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ABSTRACT: We present the first complete next-to-leading-order (NLO) prediction with
full jet algorithm implementation for the single inclusive jet production in pA collisions at
forward rapidities within the color glass condensate (CGC) effective theory. Our prediction
is fully differential over the final state physical kinematics, which allows the implementation
of any infra-red safe observable including the jet clustering procedure. The NLO calculation
is organized with the aid of the observable originated power counting proposed in [1] which
gives rise to the novel soft contributions in the CGC factorization. We achieve the fully-
differential calculation by constructing suitable subtraction terms to handle the singularities
in the real corrections. The subtraction contributions can be exactly integrated analytically.
We present the NLO cross section with the jets constructed using the anti-kr algorithm.
The NLO calculation demonstrates explicitly the validity of the CGC factorization in jet
production. Furthermore, as a byproduct of the subtraction method, we also derive the
fully analytic cross section for the forward jet production in the small- R limit. We show
that in the small-R approximation, the forward jet cross section can be factorized into a
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semi-hard cross section that produces a parton and the semi-inclusive jet functions (siJFs).
We argue that this feature holds for generic jet production and jet substructure observables
in the CGC framework. Last, we show numerical analyses of the derived formula to validate
our calculations. We justify when the small- R approximation is appropriate. Like forward
hadron production, the obtained NLO result also exhibits the negativity of the cross section
in the large jet transverse regime, which signals the need for the threshold resummation.
A sketch of the threshold resummation in the CGC framework is presented based on the
multiple emission picture and it is found to agree with the approach using the rapidity
renormalization group equation developed in [2].
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Jets and Jet Substructure
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1 Introduction

Hard probes are among the most fundamental tools to understand the internal structure of
hadrons. The partonic fields bound within the hadron can fluctuate and radiate virtual
quanta that could live for a short time period, therefore probes such as (virtual) photons,
will snapshot the hadron interior at different time resolution scales [3, 4]. In the high-energy
limit, the probe gets dramatically boosted, revealing smaller and smaller values of the
Bjorken-x and observing a substantially growing gluon density. In the sufficiently small-z
region, the gluons are so close to each other, initiating the recombination in which two gluons
annihilate into one. In the small-x domain, the gluon recombination is equally important
to the splitting process and the evolution of the partonic fields enters the regime where the
nonlinear B-JIMWLK equation (or its infinite color approximation, the BK equation) [5-12]
takes over the linear parton evolution equations [13]. The non-linear evolution predicts
gluon saturation [14, 15] as a consequence of the balance between recombination and gluon
bremsstrahlung. The proper framework to describe the small-x dynamics is the color glass
condensate (CGC) effective theory [16-19], in which the gluon saturation is featured by the
saturation scale ()5 which grows as x decreases. When Qs > Aqcp, perturbative QCD can
be applied. Tremendous efforts have been devoted in searching for the emergent phenomena
of the gluon saturation in the ultra-dense regime [20-22]. There exist experimental hints [23—
29] that are compatible with saturation-model predictions, but we still lack deterministic
evidence to claim a discovery. In the future, dedicated measurements at the Electron-Ion
Collider (EIC) will provide further insight on the regime of gluon saturation [3, 4, 30-32].

One piece of the hints of the gluon saturation comes from the suppression of the nuclear
modification factor Rg4, [24, 26] in single forward hadron production in deuteron-nucleus
collisions, d + A — h(y,p1) + X [33-54] where tagging a hadron h with intermediate
transverse momentum p, in the forward large rapidity y forces the projectile deuteron to
probe the small-z component of the nuclear target [34, 42, 43, 55, 56]. The theoretical
prediction is made out of the hybrid factorization theorem, in which the incoming nucleon
(proton or deuteron) is regarded as a dilute system described by the collinear parton
distribution functions (PDFs) while the nuclear target is treated as a strong classical field
described by the CGC effective theory. The leading-order (LO) predictions have been



presented in [36-39, 45, 46, 57-59], and the approximations to the next-to-leading order
(NLO) corrections have been studied in [41, 60]. The complete analytical NLO predictions
were first carried out in [42, 43] and later confirmed by [1, 61]. The full calculation
demonstrates the validity of the hybrid factorization at O(as). Meanwhile the threshold
resummation was also carried out [2, 62] to resolve the negativity of the cross section in
which the NLO p; spectrum turns negative promptly when the hadron p, slightly exceeds
the saturation scale Q4 [47].

Despite the fact that the hadron production is conceptually simple, the extraction
of the CGC nucleus distribution out of this process could be more involved due to the
additional dependence on the non-perturbative fragmentation functions. On the other hand,
in order to perform a global extraction of the gluon saturation phenomenon, we need other
processes that could probe into the small-z regime. Among the probes of the small-z gluon
saturation, jets have drawn tremendous attention in recent years. In comparison with hadron
production, jets have the advantage that their behaviour can be predicted perturbatively
and therefore one could have better theoretical control than with hadrons. Initially, two
forward jets with a large rapidity separation, known as the Mueller-Navelet jet [63-66],
was introduced to probe the linear BFKL eovlution in pp collisions. The diffractive dijet
production in deep inelastic scattering (DIS) was later proposed and its phenomenology has
been intensively discussed in the small-z physics [67-73], which has shown the feasibility
in the study of the small-z gluon tomography [74]. The semi-inclusive dijet processes in
DIS were also investigated in the scenario of extraction of the Weizsidcker-Williams gluon
distribution [75, 76] and the quadrupole correlator of Wilson lines at small z [77, 78].

Modern jets are usually constructed out of recursive jet clustering algorithms with radius
parameter R, such as the anti-kp jet algorithm [79] which is the most frequently used at the
LHC and RHIC. However, the recursive clustering procedure imposes non-trivial constraints
on the phase space and dramatically complicates the theoretical calculations. So far, no
calculation with actual jet algorithm dependence is known within the CGC framework.
Recently, there have been pioneered attempts to obtain the CGC jet or photon-jet processes
at the NLO [80-82] using the small-cone approximation [83-85]. The main focus of these
attempts is to demonstrate the infrared finiteness of the jet cross section. However, to
have an apple-to-apple comparison of the CGC theory with the experimental results, it
is necessary to include in the calculation the jet clustering procedure that strictly follows
the experimental analyses. On the other hand, a complete NLO calculation with full jet
algorithm dependence can be used to justify the reliability of the small-cone approximation
to the full cross section.

In this work, for the first time, we present the NLO calculation with the complete jet
algorithm implemented. We walk through the detailed calculation of the forward inclusive
jet production in pA collisions to introduce our computational framework. The LO jet
production in pA collisions is already presented in [34] and the recent phenomenological
analysis based on the LO formalism is investigated in [86]. Meanwhile, efforts to go beyond
the LO small-z eikonal approximation are also carried through in [87, 88]. Remarkable
efforts to march toward NLO predictions are set out to compute the real corrections for
dijet production [89] and LO trijets [90] in pA collisions. A missing component of these



calculations is to yet take into account real jet algorithms. The jet clustering procedure
that decides when the partons are clustered together and when they form jets separately
dramatically complicates the phase space integration compared to the hadron production.
Further complications come from the experimental threshold used to select the jet events, for
instance, the cuts made to the jet rapidities and transverse momenta. However, it is these
procedures that are used experimentally to determine the jet multiplicities and to generate
the distributions. Therefore, it is of utmost importance to have a NLO computational
scheme to allow for a restricted jet procedure in order to perform the reliable revelation of
the CGC phenomena out of the jet data.

We applied the recently developed computational scheme [1, 2] within the CGC effective
theory to compute the full NLO predictions for the single inclusive jet production in
pA collisions. In order to implement the full jet clustering procedure, we developed a
“subtraction scheme”! for the NLO real corrections. We present sufficient details on how
the calculation is set up. We also examine the small-jet cone approximation in CGC
and build up an interesting connection to the small-jet cone approximation in collinear
factorization [91, 92] through the small-R factorization theorem derived in this work.

Outline of this manuscript. The manuscript is organized as the follows:

In section 2, we briefly review the CGC effective theory. We go through in detail the
theoretical set-ups in section 3, which cover the power counting, the soft and collinear
modes as well as the Feynman rules in section 3.2, the rapidity regulator in section 3.3 and
the color charge operator in section 3.4. Examples on applying the set-ups are given in
section 3.5.

The LO jet production results are summarized in section 4, followed by the detailed
descriptions of the NLO calculations in section 5, where we review the anti-k7 jet algo-
rithm [79] in section 5.5. We show how the phase space is parameterized for the real
emission in section 5.6 and discuss various kinematics limits. The subtraction strategy
will be elaborated in section 5.7.2 and the explicit subtraction term will be presented in
section 5.7.3 and section 5.8 for both the collinear and the soft contribution, respectively.
The full NLO results are given in section 5.9. The results are fully differential and can be
adapted to other experimental observables.

In section 6, we present the full analytic NLO cross section for the jet production in the
small- R limit. A factorized form was found in the result, and we argue that the factorization
will hold for any other jet/jet-like observables in their small value limits. A sketch of the
threshold resummation for the jet production is given in section 7. Except for additional
Sudakov logarithms to be resummed in the jet case, the resummation structure is similar
to the hadron production [2], which we reproduced in the work using a different approach.

ITo avoid confusion, we clarify that the subtraction scheme developed here is conceptually different
from the subtraction scheme used as a solution to the negative cross section problem in [48, 53]. Here the
subtraction scheme refers to the NLO technique to isolate the poles in the phase space integrals, in which
“we subtract and we add back” and therefore, every contribution is kept in the calculation and nothing is
subtracted away.
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Figure 1. A small-z gluon with k < v enters the semi-hard interaction (above the dashed
line), originated from the radiation and recombination of a large-z parton (as the solid line) from
the nucleus.

We use ¢ — ¢ channel to highlight the calculations, all the other channels can be found
in the appendix B. Numerical analyses are presented in section 8. We conclude in section 9.

We note that all the results presented in this work are in the large N¢ limit while our
methodology is not limited to the approximation but can be applied to more general cases
with finite N¢.

2 A brief review of the CGC effective theory

We briefly go through the basic ideas of the color glass condensate (CGC) effective theory
in the section. We refer the readers to refs. [19, 93, 94| for comprehensive reviews.

2.1 Basic picture

In high energy collisions, when nuclei get boosted, the phase space for bremsstrahlung
radiations grows. The radiations generate more gluons with small longitudinal momentum
fraction . As we keep on probing smaller values of the x, the gluon density will continue
growing, until it reaches a sufficiently small x region, where the gluon density is so high
that the wave functions of 2 gluons start to overlap and the 2 gluons can recombine into
one. The gluon bremsstrahlung and the recombination will eventually balance with each
other to reach equilibrium, which is known as the gluon saturation. The gluon saturation
happens typically at the saturation scale ()5, which features the order of the gluon transverse
momentum within the nucleus. The saturation scale ()5 grows as x — 0.

When @, > Aqcp, the small-z constituents of the nucleus could be studied perturba-
tively, while the partons with large momentum fraction remain non-perturbative. The CGC
effective theory is able to disentangle the perturbative physics and the non-perturbative
effects, by introducing a cut-off scale v (or A as in many CGC literature [19]) in the
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Figure 2. This figure shows the multi-interaction between the parton and the CGC field.

longitudinal momentum £ along the nuclei propagating direction,? to separate the small
(k; < v) and the large z (k; > v) degrees of freedom. During a collision, the large z
partons at the scale Aqcp will not participate directly the semi-hard interaction at O(Qs),
but instead they will gradually reduce the x and elevate the scale through the radiation
and recombination. As k; < v and the scale reaches (), the gluon enters the semi-hard
interaction, as illustrated in figure 1. The CGC integrates out those gluon fields with
k, > v, left with a random color source remainder for the active small-z gluons that take
part in the semi-hard interaction. One can also defines the cut-off momentum fraction X
for the gluon in the nucleus through v = X¢p4s where p4 is the momentum of the highly
boosted nucleus.

2.2 The CGC Wilson line (the interaction with the shock wave)

In a real collision, instead of scattering just once with the small-x gluon as in figure 1, a
probe parton (from the proton for instance) will experience multi-interactions coherently
with the CGC small-z fields. One thus needs to include the multiple scattering effects,
which in the CGC, is written as a sum of the small-z gluons

W=Wo+W +Wo+Wg+---, (2.1)

as shown in figure 2. The summation of the small-z gluon fields gives rise to the CGC
Wilson line, which represents the interaction between the projectile parton and the nucleus
field shock wave.

+oo
Wap(z1) = Pexp {zg/ det T AL (a7, $J_)} , (2.2)

where P denotes the path ordering. A_ (z*, ) is the small-z gluonic field with color c.
The color generator T 5 encodes the color message of a single interaction between the probe
and the gluon. For a ferminoic probe, Tg; = tg 5 the fundamental representation of the
SU(N¢) group, while TS; =i f2# the adjoint representation, if a gluon acts as the probe.
The relation between the fundamental and adjoint color generators suggests the following

connection between the Wilson lines in different representations,

Wap(a1) = 2Te[t*W (z )" W (2 )] . (2.3)

*We assume the nucleus are moving along the direction # = (1,0, 0, —1) with negative z-component
momentum, and we define k;, =n-ky = kg - kg, with the light-like vector n = (1,0,0,1). Note that for the
gluon from the nucleus kg < 0.



