [29], where a similar correction is
obtained as an additional correction which in some cases
still leaves the cross section negative at high enough p⊥.
The main difference between our approach here and that of
Ref. [29] is that there the kinematical modification is
treated as a single correction term whereas here it is
resummed to all orders by shifting the evolution variable
in the BK equation.
In some works (e.g. [25,29]), the kinematical constraint

is explained as a requirement of keeping the momentum
fraction in the target xa as less than 1. We would rather
prefer to characterize this requirement by saying that the xa
of the corrections that are resummed into the BK evolution
should be larger than the xg determined by the leading-
order kinematics. The whole formalism here is based on the
eikonal approximation, which is valid for only small
enough xa. If the actual result for the cross section were
to really depend on the dipole cross section at very large
target xa, the whole formalism would be in grave trouble.
Fortunately this is not the case, since the contribution from
large xa ∼ 1 (corresponding to ð1 − ξÞ≲ xg) is subtracted
from the cross section and absorbed into the renormaliza-
tion group evolution of the target: in fact it is only a tiny
part of the subtraction. In spite of this different terminology,
the actual equations in Refs. [25,29] lead to the same
parametric dependence that we have here: the longitudinal
factorization scale has to be modified by the presence of a
large transverse momentum logarithm ∼ ln k2⊥=Q2

s .

FIG. 9. Ratio of the multiplicity at next-to-leading and leading
order using the parametrization (46) of ξf for different values
of xf

xg
.
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In order to perform the whole calculation consistently at
NLO accuracy, one needs to also solve the NLO version of
the BK equation. To do this, the actual BK equation to be
solved must be consistent with the subtraction procedure in
the cross section. Different subtraction schemes correspond
to different versions of the BK equation. Since the rapidity
dependence of the dipole cross section is proportional to αs,
a modification of the subtraction scale in Eq. (44) is a
higher-order α2s effect, and the difference appears at the
NLO level for the BK equation. In fact, it was recently
shown in [16] that a problematic double logarithmic
correction to the NLO BK equation [11] can indeed be
resummed by redefining the evolution variable in a similar
way as we have done in Eq. (44). When written as a
differential equation in Y ¼ ln 1=xf , the modified BK
equation is nonlocal in rapidity, which is inconvenient
for a numerical solution. The authors of [16] proposed a
clever way of rewriting this in a local form, which has
successfully been solved numerically [17,18].

Compared to the work in [16–18], our proposal here has
been a very simplistic one. By explicitly taking Qs as the
scale of the logarithm, we have been able to write a
subtraction procedure in such a way that we can reuse
most of the CXY formulas with only slight modifications.
To be consistent [16–18], the momentum scale in Eq. (45)
should actually be one that is integrated over in J and J v.
This would require a new computation of the regularized
“hard factors” remaining after the subtraction. For a
calculation that is consistent with recent NLO BK solutions
it would be useful to carry out this subtraction for the
resummation proposed in [16]. This is, however, left for
future work.
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