Figure 3. An illustration of the pA — JX process.

3 Theoretical set-ups

In this section, we introduce the theoretical framework we developed for the NLO calculation
and the resummation.

3.1 Light-cone coordinate

We work in the frame where the proton is moving forward along the +z-axis while the
nucleus in the —z direction. It is then natural to introduce the light-cone coordinates
n* = (1,0,0,1) and n* = (1,0,0,—1), which satisfy n-n = 2. Any four vector p* can be
decomposed as

n* n
Pr=pt o+ g+ (3.1)
known as the Sudakov decomposition, where
pr=n-p=p"+p*,  pT=n-p=p"-p’ (3:2)

and p‘i = (0,p', p?,0) is the transverse momentum with respect to the beam. In light-
cone coordinates, we may also denote a vector p* by its light-cone components as p* =

(", p7,p).
3.2 Power counting, modes, and Feynman rules

In this work, we are interested in forward inclusive jet production in proton-nucleus collisions,
p(pp)A — J(ps)X, as illustrated in figure 3. We assume the jet J is constructed by the
anti-k7 jet algorithm [79], but we emphasize that our calculation is fully differential and is
applicable to any jet algorithms.

Given that the proton is moving along the direction n* = (1,0,0, 1) while the nucleus
along n* = (1,0,0, —1), the forward scattering is then defined by the momentum hierarchy

A= DL el o —t/s < 1, (3.3)

where we have introduce the power counting parameter A and p; is the momentum of the
collinear parton coming out of the proton and py; the transverse momentum of the jet



with respect to the beam. We measure the jet rapidity y; and transverse momentum p; |
to select the forward jet events where gy is very large. We note that to probe the gluon
saturation, py| ~ Qs.

The existing hierarchy A < 1 in the observables and the kinematics yields several
different modes with different momentum scaling that simultaneously contribute to the

leading region of the cross section®:,*

e the collinear mode whose momentum scales as k. = (k7, k., ker) ~ 7 - pi(1, A2, ),

and
o the soft mode with kg ~ 71+ p;(A, A\, A).
Both modes will couple to the CGC Wilson line made up of the

o glauber gluons with kg ~ 71 - p;(0,0,A) coming from the nucleus, which provide the
transverse kick through the potential 1/k2% ~ —1/ k% 1

We note that the virtuality of all the modes are O(ps1) ~ O(Qs) and they all contribute
at leading power in A. The collinear and the CGC Wilson line exist in all known CGC
calculations, while in CGC, the soft mode was first identified in [1], which is found cru-
cial to correctly produce the rapidity poles to cancel with the nucleus distribution and
to automatically and systematically give rise to the kinematic constraint [1] which was
introduced by hand in [50]. The soft mode compensates the relieved phase space restrictions
due to the power expansion in A. Its appearance should not be too surprising given that
it already arises and plays an important role under similar circumstances such as the
transverse momentum dependent (TMD) studies [95]. The necessity of the soft mode in
the perturbative calculation can be seen as a direct consequence of the method of regions
(or strategy of regions) technique [96].

The collinear and the soft modes are governed by their own Lagrangian which is
obtained by appropriate power expansion of the QCD Lagrangian in A. The procedure is
exactly how the soft collinear effective theory (SCET) Lagrangian [97-101] is constructed.
The difference is that now we need to include in the Lagrangian the interaction between
the CGC shock wave and the collinear and the soft fields through the CGC Wilson line.
The detailed derivation of the Lagrangian and its comparison with the conventional CGC
approach will be given in another work [102]. Here we go through the Feynman rules that
will be directly used in our calculation to get the NLO jet cross section. Throughout the
work, we stick to the light-cone gauge in which i - A = AT = 0.

3Rigorously speaking, there is also the anti-collinear mode scaling as (2 - p,n-p,p1) ~ n-pa(A?,1,A) for
the highly boosted particles moving along the nucleus direction. The power expansion in the limit A — 0 is
equivalent to the infinite boost approximation. In our calculation, this mode is described directly using the
CGC effective theory.

“In the jet production, the jet radius R can introduce another scale hierarchy if R < 1. This leads to the
small-R limit of the jet production and will be discussed in section 6.



The collinear Feynman rules are given by

it
Yp2pie2’

Yo

(3.4)

i J

for the collinear quark propagator moving along the n direction, where the power expansion
has been performed and only the leading contribution in A is kept [98]. Here i (j) is the
color index and p is the momentum carried by the quark.

The collinear gluon is represented by a spring line with a straight line going through

nuqy + quny
<_9MV + “q{_“) , (3'5)

where a (b) is the color index and ¢ is the gluon momentum, and the form of the gluon
polarization sum arises from the fact that we work in the light-cone gauge n.- A = 0 as we
have mentioned above.

The interaction between the colliner quarks and the collinear gluon was derived within
the SCET framework before [98] and is given by

» I

/+ 27

n I
= ig,t® (n“ + 7;@ 7 ”i> ? (3.6)
p

Ww.a

where we have used the gauge condition 7 - A = 0. One can recognize that the collinear
interaction also exists in the light-front perturbation theory, when one expresses the so-called
bad component of a spinor field in terms of the good component, see for instance [103].

Now we include the interactions between the CGC shock wave and the collinear
modes via the CGC Wilson line. We note that these vertices are identical to the ones in
the conventional CGC calculations [7, 18, 80, 104-106], but now derived via a different
approach [102].

For the collinear quark, we can derive

; b 7 = (4m)o (p/+ *p+) z/d%w_i(pl_pl)hwji (by) ,

(3.7)
where the interaction is represented by the green box and Wj; is the corresponding Wilson
line in the fundamental representation. In comparison with [80], we have a factor of 4
instead of 27 in eq. (3.7) above. This is because we use pt = pY + p? as our convention for
the +-component of a 4-vector, while p* = (p° & p®)/v/2 in [80]. We note that the form of



the interaction indicates the 3-momentum conservation in the ‘+’ and the ‘L’ components,
while the ‘—’ component is not conserved which is a consequence of the homogeneous power
expansion in A [102] as required by CGC. The gluon-shock-wave interaction is

» 4 )
SETCCOOTIEOEEEEEs, — —g,, (4m) 0 (p/+ - p+> p* /apre_Z(pi_m)ql Wha (11)

(3.8)
where W, is the Wilson line in the adjoint representation.
The soft Feynman rule for emitting a soft gluon is given by

Py nlJ‘

\\ = —9s gﬁki ) (39)
kip,a

which is nothing but the eikonal approximation. Tj3; = tg s if the soft gluon is radiated

from a quark with « and g the color indices for the quark after and before the radiation,
otherwise Tfs =i [ if it is from a gluon.

There is also the interaction between the soft gluon and the shock wave through the
CGC Wilson line, which is found identical to the collinear gluon interaction in eq. (3.8)

) = —guw (4m) 0 (P,Jr — P+> p+/d2bL€7i(plpr)“Wba (ri) .

(3.10)

3.3 Rapidity regulator

In this work, dimensional regularization 4 — D = 4 — 2¢ will be used to deal with the
collinear and infrared divergences. However, in the effective framework, we could encounter
divergences which are not regularized by dimensional regularization. For instance we could
have integrals of the form
Liap., = E (3.11)
rap. 0 Et .
which is divergent when k™ — 0 and is known as the rapidity divergence. The rapidity
divergence has been extensively discussed in the scenario of the TMD physics [107-116],
where the divergence occurs due to the homogeneous power expansion in the phase space
kinematics, see for instance [112, 114]. Various rapidity regulators have been proposed to
regulate the divergence [95, 107-116].
In CGC, one will face the same rapidity divergence [1, 2, 50, 52, 61, 80, 103, 117, 118],
which needs to be properly regulated. In general, an introduced requlator better not destroy



the properties necessary to establish all order factorization theorems, for example, the
eikonal identities needed for exponentiation of the soft emissions into Wilson lines [95,
112]. Moreover a regulator should not break the power counting, otherwise one could lose
control over the non-perturbative power corrections to make the perturbatively calculable part
ambiguous and thus sacrifices the predictive power of a perturbative calculation. We refer
readers to refs. [111, 112, 114] for more discussions. On the computational side, we better
utilize a unified and conceptually well-defined requlator for both real and virtual contributions
and could be easily applied to higher order corrections. For these purposes, throughout the
work, we implement the regulator proposed in [114]. Consequently,

o for the O(ay) soft eikonal current in eq. (3.9), we add the rapidity regulator factor as

n/2
: (3.12)

nt nt
T — _gsTg,BkT

14

kt —k~

- gsTonB

where the factor ’ﬁ‘nﬂ is the regulator introduced for the rapidity divergence,
where v is a rapidity scale and 7 is a small parameter to be expanded by the end of a
calculation. We will show that v is associated to the cut-off scale in the CGC. We note
that since the rapidity divergence only arises when k™ — co > k™ or k= — 0o > kT,
in our case, we could simplify the calculation if we make the following change [119]

n

n/2 3
= (k’i) * e Bimil (3.13)

1

kt —k~

where n = 1 1In (k' /k™) is the rapidity of k* and we have used k* = k; e*". To see
this, we note that

v n/2 v |1/2 v \"2 B
‘kJF_k_ 5T :(/ﬂ) e~ 2 for k™ >k~ and n;, > 0,
(3.14)
and
n/2 n/2 n/2
’lﬁyk— — kL— = (;) ez | for Kt < k™ and n; < 0.
- i
(3.15)

e For the collinear contributions, we apply the following replacement

dk™ dkt [ v \"
where kT is the momentum of the gluon.

At the end of a calculation, one should carry out the 7 expansion before the e expansion [114].
The rapidity regulator will then turn the rapidity divergence to n-poles.

~10 -



3.4 Color charge operator

Throughout the work, we will use the color charge operator T¢ introduced by Catani, et
al. in [120]. Although the notation is not necessary for fixed order calculations, we find
it quite helpful in unifying the notation in different channels [2]. Meanwhile the notation
helps to sort out the origins of different types of logarithms in the cross section and is thus
beneficial for deriving the threshold resummation in section 7.

In order to carry out the threshold resummation in CGC, we need to deal with multiple
emissions that interact with the shock wave, which dramatically complicates the color flow
and mixes the LO and higher order color structures. For instance, we can see that for the
jet production (as in the hadron case), the LO matrix element squared possesses the color
structure of the form

| | '“| = |Mo[? oc T [WH (0 Wi(bL)] | (3.17)

where W is the CGC Wilson line in eq. . The vertical dashed line cuts through the
final state particles. Here we pay our attentlon only to the color structures but ignore the
details on the kinematics.

At higher orders with more gluons emitted, one could encounter

for the color structures at NLO, and the NNLO correction will involve contributions such as

oc / d?r d?r Te [WE(L) 280 (b1) #°49) Wae (1) Wha (7))

(3.19)
where W, and Wpq are the CGC Wilson lines in the adjoint representation. We see that

e the NLO and NNLO color structures are completely entangled with the structures,
sz(bj_) and Wij(bj_);
e the NLO and NNLO digrams showed above exhibit some kind of common features,

however the color structures seem quite different.

However, resummation usually requires the factorization of the higher order corrections
from the LO structures to some extent. Also, realizing a resummation actually means that
one can identify in the higher order corrections a certain pattern as the repetition of the
lower order results. Therefore, one can resum the lower order calculations to obtain the all
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Figure 4. A gluon is emitted from parton-i, which rotates the color basis by T by

order results, see for instance ref. [121]. For these purposes, instead of tracing over color
indices, we need to keep track of the color correlation when squaring the matrix element.’
The color charge operator offers a neat way to handle the color correlation and allows us
to achieve the factorization in which the higher order corrections can be seen as the color
currents acting on LO matrix element, and in turn has been shown to help establish a
compact formalism for the resummation [2].

To understand the notation, let us consider processes that involve m final-state QCD
partons at the tree-level, i = 1,2,...,m, each carrying a momentum p;. The LO matrix
element takes the general structure

M T (P1s s P ) (3.20)
where the subscript {p],---, p},} denotes the large ‘+’-component of the momenta. The
superscripts {ci, ..., ¢y} are the color indices (o = 1,. .., N¢ different colors for each quark
or antiquark, a =1, ... ,Ngv — 1 for gluons, where N¢ is the number of colors for the quark)
and the {si,..., s;,} are the spin indices (s = 1,2 for fermions and s = 1,...,D — 2 for

gluons, with D the space-time dimension), respectively.

A basis in the spin-color space {|ci,...,¢m) ® [S1,...,8m)} was introduced in [120],
such that the matrix element can be written as the inner product of the basis and a vector
in the spin-color space, which is

MEG S ) = (erse s eml @ (st sm ) IMPLL - Pt )) s
(3.21)

where [M(pi1,... ,Dm, l)>pj’ is a vector in the spin-color space. We will suppress the

subscript to denote it as [M(pii,...,pm,1)). And the matrix element squared after

SSimilar situation happens to the non-global logarithms (NGLs), where one also maintains the color
correlation information in order to achieve the resummation [122]. Given the similarities between NGLs and
small-x evolution, it is perhaps not too surprise that in CGC certain resummations will also rely on the
color correlation.
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summing over all the color and the spin indices is then

M| = M1 ) M 1L ) - (3.22)

Pt

At higher orders, once a gluon with color index «a is emitted from parton i, as illustrated
in figure 4, it will generate a color charge T¢ which acts on the ¢-th parton color index and
rotates the color basis in a way that

<01, ce ey Ciyens ,cm;a\Tﬂbl, . .,bi, ce ,bm> = 5011)1 .. 'Ta-bi .. '5cmbm 5 (323)

Cq

where T} = ifcqp if the emitting particle 7 is a gluon and T5s =t 5 if the emitting parton ¢
is a quark (in the case of an antiquark T35 =135 = —14,,).

For the processes with initial QCD partons, the color operator rules can be obtained
by crossing, such that if ¢ is an initial gluon, T3 = if..s; while for intial quark we have
TS5 = ths = —tf, and anti-quark with TS, = 5.

The dot product of the color charge operator is given by

T, - T; =>» T{TY, (3.24)
a

where we note that the subscripts ¢« and j denote the i- and j-th partons that the color
charge operators are acting on. The color operator rule immediately leads to the color
algebra that

T, -T,=T, T, if i#j; T?=0C;, (3.25)

where C; = Ng if i is a gluon and C; = Cp = (N(Q; —1)/2N¢ if i is a quark or antiquark,

which reduces to C; = % in the large N¢o limit. Also for any QCD process, we have the

color charge conservation

> T =0, (3.26)
i=1

when acting on the vector | M).

Using this notation, the square of color-correlated amplitudes is given by

[MOF2 =(M| T; - Ty |IM)

. * .
{Mal...bz...bk...am (pl ey Dm )} Tbciai Tbckak Mal...al...ak...am (pl s Dim ) )
(3.27)

Again, the i and k here denote the i-th and the k-th parton, respectively. For instance, in
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the jet production, we will have

/

= (Mo|My),

/
128

o / %7 1 (Mo| T Woe(r 1) TS | Mo),

1

bl
gﬁl x / @21 2, (Mo| T Woae(r )T TE Wi (', )T M)

— (M| ( / d%T?W@bm)Tg)Q Mo) (3.28)

where we have labeled the incoming quark as the i-th particle and the outgoing quark the
j-th parton and again we have only paid attention to the colors but ignored the kinematic
details. We have used |[Mg) o« W (b ), as in egs. (3.7) and (3.17) and will also derive in
detail in eq. (4.1). Now apparently the higher orders are obtained by color charge operator
acting on the LO vector |[My) and it is also clear that this specific NNLO term is the square
of the NLO in terms of the colors.% This feature could explain the non-linearity of the BK
evolution in eq. (3.40) and the threshold resummation in the CGC framework [2]. It is also
crucial for the threshold resummation for the jet production in section 7.

3.5 Examples

As an example of the application of the Feynman rules and the color operator T, we derive
the initial state radiation (ISR) collinear current, which will be used in the following sections
to derive the collinear cross section. By ISR collinear current, we mean a collinear gluon is

5We note the difference between the “trace-after-square”
2
(Mo] (/ dzmT;’Wab(m)Tg’.) |Mo),
in eq. (3.28), and the “square-after-trace”
2 2
< [l |M0>> Cor [ (Mo T M)

The former would reduce to the color structure in eq. (3.19) while the latters are the square of the traced
NLO in eq. (3.18) before or after the 7 -integration, respectively. Neither of the latters corresponds to the
color structure arises at NNLO.
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radiated before the incoming parton interacts with the shock wave, which is described by

Pq Py

g / Lt (o Tad | ) B Gy =)
s Dl2+162 I+ P 2 (pq—l)2—|—ie

x [~gagkt (4m) 6 (1" — p] )] / dr e LTIV, (0 ) T8 Mo (L, pjo )

di_dP=21, p} 1 K
= —ig, 209 + —1 1 7a
ig ,U / D T 124 e (pq — l)2 T e 1 p;r nyy

% /dm_efl(kﬁrlL)‘UWab (ri) T2 Mo (11, pj1))

dP—21, e—ilitki)ry pt kT
= 793# /dTL D J_Q 12 QZ?_pi + p+ yL’YCJM_ Wab (TL) Tg‘MO (lL,pji» )
1 q

(3.29)

where do3(q) = —gap + ﬁaqﬂqﬂ. Here we have carried out the [~ -integration by contour
integral, see eq. (A.2).

Similar steps lead to the ISR soft current which can also be derived directly by power
counting the above result assuming k™ ~ Py )\, which gives

Pq Dj

2l 2la —ilyry v g o
= —gsp*e 2‘"’“'/6”1 )DL2 B <M> e LTLW o (r )T Mo (L1, pin)),
1

(3.30)

where the rapidity regulator follows eq. (3.12). We have made the change in eq. (3.13) and
use the fact that —If/ =k * and for very large rapidities, ng — 7. To see this, we note
that since kT = k*', we will have k e = k:’le”ke‘s’”f, where dnr = mi — M characterizes
their difference. When 7 and thus n — oo, dn, = Z—i ~ O(1) < |nkl, and ng — ny for
very large rapidities. It is therefore justified to replace e | by e~ to regulate the
singular behavior at very large rapidities.
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3.6 Multiple point correlator

In CGC, the incoming nucleus is described by the correlators of the Wilson lines. The
nucleus dipole distribution is defined as

SN (bL, b)) = ]\}CTr (WEeOwie)] . (3.31)

The subscript X represents the scale to evaluate the dipole, and is given by the typical
momentum fraction of the nucleus carried by the gluon.
We will also encounter the triple-pole distribution which is

2
SE?; (bp,ri b)) = WTY {WT(b’L)t“W(bl)tb} Wan(r1) (3.32)
c

where W is the Wilson line in the adjoint representation. The triple-pole distribution can
be further related to the dipole by the Fiertz identity in eq. (A.11) as

SO br,ri, 1) = SOb1, 1) SE) (1, bL) —

2
) SbLb)), (3.33)

1
— S
NE
which in the large N¢ limit reduces to the product of 2 dipoles

S br, 1, b) ~ S (be,r) S (e, by (3.34)
In the jet production, we will also need the 6-point correlator, defined as

2 /
S (b ra b1 r") = g T [ W)W (L)1) Wi, () Wan(r1) (3.35)
C

The 6-point correlator occurs at NLO when we have 2 distinguished jets.

In the large N¢ limit, the Sg?; can be written as a product of the 4-point function and

the dipole such that

6 4 2

SE ~ SO L r)SE (e (3.36)

which is originated from the color identity in eq. (A.12), while the quadru-pole distribution
is given by

(4) 1o _ 1 Y, ! t
SN (bW ) = ST (W)W )W )W) (3.37)
For later use, we also introduce the nucleus distributions in the momentum space
which are
2m) P28 Fr(ky; Xp) = / dP=2p, / dD*Qb’Le*ikL‘(bi*bL)S%(b L)), (3.38)

for the dipoles, where S| is the transverse area of the nucleus and Fr is the distribution
in the momentum space. Here we have applied the translational invariance of the dipole
distribution. In the large N¢ limit, the momentum space bilinear distribution for the
3-point function is given by

(2m)P 28 Filho, X)) Frll, Xp) = [ P2 a0~ aP 2 e ihorms

x e v S (b, b, (3.39)

~16 —



where 2, =b; —r; and y; =r; — . We also define z; =b, — V| =2, +y,. The
dipole distribution satisfies the BK-evolution, which at LO gives

as Noo [ dPr) zi
T 2 T xiyﬁ_

d
dlan

S (oL, b)) = ) S (br, 1, b)), (3.40)
+

where we have introduced the ‘+’-prescription for a distribution D(z) defined as

/ PaD.(x) f(x) = lim [ d*22D(a,e) (f(a) - £(0)). (3.41)

e—0

with the requirement that lim|,_,o, D(,€) — 0.
The BK-equation is non-linear in the color structures, which can be seen by rewriting
the equation using the color charge operator notation such that

d

dlan‘MO(bJ‘)>Xfo<M0(bIJ_)’
as [ d’ry 22 . , .

- 55 | Wac(ri)T§|Mo(br))x, x, (Mo(V,)|TF, (3.42)
7r ™ \7iyl),

where we add the subscript X7 to remind the rapidity scale dependence of the matrix. The
equation can be formally solved to find

IMo(b1))x,x; (Mo(V))]
as . Xg d?r 22 a .
— exp [WlnXO/ - (wiZi Wl T | L Mo(b ) o (Mol

(3.43)

The exponentiation of the color charge operator T® manifests the non-linearity of the
BK-evolution in the color structure. The non-linearity is originated from the multiple
emission picture in eq. (3.28) where for each emission, an additional Wilson line W with
respect to the lowest order is generated. Eqgs. (3.42) and (3.43) also hold for the gluon case.

4 Leading order cross section

We start with the LO cross section. Throughout the work, we take the quark channel as an
example to walk through our calculation in detail. Other channels can be obtained in a
similar way and the results are given in the appendix B.

At LO, there is only one diagram that contributes to the jet production in the quark
channel, where ¢(pq) — ¢(g;), as shown in figure 5, which gives the amplitude

[Mo(PgLpj1)) = Xyr zxj;; / dP 2, e P TP LY (b ) (4.1)
J

Square the matrix element and sum over all the spins and average over the initial quark
color, one finds

(Mol M) = 2007 [ 47201072, e v T [WEOWIE)] . (42
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Pq bJ_

Figure 5. LO Feynman diagram for the quark channel, where an incoming quark carries momentum
Pq kicked by the Wilson line (green box) to produce an out-going quark with momentum p;.

The cross section is then given by

4 dpj d”?pj. o
=3 /d pJs— oF C 47rp;r(27r)ﬁ 2(2m)6 (pj —pq> (Mo|Mo) 8D (ps —p;), (4.3)

where we have averaged over the proton spin which gives the overall factor 1/2 and including
the partonic flux factor 1/(p;). Here f ( ) is the quark parton distribution function (PDF)
and the momentum fraction satisfies pq = mpp with pJr the proton momentum. We have
worked out the p; on-shell condition and thus p; = pJL/pj . The unity fd4pJ6(4) (ps —pj)
is inserted to define the jet momentum. At LO, since we only have one parton in the final
state, the jet algorithm acts trivially on the p; phase space. The situation is different at
NLO, when there is one additional radiated parton and the jet clustering procedure imposes
non-trivial restriction on the two-parton phase space, which dramatically complicates the
calculation. We have suppressed possible additional experimental cuts and the distribution
bin separation placed on the jet momentum p; in eq. (4.3).

Plugging the (M| My) into eq. (4.3), we find

d + dD 2 B B i .
050 [ UGt [ o)
J

where 7 = pj / p; . As we have mentioned above, the subscript X in the dipole Sg?; (by,b))
denotes the scale to evaluate the dipole distribution. At LO, the scale choice is arbitrary,
however the CGC framework demands that Xy ~ O(X4) to separate the fast and the slow
moving partons, where X 4 is the momentum fraction carried by the gluon from the nucleus.
We will see that the NLO calculation will determine the X; by minimizing the logarithms
in the NLO corrections, whose value produces the CGC requirement.
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Figure 6. Feynman diagrams for collinear virtual corrections: (a) initial quark self energy correction
(b) final quark self energy correction (c) the only non-vanishing contribution.

In the dipole momentum space, by using eq. (3.38), the differential cross section at LO
can also be written as
do(®)
A p—— T E A Y .4 4.5
e f(T)Fr(pyoL; Xy), (4.5)
where we have used dny = dp:,F / p'}. We note that in practice we still use pj to generate the
phase space instead of the rapidity 7. It is merely a matter of choice at LO, but crucial in
order to completely determine the phase space of the real emission at NLO, as described in
section 5.6. For later convenience, for the rest of this work, we introduce do through

d+
o= [ LLpyiio. (4.6)
Py

5 Next-to-leading order correction

5.1 Virtual corrections

Now we move on to evaluate the NLO corrections to the inclusive jet cross section. We
start with the virtual corrections, which receive contributions from both the collinear
virtual correction and the soft virtual correction, respectively elaborated in 5.2 and
in 5.3. Since the virtual corrections share the LO kinematics, the jet algorithm plays
no effect to the calculation, and the partnoic results are identical to the forward hadron
production [1, 42, 43, 61].

5.2 The collinear virtual correction

Three loop configurations can occur at NLO, as shown in figure 6, while the first two
vanish due to scaleless integrals and only the last one survives, which gives

v\ D D—2 .
|MV,coll.> = —igf <p+> /‘26/ (;lw)kD (C;W)DZLZ l_Q(l & z)1+n U/La%ﬂ +2WJ_?I$jJ_]

q —

z

22
_ % ((11_+2)1+n —e(l- z)) (. —(1— z)zbﬂ)h] 2 (p; — R

D9 etllitky)ry b
x/d P T Wap(r ) T Mo, py1 — K1), (5.1)
1
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where we have let z = 1/ pj =1-kt/ pj and implemented the rapidity regulator following
eq. (3.16). [a,b] = ab — ba is the commutator.

The loop integration over k£~ can be performed by contour integral, see eq. (A.2), which
simplifies the virtual matrix element to

dD 2]@_ dD 2ZJ_ 2—2z
|IMvcont.) = . ( > / /27rD 2 (97) D2 —QZm[hakﬂ

+2z (], 8;.] -2 ((11_+)+ —e(1 z>) (k- -2)p) h}

[ (r) T LMo (L pys — k)
X “2r TS Wap (1) T (Mo (l,pj1L — k1)) -
B (k-1 -2)p) "’ ’

(5.2)

We note that the rapidity n-regulator naturally requlates the divergence at z =1, and there
is no need for any additional cut-off in the loop integral in our approach. We see this as
one advantage of the rapidity requlator we are advocating.

Interfering the virtual amplitude with the LO matrix element, one finds
<M0|Mv,coll.>+C-C.
2 N, 1 1422 n dP—2k, 4P-2;
— _8(p+)297sicu26/ de | 1= (¥ —e(1—2) / L =
7 4r 2 0 (1—z)n \ pf (2m)P-2 (27)P—2

Lok . .
x [ P2 P2, PR S e s 5 by ),
1™

(5.3)

where we have summed over the spin and averaged over the color. We have done the
variable change k| — k| — (1 — 2)p;1 and used the color identities in eq. (3.32).

The integral over the loop-momenta k| and [, can be carried out straightforwardly, by
using the integral formula eq. (A.4) in the appendix. Plugging the matrix element into the
phase space integral in eq. (4.3), and performing the 1 and € expansions consecutively, we
find that the virtual correction to the jet cross section is given by

N D—2p  1D—2}1 —2e
Ao = i) gr 8 [ _"’““{<‘3‘1> (B)  sfeut

2 2 42—e €

dri | -2 (v K 9 1 9 \2€ 1 9 \2€
+/—— I“I—e)| - (z9p) +—= (yip
W[ﬁ<ﬁ> | )@ﬁ(L) 7 ()

eIy 1 14 22 ‘ @
- T TRpgLT /
i ( vt >+/0 dz(l — 2+ ]Sxf(bbm’bﬁ ; (5.4)

where the ‘+’-prescription for a distribution Dy (x) has been defined in eq. (3.41). We note
that the virtual correction is identical to the single hadron production [42, 61].
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Pq

Figure 7. The Feynman diagram for the non-vanishing soft virtual correction.

5.3 The soft virtual correction

Now we turn to the virtual correction from the soft contribution, induced by the soft
currents discussed in previous sections. The only non-vanishing contribution is given in
figure 7, which is

M _ 2 26/ /dD 2 APk 4k -1 zi 2k —77/2677”1/|
Vsoft gs 91)D—2 271' D— ng l2 v

/dD—Qm_e—szrle—zlLrlT?Wab(rL)Ti IMo(l,pj1 — k1)) (5.5)

Again, the loop integration can be worked out explicitly. When interfering with the LO
amplitude, the soft virtual correction to the squared matrix element is found to be

<MO| MV,soft> + c.c.

. —1+2e+n/2
_2( +)2 a E ¢ F(l — €~ 77/4) ? ﬁ 2€V17
pq S (471_)1_5 4 lu’

" I'(1+n/4)
/ dP=2b, P20, P2y e P T (W LEW (b1 )] Wan(r) (5.6)

Integrating over the phase space in eq. (4.3) and utilizing the color identity in eq. (A.12),
we find the soft correction reads

2(1—e— D—2 D—231 3D—2
doyson =7 (r) L No AT (1 =¢ n/4)/d bLdP=2, d
) 2r 2 n I‘2(1+77/4) FPORe: -

1 333_1/2 n/2 ) 9% 1 yiyg n/2 ) 9
X(g( 3 ) (ngL) +y7 2 (yﬂﬁ) ; (5.7)

Preirrn s gQor,r b))

1\ “ 1 0
where ¢y = 2¢7 7 with vg the Euler constant.

5.4 Real corrections

In this section, we go over the real corrections to the inclusive forward jet production in
great detail. Unlike the LO and virtual corrections, now we have 2 partons in the final state
and we need to decide when these 2 particles are clustered into one single jet and when

- 21 —



they form distinct jets separately. Therefore, the jet algorithm now imposes non-trivial
constraints on the real correction phase space.

We will briefly review the anti-k7 jet algorithm and discuss its restrictions on the
kinematics of the 2-body phase space. Meanwhile, we will study various kinematic limits
which are relevant to our NLO calculation. Specifically, we will focus on the collinear, soft
and rapidity limits, which will lead to singular behaviors when evaluating the real phase
space integrals.

We will explain the subtraction strategy that handles the singularities in these kinematic
limits and present the explicit form of the subtraction terms.

5.5 The anti-kr jet algorithm

Within the anti-k7 jet algorithm, given a list of particles with momenta {k!'}, the distance
metrics p;p between particle ¢ and the beam B, and p;; between particles ¢ and j are
introduced, in terms of their transverse momenta k; |, the azimuthal angles ¢; and the
rapidities n;, where [79]

*2) AL (5.8)

piB = k;f and p;; = min (k;f, kj,L J2

Here R is the jet radius parameter. The geometric distance AR% between particles ¢ and j
is given by
AR = (¢i — ¢;)° + (i —m))°. (5.9)

If p;j is the smallest of all the p;p and p;;, particles 7 and j are clustered to form a pseudo-jet,
whereas if p;p is the smallest, the i-th particle/pseudo-jet is promoted to a jet and removed
from the list. The procedure continues until the list is empty and all particles in the list will
fall into one of the jets constructed. Additional criteria on the jet transverse momentum pj |
or rapidity ny are usually imposed and if the constructed jet passes the criterion thresholds,
it is an observed jet, otherwise it is not counted.

As for the real corrections to the single inclusive jet, the jet clustering procedure will
impose kinematic constraints on the phase space of the 2 real emissions, which can be
written as

0, = [ d'ps{© (ARE ~ R?) (69 0 — ) + 59 (0~ 1)
+6 (R? = AR%) 6 (ps —p; — pk)} : (5.10)

Such constraints can be understood as follows. When the separation between two
particles p; and py, ARj; is greater than R, then j and k can either be the signal jet and
the jet momentum is given by the momentum of the individual particle. On the other hand,
if AR;, < R, the 2 particles are clustered into the single jet and the jet momentum p; is
the sum of the particle momenta. We should bear in mind that there are additional possible
restrictions on the jet momentum p; (e.g. requirements from experimental cuts) which are
suppressed in eq. (5.10).
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5.6 The phase space measure and the kinematic limits

For the real emission, we are dealing with 2 radiations in the final state. The phase space is
given by

1 dPp; aP
dd; = = / dzf (x pq /(zﬂg]ﬁ(p?)@ﬂ?lé(pi)2(27r)6(p;—pj—p}i)@{],

(5.11)

where in our example ¢ — ¢ + g we denote the out-going quark momentum as p; and the

gluon momentum py, respectively. We have included the spin average factor, the flux, the

PDF f(x) and the Bjorken-z integration as well as the phase space restriction due to the

jet clustering procedure in eq. (5.10). Here the in-coming quark momentum p; = xp}, with

pp the momentum of the incoming proton in pA collisions.

Ifwelet 1 —¢ = +, we can manipulate the phase space to get

1 1 [dp] dQPu df dP2ppy 1
dd; = / J / z)—0(1—2) (0 +06,), (512
8wpy ) pj £(1-¢) (2m)P2 ( )pér (1-2) ( ) (5.12)
_ p{r+p;r _ p-+ T _ P+
where x = JPT = ﬁg, T = ﬁ, and
_ 2
©:=06 (R ARjk) |P;—:pj__l):vP;ﬁ_:P‘}J_—PZJ_J:T )
_ 2
@ - @ (AR R ) |p;}—:p-}-’p§tl:p;}L P (513)

Here we have chosen to parameterize the phase space using the jet momentum pj, py1L and

the gluon momentum pi. The gluon can be un-resolvable when it is soft or collinear to either

the out-going or in-coming quarks. The momentum for the outgoing quark momentum can
2

be generated via p;' = p}' — p;, pﬁj_ = p‘j’J_ — p’,ij_ and p; = % for 1 jet and one demands
J
that the constructed p;-‘ must satisfy ©1. While for the 2-jet case, p;r = pj, pﬁ_ = p‘}J_ and
Oy should be fulfilled. Once we have p* and pt., all the other physical variables such as the
7 k
jet energy Ey and the rapidity ny can be easily constructed in a straightforward way.

For later use, let us study several kinematic limits here.

e ¢ =1 rapidity limit. In the rapidity limit, if the gluon transverse momentum py; # 0,
the gluon is actually moving backwards with very large p, due to the fact that

Py = (1p kgp = > pk Hence the backward gluon and the out-going forward quark are

highly unhkely to be clustered into 1 jet and therefore ©; — 0 while @3 — 1 in this
situation. More specifically, we have

2 2 |1 p; 1 Py 2_ 1 & pi ?
=ty = 5 (2) -3 () = [o (5 )|

(5.14)

and we can see that as £ = 1 while p1 # 0, Anj; > R to prevent j and k to be
clustered together, as expected. We note that this backward-moving contribution
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will eventually be subtracted automatically when appropriate rapidity schemes are
implemented. On the other hand, if pg; = 0, we will have ©1 + ©5 = 1 in the rapidity
limit. All in all, as £ — 1, ©1 4+ O9 = 1. This features will help us to construct the
counter term in the following sections.

pi||p; final-final collinear limit. When pj, and p; are collinear to each other, they will
always be put into one jet to find ©; = 1 and O3 = 0. Also from eq. (5.14), we find
that in this limit since An;, =0, we have {p,, = (1 —&)pjL or ppr = (1 —&)pyL-

Pk||pg intial-final collinear limit. In this limit py; = 0 and as long as & # 1, which
means the gluon is propagating along the beam and can no way be clustered with the
out-going quark, then one has © =1 and ©1 = 0; meanwhile if £ =1, ©1 + O, =1,
as one can see from eq. (5.13).

The soft gluon p’,: ~pr K p; limit. In the soft limit, as the gluon momentum
pl — 0, the out-going quark momentum p;r =Dy = p}r and z — 7. By homogeneous
power expansion, the pz component will be completely dropped from the J-function
or the ©’s in the phase space. As a consequence, in the soft limit, there will be no
restrictions on pz or equivalently the gluon rapidity 7. Therefore, the phase space
will become

1 1 dp} d®pyi [ dP?ppy 1
dd =2 / —— (O © 5.15
J,soft oy p;r pJJr (27_(_)2 k f(T) (27T)D_2 pg ( 1,s0ft + 2,soft) ) ( )

Where r =T, and
@1 soft — @ (R2 - AR2k) ’ + + 1 "
’ J Pj =Py P; =Py ~Ppy’

Or0n = O (ARY, — R?) (5.16)

pf=py ol =l
Also we note that, if pr — 0, O1 st + O250ft = 1. And in the rapidity limit when
|nk| — oo, for a jet with finite 1y, the partons j and k are unlikely to be grouped into
one jet and therefore ©, — 1 and ©; — 0.

Small R limit. In this work, besides the predictions with the full jet algorithm
dependence, we will also present analytic results for the jet production in the small- R
limit, R < 1. It is ready to show that in the small-R limit, we have

2p; - —(1—¢)pj1)? k?

Pj LDk L EQ—=Opjipkr €1 —EpjiprL’

up to O(R?) corrections [119]. Here we have defined k| = ppy — (1 — &)p;. in the
last step, and we immediately finds that in the R < 1 limit

©1 = O1 g = @(52(1 —&)’R%p5, — ki) lpj=¢ps >

©2 = Oon = O (K = (1 - )R )=, - (5.18)
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Figure 8. Feynman diagrams for the collinear real emissions: (a) final state radiation (left figure);
(b) initial state radiation (right figure).

where we have used that for 1 jet, pj1 = &pyi and pr = (1 — §)pyy in the small-R
limit, as can be seen from eq. (5.14), while for 2 jets, p;j| = ps1 and py = lgiph_.
Apparently, in the limit £ — 1, we have

@1,R+@2,R =1. (5.19)

We note that the 1 jet phase space area scales as R% and could be highly suppressed in
the small R limit, unless there is R™2 compensation from the matriz element, which
is the case when py||p; and the matriz element becomes singular.

5.7 The collinear contribution

We now detail the calculation of the collinear real corrections below.

5.7.1 The collinear matrix element

At the NLO, two configurations contribute to the real correction of the quark channel,
which we denote as the final state radiation (FSR) if the gluon is emitted after interacting
with the shock wave (left figure) and the intial state radiation (ISR) if the gluon is radiated
before the interaction (right figure), see figure 8. The matrix elements are

e[ o % Bt it
(Mepsr.co.) = —g: T <n T D) T Moot pi)) (5:20)
J

for the FSR diagram and

aP—21, I+t
|IMisR,coll.) = —9s / — = (21a y Py e
(2m)D-2 ip;r i 171

Do e—iki+l) Ty b
X /d TLTWab(TL)Ti (Mo(lL,pj1)), (5.21)
1

for the ISR diagram, respectively. Square the sum of both amplitudes and carry out the
phase space integral in eq. (5.12), we find that the collinear real correction can be written
as the sum of three different pieces

dUR,coll. = do'fsr + doisr + dointer. s (522)
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where

2 "
dofsr = 20452 ]\;C /df zf(x) (@1 + @2) <<11_+§)€1+n —e(l - f)) (;‘") p

q

dP=2b, aP-2y, T2(1 - ¢ | )
L gb-2 e*l(puﬂ?jﬂ'ﬁs() b Y,),
| PhL (eper — (1= Opy1)? x, (01, 01)

(5.23)

which is the contribution from the FSR in which the clustering conditions ©; and O, are
given in eq. (5.13). On the other hand,

doigy
as Neo _ 1+§2 v n .
- 27r27/d£dD 2pkl- zf(x) (@1+@2) (W_6(1_€)> (p'") ,u2
q
dD QdeD 2bl dD QTLdD 27“ L B ; B QTl'ZEl p
/ (27-[-)D 5 yoR Le PjL 2L o~ WPkLl" iW/é_%S&;(bLaTL’blvrl%
1 1

(5.24)

represents the ISR contribution where we have integrated over the loop momenta [ ’s and
let /| =¥, —r/ and 2/, =r —r/ . Here, the 6-point correlator was introduced previously
in eq. (3.35) and eq. (A.12).

The Ointer. in eq. (5.22) denotes the billinear term coming from the interference between
the ISR and the FSR, which is

as N _ dP=2b dP2Y
dinter. = 53 TCMQG/d§ /dD “Pr (2;),3 s—d"r, xf(x) (91 +@2)

14 &2 v\
(gea-0)(2)

/ dP721) 2(Epes — (1 - Epjr) - lu L YL =i 2L o —iPEL xLS( )
(2m)P=2 (¢prr — (1= &)pj1)213

(bL, T, b)),
(5.25)

We remind that in all contributions, when the matrix elements hit ®; and O, the Bjorken
x and the p; will be replaced by p; and py, following the replacement rules in eq. (5.13)
accordingly. We note that unlike the hadron case, for the ISR contribution, the p; | integral
can not be performed inclusively and thus analytically to reduce the quadrupole structure
to dipole, due to the existence of the jet algorithm.

5.7.2 The idea of subtraction

Now we are at the stage to evaluate the real correction in eq. (5.22), which contains collinear
and rapidity singularities. For instance, eq. (5.22) involves contributions such as

o5 ’ !
=3 faeon (g -0) G )

q

Do Fr(peL +pjL; Xy)
X /d plu{@z + 6, } Epr — (1 —jg)ij]Z ) (5.26)
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where the rapidity and the final-final collinear poles arise when £ — 1 and/or py; — 0 and
when &pr1 — (1 — &)pj1, respectively. Here we have applied the Fourier transformation
in eq. (3.38).

Different from the forward hadron production, where the integration can be performed
analytically and the singularities can thus be extracted in a straightforward way, here in
the jet production, the integration is complicated by the existence of the jet clustering
algorithm, represented by the ©1- and Os-functions. The clustering hinders the analytic
computation of the integration and in turn makes the pole isolation less obvious.

In order to deal with this complication, we appeal to the subtraction method and
construct counter terms to isolate the poles. The idea can be highlighted by the following
simple example. Suppose that we are dealing with the integral fol drf(z)/z'*¢, here f(x)
is regular but takes a complicated form involving the jet clustering algorithm. The integral
can barely be done analytically. Meanwhile the x — 0 singularity also discourages the direct
numerical integration.

We can however manipulate the integral to find

[arf = [ (52 - 1O 1 o) [ 2
L[5 50
0 x

€

where we subtracted a counter term z~!7¢ f(0) and then added it back. The counter term is
built in such a way that it contains all the infrared, collinear and rapidity (here, denoted as
x — 0) singular behaviour of the original integrand x=17¢f(x). As a result, in the first term
of the first equation, the combination is everywhere regular in the domain [0, 1]. We can
thus safely set e = 0 to get the second equation. Although f(z) — f(0) remains complicated,
since the integral is now finite, we can simply evaluate this term numerically.

All the x — 0 singularities are now contained only in the counter term. The good
thing about the counter term is that it is constructed as the infrared and collinear limit of
a full theory. As a consequence, f(0) is usually significantly simplified when compared to
f(z). Especially, due to the infrared-collinear-safety (IRC safe) feature of the jet clustering
algorithms, all the jet algorithm dependence will become trivial and reduce to 1 within the
counter term f(0). This eventually allows us to perform the integration over the counter
term analytically to extract the poles.

5.7.3 The collinear contribution

Back to eq. (5.22), let us see how the subtraction term is constructed. To do so, we need to
analyze the infrared behavior of the integrand, which as guaranteed by QCD, only possesses
singularities arising from the soft and collinear limits, plus the £ — 1 rapidity pole due to
the power expansion performed in the kinematic constraints. Now we take a look at the
behaviour of the integrand of doy, in those limits one by one:

e When approaching the rapidity limit, as £ — 1, the gluon goes backwards, therefore
©2 — 1 and ©7 — 0 (see prevsious analysis in section 5.6). The integrand will
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behave as
2 Fr(per +pri; Xy)

(1= [prr — (1= Epyi)*’

where we have explicitly replaced p; | by py| since the matrix element hits ©,.

%eri dofsy o< Tf(T) (5.27)

e Indoy,,, there is only collinear singularity when {py 1 — (1—&)p;1 in the denominator,
which indicates that pi||p;. The collinear singular behavior only arises in the 1 jet
case, since when the 2 final state partons are so close to each other, the jet algorithm
will always cluster them into one single jet and therefore @3 — 0. Since the 2-jet
condition will never be satisfied, we have ©1 — 1. Therefore the integrand approaches

1+ —€e(1-¢6?*  Frlps; Xy)
do g, )
plkllrlgj 7per < TI(T) (1= [ppr— (1 —=Epyi)?

where we have replaced p;| by pyi — pi1 since the matrix element now hits ©.

(5.28)

e The soft singularity arises when the gluon becomes soft and thus both & — 1 and
prL — 0. When this happens, ©1 + O3 — 1 (again, see section 5.6 for details) and
do tsr becomes

2 X
hm doper < Tf(T) Fr(psLi Xy)

P (1= [prr — (1= E)psi]? (5.29)

The demanded subtraction term should satisfy all the singular behaviours, and one option
is to construct

do_;‘s”" =

9

aSSJ_ NC / dgl + 52 —e(1-¢)? <V>n /dD_z Fr(prL +&psi; Xy)
o —or \ni M e = (= 9y

(5.30)
where the superscript ¢ represents the counter-term. This term furnishes the point-wise
approximation to the doy,, in all the singular regions and therefore renders the subtracted
combination

. SS1 N, 14 ¢2 FrprL + P71 X
e d2p“{@”f O e T

Fr(pry +&pyi; Xy)
per — (1 =Epsr]? |7

Frps; Xyp) f(r
+OLrfr) [Per — (1= &psi]? fr)

(5.31)

finite. The regulators have been removed by setting ¢ = 0 and n = 0 given that the
combination is finite and integrable in 4-dimension. The integral can be safely evaluated
numerically.

One note on the counter term is that the counter term da;i o is fully inclusive over py,
in the sense that within the counter term, any jet algorithm and any additional cuts should
be placed on the momentum p; but never on pg. It is effectively a one jet configuration
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and the gluon in the counter contribution is essentially un-resolvable, just like the virtual
gluon in the loop. The da;sr in eq. (5.30) can be evaluated analytically, which gives

csint aSNC 2 3 1) v\
05 = 5 IO (5t 5) (o

dD—Qb dD—Qb/ 2e )
x / iﬂ i('ziof‘) ez g@ ) b)), (5.32)

where z; =b; — V. Once we add up eq. (5.32) and eq. (5.31), we obtain the contribution
from do g,

Similar analysis can be applied to the terms which involve the initial-final collinear
singularities, which leads to

s IV 1+
doige — do Tisr = 5 a C/ 5 5 /dzpkixf( )(91-1-@2—1)

7T

2 21/ 2
x A2 A2 € € ) 2 Xf( LTl 1_77]_)7
vl

(5.33)

where the —z f(z) term is the subtraction and we note that for the subtraction, we always
have p; = p; and again within the subtraction term, all kinematic cuts will be applied on
the py only and py is un-resolvable just like the loop momentum. These hold for the rest of
the section. To see the combination is finite we notice that, as £ -+ 1, ©1 — 0 and O3 — 1,
therefore the rapidity singularity is regulated by the vanishing value of the combination in
the bracket in the rapidity limit. There is collinear singularity in dois, arising when the
pr1 is integrated to oo and restricts 2/, = 0. The collinear pole is regulated by the fact that

Tf (T) O1+xf (33) O~z f (37) =0 (RZ_ARJQIQ> (Tf(T) _J;f(x)) |With correct p; replacements »
(5.34)
will restrict the p; integration to be within the jet cone to remove the singularity. More
physically, in the ISR contribution, the pole arises when the emitted gluon is collinear to the
in-coming quark. However once the gluon is restricted within the jet cone, the configuration
is then forbidden and therefore the integral is regular. Also we note that since it is free of
final-final collinear singularities in dois, as well as in eq. (5.33), eq. (5.33) will be vanishing
as R — 0, since the phase space area allowed by eq. (5.34) scales as R? as R — 0, and there
is no R~2 compensation from the matrix element. The property will be used to derive the
analytical cross section in the small R limit.
On the other hand, the integrated counter term for the ISR can again be evaluated
analytically and we find

cznt O45]\]0 v ! ! 2 1 1+£2

D—2 D—2 2¢
[ LI (Z“‘) 5 )(bL,b’) (5.35)
47[' Co
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Lastly we apply the strategy to the terms which come from the interference between
the initial and final state radiations and have the bilinear structure of the dipole. These
terms contain no collinear divergence, and all what we need is to subtract the rapidity
divergence, which can be achieved by the subtraction as the follow

aSS N, 14¢2 dP- 2l
dCinter. — damter = = C/ § f /dekJ_ f(.%')]'—F(lJ_,Xf)

(ﬁpm —(1=8)pjr)-(lL—pjL) }
(Eprt— (1= ps1)?(Li—pj1)? |
(5.36)

X {(92+@11) Fr(pe1+pj; Xy)

Here we have introduced the bilinear local counter term

PP a@Sszot/' f1+£2 L= (v )\ dP2ppy dP2
ter. = "2 =g pi) (@mPt(2mpP

— A, -
X zf(x)Fr(le; Xp)Fr(ph; Xr) ((fizl“j p]?]iL))Q(l(LL pfj)é) , (5.37)

which leads to the integrated counter term found to be
n D—2 D—21/
¢ int. Qg NC —2 d bJ_d bJ_ d?“J_ 2
dginter. = % 2 Tf(T) n (pq ) / d2—e - T (1 — 6)

2x —ipg-
7J2'y;ﬂ_ (a:LyL,u) Ce WPIL Zng?)(bLsm;bl)

+%J\fc/ e 1+§2 f(z )/deLde’Ld%L
472 T
2z, - 1 _;1=¢
X 73% 2‘%‘ TP ipgias 63 )(bJ_;T'J_;b/L). (5.38)
7y '3
Add up all contributions, including the collinear virtual corrections in eq. (5.4), we find
that the NLO collinear contribution to the quark channel is given by

O N¢ d2de2 AOLA0) —ipyyzy (2) /
doeon. = 5250 [ 225 [ dees@)] - Lo s 1)
2 (v d’r 22 3)
~o1-92 () [T || s@euim
( )n (p;) - lmiyik X ( 1)
d
(Hq 25 (b, b)) + / LHqg,s( Yo,y b’L)) }
+ (deST - dO-JC”sr) + (daisr - daicsr) + (dainter dalnter ) > (539)
where Pq(;)(é) = <%>+ is the ¢ — ¢ splitting function. And we have defined
2,2 2,2 1
Hyo = (—Pqﬁ})(g) In L 16+ (3 In “LEL — 2) 5(1— g)) ., (540)
0 0
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Figure 9. Feynman diagrams for the soft real emissions where a soft gluon is emitted: (a) final
state radiation; (b) initial state radiation.

and
1462 zy -y, 1 _ji=e,
H 3= 2 Ze ¢ PILyL
b (1-8)+ 27y ¢
eIl YL 1 2 ,
+20(1=¢) [ ] / d¢’ a +§/ e~ E'PrLyL ’ (5.41)

5.8 The soft contribution

Now we consider the real correction to the cross section by emitting a soft gluon, with
the momentum scaling as py = (pi,py . pt) ~ pi (A, A, A) where A ~ p—\/"g. Similar to the
collinear radiations, there are 2 soft contributions to the real amplitudes, one ISR (right
figure) and one FSR (left figure), as shown in figure 9. The amplitudes are

-n/2

PrL
el |(Mo(pg,L,Pj1 + Dk, 1)) (5.42)

|MFSR,soft> gsTa —
Dy,

for the FSR which is nothing but the eikonal current acting on the LO matrix element and

dP721 209 (1) /2
|IM1SRsoft) = —Js / EEE=Nis (Venm)

X /dD72rLeii(pkl+lL).“_Wab(TL)T?|MD(ZL7pjl)>’ (5.43)
for the ISR contribution.

The soft cross section can be obtained by squaring the soft currents and integrating
over the soft phase space in eq. (5.15), which gives

oS NC P -n/2
do R soft = ;Tj 5 T / dni2e” "‘"’“'/dD 2 < “) Fr(prL +pj1; Xy)
2 d” %1, 2pp1 Ly (1) "?

(O1 50ft + O2,s0ft) [ —/7_]‘%(& +pi X)) =5 (>

ot TR g ) @mP R T IRN?

a. Ne o0 , &by 42V, d2r o d?r]
+ o2 77' (T) /—oo dnk2 /d Pk (91,50& + G)2,soft - 1) / A2 A2
X.%'JQ_ 73% —Zp]LZie—ZpkLZLS()(bL7rl,b/J_7fr-l)’ (5.44)

T3 Ty
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where O1 o and Oz gof; are given previsouly in eq. (5.16). The integrand in the last two lines
are regular, following the same reason as eq. (5.33), although the last two lines are solely
manipulated out of the ISR and the combination of the FSR and part of the interference
contributions. The last 2 lines vanish as R — 0. To isolate the poles in the first two lines,
we construct the counter term as

asS| No 2pry (peL) V2
do_f%,soft 28 2 77_]( /dﬂk2€ nmk'/ 271' <)

1%
P21, ppy -1y (12
X Frp(ppy; X )[ —/7}_ (L +pj Xp)—5—5— () :
kLS pkj_ (2m)P—4 d %Lli v

(5.45)

The subtracted contribution is then free of any singularities and is integrable in 4-dimension.
Therefore we can again remove the regulators to find

c
dUR,soft - dUR,soft

ag N o0
= 27:2 N 7)2 / dn / dgpsz_ (Gl,soft + @2,soft -1)
D2 2p1 -l
S1Fr(prL +ij_7Xf) /d 1L Fr(ly —i—pﬂ_,Xf)W
kLlll

N / deLde/J_ dQT’Ld%]_ Ll - 931_ "Lzl o=

472 472 2

ipk1-? g6 )(bL,rl,bL,rL)} (5.46)
xLxL

which can be readily evaluated numerically. The integrated counter term is found to be

cint. s N 8 (a2, a. . [T(ee—n/2) [2202\"?
dointe = 280y [ AL, { = )(L ) (1SR (b, )

27 2 n 42—e I'(14+n/2) c?

/2
F2(1—6—77/4) d27“J_ZL‘J_-yJ_ I‘J_yJ_I/2 K ca(3
I2(14n/4) / T atyl 2 (1 i) S (bu,ri b ¢ -
191 0
(5.47)

When combined with the soft virtual correction in eq. (5.7), we arrive at the contribution

as N, b d%, d’ry A v\ A
do_}%riy‘}fsgflg). — C f( )/J‘i = Pyl ZLS( )(bLaTva,L) { ( > [ 2L2 ]
+

472 T

n\pJjL Y7
In(z2 02 /¢2)  In(v2 0. /2) 2 2
49 l n(fﬂpéu/CO)_i_ n(préu/Co)_i_ x; «gi In “Tiyéle . (5.48)

The transverse coordinates are defined as z; =b;, — b, 2, =by —r; andy, =r, — V.
One may recognize that this unresolved term is nothing but the soft contribution to the
single hadron inclusive production and the finite part is the contribution arising from the
so-called kinematic constraint [1, 50]. The total soft contribution is therefore given by

un-resolv

Aoty = Aok + (dopson — dofycop ) - (5.49)
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where the superscript indicates that the gluons in the virtual and the counter term are
unresolvable and the second term can be regarded as the additional kinematic restriction
due to the jet clustering.

5.9 Full NLO corrections

Gluing all pieces from both the collinear and the soft sectors, we find the NLO corrections

do—’l(L]7;L)-T€TL

. N, 2 2 1
o C/ deasie) [ o _W“{<‘6Pq(q)<f>+%2) SAURY

d 2 2
=+ / TJ_ bJ_> T, bL) <H6173 + 5(1 - g) [(;%) ( +2In pq )
iYy1 ), \" P71

L <ln($ip3¢/c%) L ReG /) | 2oy (Mywi» D}
Jr

G vi vyt ct
+ (deST - dUJC‘sr) + (daisr - daicsr) + (dainter dglnter ) (dUR,SOft - dUCR,soft> )
(5.50)
where the collinear e-pole in the first line will be absorbed by the proton PDF. We can
immediately realize that the coefficient of the n-pole is nothing but the BK-kernel to be
cancelled by the nucleus dipole distribution. The pole structures explicitly demonstrate the

validity of the CGC hybrid scheme when applying to the jet production at the NLO. The
finite NLO corrections to the jet production are then found to be

s N d2b, d2v 1 :
dO'(l) — %TC %/ d¢ xf(x) e~ PILzL
™

dr
X (7'1(1,2 Sﬁ?) (b, b))+ / f (Hq,BK +Hys + Hq,km.)Sﬁ?)(bl, Ty, bl))
+ (dgfsr - dgf‘sr) + (dUiST - daicsr) + (dainter damter ) + (daR,SOft - da%,soft) ’
(5.51)

where H, 2 and H, 3 are given by egs. (5.40) and (5.41), respectively. The n-pole induced
BK logarithmic term is

HqBK_2<1n p‘Z> l 532] 5(1—¢), (5.52)
+

pJL Y7

which suggests the scale choice for the rapidity scale v. By noting that the logarithmic term
is proportional to the LO kinematics, it is thus found that v = p%L/p(}" = Xy pa, where Xy
is the momentum fraction carried by the gluon from the nucleus. The scale choice naturally
gives rise to the scale for the nucleus distribution required by the CGC framework. The
kinematic constrain term is given by

2,2 02

In (z c In (y2p%, /c3 2z T 2
Mo kin, = 2 ( J_pJJ_/ 0) + (priu/ 0) 4 2L UL [ 2LYLPIL 5(1—¢).
zi Y1 r1y1 0 n

(5.53)
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The final NLO predictions for the inclusive jet production will then be
do = do® + doW (5.54)

where the LO cross section do(®) can be found in eq. (4.5) in section 4. The jet algorithm
and other experimental cuts are implemented in the last line of eq. (5.51), while the rest
shares the same kinematics as the LO.

Once we have do up to NLO, with full information of momenta p; and pj, we can
generate any observable distributions by histograms. We take the jet energy E; distribution
as an example to highlight how this works:

1. We divided the E; spectrum into N different bins

(Eg0,Es1), (Es1, Er2) s (Bris Eriv1) o (Byn-1, EjnN) (5.55)
where the boundary of each bin could follow exactly the experimental setups.

2. We generate the momenta for the quark p and the gluon pj in a 1-jet or 2-jet event
out of the free variables p}r and py, following eq. (5.13), accordingly. The 1-jet and
the 2-jet event should satisfy the clustering condition in eq. (5.13), respectively. The
event is kept if the condition is fulfilled, otherwise vetoed.

3. The E; is constructed by p; and p; depending on whether it is an 1-jet or 2-jet
event. If £y € (Ej;, Ejit1), the event will be filled into this bin with weight do.
Consistent power counting has to be taken care of here. For instance, if Ej; ~ /s >
Qs ~ A\/s, then in the soft contribution the soft gluon energy Ex ~ Qs ~ A\\/s will
never contribute to the non-zoro jet energy bins, since by power counting we will
have either 6(E; — Ej — Ey) ~ §(Ej — Ej) since Ej ~ Ej ~ /s, for one jet or
S(Ej;—E;)+0(Ey—Ey) = 06(E;—Ej)+06(Ey) for two jets, where we have expanded
the 6-functions in terms A and only keep A\ terms. In the former case, we will have a
one-jet event with the jet energy given by the energetic quark energy Ey = E;. In the
latter case, the gluon jet (contribution associated with §(Ey)) will never pass the jet
energy lower bound E; =0 < Ej; and therefore will not contribute to the jet energy
spectrum, but only the quark jet does.

4. We repeat the steps 2) to 3) to build up the E; histogram until we have sufficient
statistics.

Obviously, the procedure fits well to other observables and their spectra can be obtained
similarly.

6 An alternative subtraction and the small-R limit

The subtraction terms to regulate the real contribution are not uniquely determined. An
alternative is to construct the counter term for doy,. by simply replacing the full anti-kp
jet clustering constraint with its small-R approximation. The other subtraction terms for
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doisr and doipter. as well as the one for the soft contribution remain the same as discussed
in the previous sections. This leads to the new subtraction term for doy,, such that

. aSiNe b 1+ + P00 g2 [\’

10r = g2 / K 7
/dD *pet Fr(pel +pj; Xy)
(2m)P=4 [prr — (1 = &)pjL)?

(xf(z)O2,r+Tf(T)O1,R) , (6.1)

where ©1 r and O3 g are the jet clustering conditions in the small jet radius limit and are
given in eq. (5.18). To see how it can render the subtracted combination finite

sS1 N 1+ &2
do’fsr_do'c_aSL C/ 6 < /d2pj_

T 7T2

x {(@2 ~ Oy p)f(z) + (01 — OrR) Tfm} [29 - (f’“jg f@;pfﬁl . (6.2)

we first note that in the collinear limit in which &py1 = (1 — §)pj1, we have ©2 = O p =0
and ©1 = ©1 p = 1. Therefore the divergent behaviour in the collinear limit is removed by
[©1 — O r] =0. As for the rapidity divergence when £ — 1, we notice that when £ = 1, we
will have ©1 4+ ©2 =1, ©1 gp + O3 g = 1 and = = 7, and hence the integrand vanishes and
the integral is again finite in this limit.

We work out the part proportional to ©2 and ©; of this new integrated counter term
respectively, and find

cint. _ Qs N¢ ! dg dD_QdeD_Qb, 2 v ! —e €
dar,®2 o 9 57 (2m)D—2 L{d(l_f)en (ﬁ) (4m)"T(1—¢) (ZLM)Q
2
¥ (—1(11ff.)+ F- s)) (47)T(1— ) (2. 0)
B RPN U & ST 2 (los(1 —¢)
[625(1 O - oo +1-0+20+6) (g )J
R —2e —€ s "
("5 r(Te)}“’”f () S5} (bu Mo &7 (63)

for the ©5 term, and

dgc’mt' O Ne dD_QdeD_Qb/J_ [12 3 (13 27{2)] e I ZL
€

nO1 T o2 g (2m)D-2 2¢ 2 3
psLR\ T 7€ 2) /
(PER) g msRon ). (6.4)
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Figure 10. A parton (in red) being knocked out of the small-R jet by interacting with the shock
wave with typical momentum transfer O(Qs).

for the ©1 term. Adding up these two contributions, we find

_ %& 1 g dD*ZbJ_dD72b/L
o 2 Jp & (2m)D-2

cint.
doy.

2 v\
{5(1 = 5)5 (p(;) (4m)"T(1 =€) (z1p)*

e(1—8)+

c(2rpe 20 (M) —a-g+ (2 2)an o)

pj1 R —2e T € @ e\ tp i
x( - ) P(l_e)}xfu)sxf(m,me s 63

+<—11+€2+%1—®>Mﬂ_Tﬂ—fﬂaufe

and therefore the do g, contribution is given by
dops, = do&™ + (do s, — dof) (6.6)

where the second combination can be evaluated numerically.
There are several interesting aspects to notice

e The do&™ is composed of 2 parts.

1. The first part, as the first 2 lines of eq. (6.5), is identical to the NLO calculations
of producing a parton in the single hadron production.

2. The jet clustering information are encoded in the last 2 lines, which reproduces
exactly the un-renormalized semi-inclusive jet function (siJF) derived in [91, 92],
which consists of the 1-jet configuration in which both partons are clustered into

1 3 13 272 psiR\ 7% 1
@+%+<z‘e>]<u) Mg 0%

a single jet

_ %N
Jor =353
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and the 2-jet case which is

g 2 o _
o, =~ e [;m oL g <1g1(1—f)>+]
priR\ % 1
(") =g (69

The e-poles in these 2 parts cancel exactly with each other when the corresponding
virtual corrections are added into the first part. The cancellation of the e-poles is
guaranteed by the Kinoshita-Lee-Nauenberg (KLN) theorem [123, 124], since unlike
the hadron production, the jets are inclusive over the final states. The cancellation of
the poles serves as a strong check of our calculation.

The combination do ¢y, — do¢ is of order O(R?) and is negligible when R? < 1. Hence
when R is small, we can approximate

dofsy = doy i (6.9)

which is practically a very good approximation since usually R is chosen around 0.4.

It is also true for dojg — dot

C
isr» AOinter. — dofye, and dogsoft — Ao of, and therefore

they are all negligible in the small- R limit.

As a consequence, in the small- R limit, we can derive the cross section fully analytically.
With some manipulations, we find that the cross section can be written as

d
do'V) — i dgCgxf(x){dagiq(é,pJ/CW(l—O
2 2 —
+d63" (s /0)5(1—€) X %% (—Pq(;)(C) lnpgzig_Q (1+<2> Cnil_f))
+

_(1—<)+<2_3ﬂ2) 5(1_g)>}, (6.10)

where z = 7/£¢, while dé((;%q(pu/ ¢) and dééllq(g ,psL/¢) are the LO and NLO cross
section to produce a quark with momentum p;; = pys /¢, respectively. Their explicit
results are given by

. d?b d?V, L @
do() (&, p;) Z/We Pire SO (b1, b, ), (6.11)
and
. as No [ d?b d?Y, . = 2
Ao y(vj) = 55 | e P S S (b1 b))
d2
+ / ;L (”HqB}q+’H§%+HZ;?)S§?;(bL,rL,b’L)}, (6.12)
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where Hg%q, HqB_;(q and Hz;fl can be obtained by replacing p;, with p;; in
eqs. (5.41), (5.52) and (5.53), respectively. The term H4 '? is given by

22 2,2

—q 1 N 3 ZijL 1 1 —iﬂpv -z
Hg q—(—Pq(q)(f)lnc%—i-l—f-i-(zln Cg —5 6(1—5) 1+€72€ g Pkl
(6.13)
We note that dé,—,4 is nothing but the partonic cross section for the single hadron

production in pA collisions in the CGC formalism.

Obviously, at NLO, we can work out one of the £ and ( integrations, to find the more
familiar form of eq. (6.14)

arfy = | 1 dfxf(w){d&éﬂq@,pn

s N 2 R? In(1 —
+d6l (ps/€) x 2:62 TC <_pq§;)(§) In pgﬂrz —2(1+¢%) (%_;)L
~1-9+ (5 - 3m) a1~ 5)) } , (6.14)

with = 7/€.

It is very interesting to point out that the structure of the foward jet production in
eq. (6.10) is exactly the same as the central jet production using collinear factoriza-
tion [91], i.e., the cross section is factorized into a cross section that produces a parton
and a part encoding the jet formation in the vacuum. One difference between the CGC
formalism eq. (6.14) and the collinear factorization lies in the cross section dog4
due to the different mechanisms to produce a parton. While the form of the term
inside the bracket in eq. (6.14) is identical to the NLO quark jet function, obtained
before within the collinear factorization [91], with an additional £~2 in the argument
of the first logarithm. The difference is due to the fact that in the central region one
looks at the high transverse momentum of order E; much larger than the angular
separation of the splitting partons, while in the forward scattering, the jet transverse
momentum is about the same order of the splitting, which introduces the additional &
after evaluating the phase space integration. Apparently the small radius jet is totally
ignorant of the interaction with the CGC shock wave.

This feature can be understood by noting that when R < 1, pyi R < pj ~ Qs where
py1 R sets the typical scale of the parton transverse momentum with respect to the
jet axis inside the jet. As sketched in figure 10, any parton will be knocked out of
the jet if interacts with the shock wave, since it will require an additional transverse
momentum p; ~ Qs > py R, and therefore does not contribute to the jet function.
As a consequence, any parton inside the jet can not experience the shock wave and
the jet function remains the same in the CGC formalism as the collinear counter part.

Another way to understand the feature is that the typical time scale for the jet forma-
tion is of order O(1/ps1 R) which occurs much later than the semi-hard interaction
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that happens within the time period of order O(1/Q;) for R < 1, and therefore the
formation of the jet feels no shock waves.

o Following the previous argument, using the power counting proposed in [1], we can
derive that in the small-R limit, to all orders, the jet cross section can be written as
the factorized form that”

don= [ d&?ﬁ:af(:c)d&qﬁq(s,m/o 74(0). (6.15)

where x = 7/£¢ and J4(() is the quark siJF [91, 92] in the large N¢ limit, which is

2

BQ=00-0)- 325 [(Péql)(C)JrPé;)(C))l T (1+¢?) (1“(1_4))
.

o 2 B2 1-¢

+(1=¢)— (123—27#) 5(1-0)+2PV (O n(1-O)+¢| (6.16)

where we have included the contribution from the gluon as the signal jet and
Pg(;)(g“ ) = M Again compare with the jet function in the central region with
large transverse momentum, there is an additional (=2 in the first logarithm. The
factorization is illustrated diagrammatically in figure 11. The small-R approximation
for the gluon channel can be found in the appendix C.1.

o We note that the same argument holds for any other jet substructure observable v,
such as the jet mass, the angularities, the soft drop, as long as v < py 1, which
indicates that for any jet substructure studies in the small-x Tegion, the cross section
can always be factorized into the product of a dé that produces partons, similar to the
one in eq. (6.15), and a jet function for the observable v, occurs also in the collinear
factorization. Given that for many interesting jet substructures, the corresponding jet
functions have already be obtained up to next-to-next-to-next-to-leading order (N3LO),
see for instance [125-135], this factorization feature can thus be used to dramatically
simplify and realize future calculations of the jet substructure distributions in the
small-z regime. Last but not the least, the factorized form lays down the foundation
for combining the existing parton shower with the CGC calculations, in which one
manage to calculate the fully differential cross section within the CGC framework
just like what we have presented in this work, and then shower the physical states in

vacuum due to the factorization we pointed out.

7 Threshold resummation

Just like the hadron production, there exist large threshold logarithms in the jet production

cross section, represented by (%)_}_ When the jet p;; becomes large, we will have

"We note that when we derive the factorization theorem, we default to the energetic jet assumption in
which E; > Qs ~py1.
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Figure 11. The factorization of the jet cross section in the small-R limit.

T = p}r /p;,r = pyre/ p;; quickly approaches x and thus £ — 1. This means that the
radiations outside the jet cone are restricted to be soft. In the threshold limit, the
(%) becomes dominantly large.

We enTphasize that these terms are solely from perturbative calculations. When £ — 1,
it is these terms that are huge and problematic that could break perturbative expansion.
It is interesting to note that people usually think of the threshold as x — 1 limit of the
proton PDF. The reason why these terms are related to the z — 1 limit of the proton

PDF is because in the proton collisions, those terms will be integrated over a range of the

/Tl <1n"1(1_—£)>+ f(r/&) ..., (7.1)

Bjorken z, e.g.,

£
in the high energy limit and ... contains possible kinematic constraint. So the logarithmic
terms can be potentially important if 7 — 1, which forces £ — 1 to make (%)Jr

huge, and also in this case z ~ 7/¢ — 1. But essentially it is the logarithmic terms that
play the key role instead of the PDFs. If there is no (log™(1 —¢§)/(1 - ¢)),,
matter whether x — 1 or not, the calculation should be safer. On the other hand, in

it does not

some processes where there is no PDF involved, but if we still encounter the logarithmic
(log"(1 —¢)/(1 —&)) . contributions out of the perturbative calculation, the perturbative
expansion in ag could be problematic if the result is dominated by & — 1 configuration.

The threshold logarithms are the most obviously seen by applying the Mellin transfor-
mation fol d¢ ENT1F(€) to the small-R limit cross section dé,, in eq. (6.14)

2

(1) . o 2, m2 Vs
do-q_>q7th,r‘ = <M0|FS (T’L +T]) IHNIHE
as [ d*r o[ xL X G !
_ = —2In N ( Jé y;) +IDX7f ( 2L2 ) ]T? Wa’a(TL)T?’M0>v
™ ™ r1Yy7 ¥ AN\TLYT +
(7.2)
and 2 2 2
1 o — p R — T 13
Ty (O ==L (—lnN IS I N 4> ’ 7

where we have applied the Mellin transformation to egs. (6.14) and (6.12) in the threshold
limit &€ — 1, following the threshold Mellin transform rules in eq. (A.10). Here, N = NeY&.
The threshold ¢ — 1 limit maps to the large N limit after taking the Mellin moment, and
we have only kept the threshold contribution, i.e., the non-vanishing terms as N — co. Here
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to clearly identify the types of the logarithms, we unfold back the color constant N¢ in the
NLO cross section to the color operators T and the Wilson line W, to keep track of the
color structures. We have assigned © to the incoming parton and j to the out-going quark.

One way to deal with the logarithms is the all-order resummation.® We will leave the
details to another work [137]. Here let us emphasize several points associated with the
threshold logarithms

o Some of the logarithmic terms in egs. (7.2) and (7.3) can be reduced by the scale
choice 4 = py and Xy = X4 in dj, 4. The scale choice characterizes the scale
where the semi-hard interaction happens. Note that Xy = X4 is the typical scale
choice for the CGC framework. The scale evolution associated with X gives the BK
equation. This set of scale choice is good for eliminating large logarithms when being
away from the threshold.

e However when p;, is approaching the threshold, the remaining logarithms in 1 — ¢
(or in N in Mellin space) become overwhelmingly large and draw the cross section
negative [2], see also figure 13 in the numerical analyses section 8. These logarithms
should be resummed to all orders to secure the perturbative predictive power.

o Thanks to the factorization theorem [137], the remaining logarithms in the jet function
and d6y—.q ¢nr. can be treated independently. The In Nln R? and In? N terms within
the jet function are Sudakov logarithms and have been studied extensively before [84,
119, 138-143]. Their resummation can be achieved by re-factorizing the siJF into
a exclusive jet function and a collinear-soft function [137, 143]. The procedure is
standard in the language of SCET and we will leave the derivation to future work [137].
At the leading logarithmic accuracy, the resummed jet function is

_ 2 R2 _
Jthr.,resum = exp [_?T? <_ In N In p‘]# + 1112 N>‘| y (74)

which is the direct exponentiation of the Sudakov logarithms.

e It is more involved to resum the logarithmic term from the interference of the ISR
and FSR

o _ [d’ry (- /
<M0|2 il In N = J_2 :ZJ_ T?Waa’(rL)T? |M0> ; (75)
7r m iy ),

which calls for the threshold resummation technique different from the standard ones
in the collinear factorization [143-1/5]. One way to see this is to notice that this
term shares the same color structure T{W 4 (TL)T?/ as the non-linear BK evolution,
see eq. (3.43). Indeed, as we have seen in section 3.4, at higher orders, extra Wilson
lines W’s arise, which suggests the need for a non-linear evolution to resum this
contribution. The standard Sudakov resummation techniques only turn the color

8 Another promising approach to handle the negative problem is to use the rapidity factorization scheme.
We refer the readers to ref. [52] and [136] for detailed discussions.
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charge T into a resummed form, see for instance [143, 146-148], while will leave the
CGC Wilson line W untouched.

« A systematic method to resum the logs proportional to T¢ W, (7 J_)T?l in eq. (7.2) has
been developed recently in [2], which will be detailed in [137] for the jet production.
However, we note that for the leading log resummation it is sufficient to consider
the n independent soft gluon emissions at N LO, with strong ordering q > q >
-+ > q,,, and p| > py; > ...p,_,,, Where ¢; and p; are the ISR and FSR momenta,
respectively. It can be shown that the matrix could be written as

1 n
—12
m=0
1 d? - :
= (Mol {2 [ T —2m N (5
T T Tiy1 ).
+1 Xf( il ) ]T“/W ( )T“}n|M> (7.6)
n-—=- j ra\T L i 0/ .
Xa xiyi i o ’

where integration over the phase space is implicitly understood and we have used
the property of the color charge operator in eq. (3.28). When sum up all order
contributions, the above equation leads to the exponentiation of the logarithms,
which reads

gl Pn-m|2

[—2ln]§f (””g' %)
TI1Y1 4

2
+

2
TIY1

One realizes that the above equation reproduce what was found in [2] based on
factorization and the rapidity renormalization group equations. The resummed formula
suggests that when approaching the threshold, instead of choosing the CGC scale
Xt = X4, one should use a dynamic scale such that X; minimizes the exponent [2].

We briefly highlight how we derive the resummation form by going to the soft strong
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ordering limit. We start with NLO. At NLO, we can have for the matrix element

P1
|bJ_ b@é@éﬁ@

0T M) = TV plMe) . (19
1

which is the eikonal approximation, presented by the soft eikonal current J acting on [M).
We also have the ISR contribution, which is

= K53 (1) [ Mo)
q1

+
. a dl~ le_ n® z —q; i .
:zgsTi/@ L bl (1) <—z2> /d%e (@it (1) [Mo)

; +
e [dUTdL 2eM0L g (—ql) 2 —ilquitl)T
:zgsr"‘“i/(%)["1 A (_2l Hﬁ)l?/d”e BT Waa (1) [Mo)

, di=dl, e'tbr9] i "
:ZQST?/ 2 )DL1 -1+ lJ2-6 (—qf‘)/d%q_e Moty (r1) | Mo)
- _

di, 2
= —gs / P )g . ZZM ellebs / 2 e DD T () T M) (7.9)
T

nal5+n@ a

where we introduced dog(l) = —gag+ and have used the light-cone gauge condition

n - € = 0. We performed the contour 1ntegrat10n on [~ similar to eq. (A.2) to get the final
result. Here we have suppressed the rapidity regulators.

The LL approximation to the NLO cross section will then be

468} = [ a2y, (Mol (T8 ) + 5 pn)) - (787 o) + K (01) 1 Mo)
= (Mo|de™M | M) . (7.10)

At NNLO, to produce LLs, we only need to consider 2 independent soft gluon emissions
with momenta p; and pa. We require p; > p, . For the double FSR, the eiknoal current in
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this strongly order limit is well known, which gives

|ﬁ§

()TN (p2) Mo) , (7.11)

with p;” > p; . And for double ISR, the matrix element reads

AN

dl; dl p _QQ
—igsT?Q/(Zz)Dulnl e P d g (1) P /d2 e et LT Wy 0 (r2) [Mo)
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~ igs T / 17;5_1_7[—6 Lo bldo’ﬂ (I) (_l2 /d27“ Le i(qrL+l11) U Wyay (711)
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o
N L
(2m) —ly

. dllL 2Z1J_IB lllJ_ bJ_

=Y /(271_)D 22

dl 2[ o 7, —1 T a
X fgs/ (270%2 zzL ot / d*ro e (RLTR T2, (ry ) TE M)
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= KW (1) K2 (go) M) (7.12)

in the strongly ordered limit, where to get the approximation we have used the strongly
ordered limit that I, <] .
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It is easy to get the matrx element with one ISR and one FSR which gives

b1

W

— _ (ng,(l)(pl);cgzxn(ql) +,Cgl,(1)(ql)j£2,(1)(pl)) M)
q1

(7.13)
Here since there is no strong ordering requirements in ¢; and p;, we have splitted the
contribution to 2 terms with p; > ¢; and ¢1 > p1, respectively.
Therefore, one could find the LL approximation to the NNLO matrix element be

(Mo) = (g5 + 1) (70 4 1k | Mo) (7.14)

and thus )
do) = (Mol ( 1)) |Mo) . (7.15)

Here the factor 1/2! accounts for symmetry factor of 2 indistinguishable gluons in the final
state. The calculation is extendable to arbitrary n-th order to find

a83) = (Mol - (™) | Mo), (7.16)

which is exactly eq. (7.6). Once one sums up all orders, one realizes the LL resummation
R o~ L ()" &™)
dorr = (Mol z%a (do- ) |Mo) = (Mole® " |Mo), (7.17)
n=
which is exactly eq. (7.7) when going to the Mellin space.

8 Numerical analyses

In this section, we perform numerical analyses. For the time being, we pay attention to
the numerical validation of the theoretical framework developed previously, while we leave
the comparison of the phenomenological predictions with the LHC inclusive jet data to
another work [137].

For the numerical calculation, we use the NLO MSTW2008 PDF sets [149] for the
proton PDFs. We applied the LL BK evolution with a running [150-152] to the nucleus
dipole distributions. As for the initial condition, the MV-like model “71119” are used and
we stick to the parameter settings in [152]. As for the S, we follow the choice in [50]. In
the calculation, we implement the kinematic cuts following strictly the CMS experimental
set-ups in [153], in which the proton and the Pb nucleus are colliding at the center of mass
energy /s = 5.02 TeV per each nucleon pair. The jets are constructed by the anti-kp
algorithm with the radius parameter R = 0.5 and required to have a minimum transverse
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Figure 12. Comparison between the NLO calculations with full jet algorithm dependence and the
small-R limits. The open points represent the NLO calculations in quark channel with the full jet
algorithm dependence, using different shapes to represent different jet radius R. The lower panels
are the ratio of these two results defined in eq. (8.1). The solid lines are the corresponding results in
the small-R limit. Left panel shows the inclusive jet p;; spectra. Right panel for the jet energy
E; distribution. These are for jets constructed via the anti-kr algorithm with R = 0.5 in p+Pb
collisions at center-of-mass energy /s = 5.02 TeV per nucleon pair and rapidity 5.2 < n < 6.6.

momentum py; > 3 GeV. We select the jets at very forward pseudo-rapidities 5.2 < ny < 6.6
in the laboratory frame, the boost between the laboratory frame and center-of-mass frame
is dny = 0.465. Throughout the analyses, we set the factorization scale u = py; and the
rapidity scale Xy = X4 where X4 is the momentum fraction carried by the gluon from
the nucleus.

In figure 12, we first display the comparison between the NLO single inclusive jet
cross section with full jet algorithm dependence and its analytical small- R approximation.
We stick to the quark channel for this study. The NLO distributions are obtained by
the histogram procedure described in section 5.9. The error bars reflect the numerical
uncertainties. We have performed the comparisons for R = 0.2, 0.4, 0.6 and 1.0.

In the left top panel of figure 12, we plot the inclusive jet pp, distributions from the
full NLO predictions (in open dots) and the small- R approximations (in solid lines). From
the plot, we can observe that for larger values of R, jet spectrum spans to larger transverse
momentum. This is expected since with a larger jet radius, one clusters more particles
into one jet and thus more effortlessly generates larger jet transverse momentum to pass
the 3 GeV threshold than the small jet radius case. We also observe that just like the
single hadron production in pA collisions, the inclusive jet py; spectrum manifests the
negative cross section problem for large py;. The issue can be resolved by the threshold
resummation [2, 137] as sketched in section 7. As we go to the smaller values of the jet
radius R, the better the small-R approximation becomes. This can be demonstrated from
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the ratio
doga/dpg, 1

dosman r/dpg1

where the numerator and denominator represent the jet cross section with the full jet

pRvaJ_ = (8'1)

algorithm and its small-R limit, respectively. This ratio is shown in the lower part of the
left panel, which shows strongly that as R becomes smaller, the ratio pgr,,, approaches 1.
The comparison serves as a strong validation of the analytic small- R approximation and
the factorization we derived. From the ratio, we can see that for small py,, the small-R
approximation makes up > 90% of the complete NLO result for narrow jets with R = 0.2,
0.4 and 0.6, while the percentage drops to 80% for fat jets with R = 1.0. The approximation
is even better for large py,. The small-R approximation could break down when strong
cancellation kicks in between different contributions, and therefore one should be careful
when invoking the approximation for phenomenology studies. In the present case, it happens
to be when the cross section becomes negative.

We plot the comparison using the inclusive jet E; spectrum in the right panel of
figure 12. The division of the energy bins follows the CMS [153]. The plot demonstrates the
feasibility of our NLO calculation for various different observables and experimental set-ups.
Similar behaviours are observed in the E; distribution as the p;; spectrum. The NLO
cross section eventually turns negative and the threshold resummation comes to rescue [137].
The small-R approximation did a better job in the E; prediction than the p;; case, which
can be understood that it is mostly the low p;, jet events that fill up the E; spectrum.
This also explains why the NLO E; spectrum can stay positive for a wider range.

Now we turn to study the threshold limit in figure 13. Here we include all partonic
channels which contain threshold logs (the ¢ — ¢ and g — ¢ channels). The upper panel
displays the jet py; spectrum predicted by the complete NLO calculation (in red dots) and
its threshold approximation (in green triangles). The NLO cross section becomes negative
when py; > 20 GeV. To investigate the size of the threshold contributions, we plot the ratio
of the threshold limit to the full NLO prediction pgp,.. = downr /P11 oq 5 function of the jet

~ donvLo/dpyy

transverse momentum py; . To manifest the effect of the threshold logarithms (%)#

we have removed from the ratio the common 6(1 — &) terms shared by both doy,, and
donpo- We see that when we crank up py,, the threshold logarithms are overwhelmingly
dominant and the ratio py,.. approaches 1.

9 Conclusions

In this work, we applied the recently proposed computational techniques [1, 2] to derive
the complete NLO corrections to the single inclusive jet production in proton-nucleus (pA)
collisions at forward rapidities, using the CGC effective theory. Within the framework,
the cross section is factorized into the product of the proton PDFs, the small-x nucleus
multi-pole distributions and the perturbatively calculable partonic cross sections. Our result
clearly shows that the CGC factorization is valid at the NLO level for jet production.
The root of the factorization is the consistent and homogeneous power expansion in the
power counting parameter A ~ O (\/T/S) The power expansion relaxes the phase space
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Figure 13. This figure shows the comparison of the threshold contribution with the NLO result.
The error band represents the numerical uncertainty.

kinematic constraint which in turn is compensated by the existence of the soft contribution.
Our explicit NLO calculation showed that the soft mode is required in order to generate the
kinematic restrictions due to the jet clustering in addition to the constraint in the hadron
production case [50].

Our O(ay) calculation of the jet cross sections is fully differential over the final state
physical kinematics. The calculation is thus not limited to the jet spectra predictions but is
able to predict any distribution of infra-red safe quantities. The full NLO jet cross section
is given in eq. (5.51) and appendix B. To perform this computation, we have discussed a
subtraction method to single out the singular contributions from the phase space integration.
The singular terms have been evaluated analytically. The remaining non-singular part
contains the jet algorithm and the experimental cuts. Since the remaining integration is
finite and integrable in 4-dimension, it was obtained numerically.

We further investigated the small jet radius limit of jet production. Given that in
practice the jet radius R is usually chosen as (0(0.4), the small-R limit in general is believed
to be a very good approximation to the full R result and has been applied in several small-x
jet studies. In this work, we are able to carry out the fully analytic small- R jet cross section
in eq. (6.14) and compare it with the full jet algorithm dependent cross section to validate
the approximation. We showed that in the small jet radius limit, the single inclusive jet
cross section can be further factorized into the same short-distance cross section as the
single inclusive hadron production, with only the fragmentation functions replaced by the
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semi-inclusive jet functions (siJFs). The siJFs share the same form as the ones that show
up in the jet production in the central region within the collinear factorization with slightly
different ¢ dependence in the logarithm (see eq. (6.16)) due to the different jet transverse
momentum range. We argued that this factorization feature of the small- R jet cross section
holds for generic jet processes and jet substructure observables in the CGC framework.
We carefully examined numerically when the small- R limit reliably approximates the full
result. The obtained analytic result serves as a guide to appropriately using the small-
R approximation in the forward scatterings, meanwhile the observed factorization can
facilitate high order and resummation calculations of the jet cross sections and open up
the opportunities to realize the computations of event shapes in other forward scatterings.
Furthermore, the observed factorized form lays down the foundation for combining the
CGC fixed order calculations with the existing parton shower techniques.

Like the forward hadron production, the obtained NLO jet spectrum also exhibits the
negative cross section feature when the jet transverse momentum becomes large. Following
the suggestions in [2], we resolved the negative cross section problem by the threshold
resummation, where additional Sudakov logarithms arising in the jet production have
also been resummed. Different from [2], in this manuscript, we accomplish the leading
logarithmic threshold resummation using a different approach by considering the strongly
ordered independent emissions to all orders. The achieved resummation agrees with the
one obtained by the renormalizaton group equation [2, 137], which suggests the plausibility
of both approaches.

We look forward to comparing the NLO and resummation predictions against the LHC
pA jet production data [137] in the future. Meanwhile, we expect the computational set-ups
developed in the present work and in [1, 2] lay down the theoretical foundation of the
perturbative predictions for the CGC phenomenology involving jet clustering procedures
and any other jet substructure and event shape observables.
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A Useful formulae

A.1 Contour integral
The integral of the form

dPk 1
I= / (271')D (k2 +i0%) ((pj _ k)2 +i0+) J (A.1)
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is frequently encountered in this work. The k-loop integration can be performed by contour,
which gives

/ dPk 1
(2m)" (k2 +i0%) ((p; — k) +i0)

diktdk~ dP=2k, (
2 2?2 (2P (. k2 —io+ B _ k1) ot

1 1 g dP-2k, (k
-3 | == [ s 2<
277 Jo (2m)

+
S
+
|
o
+
SN—
SN—

@mP 2 (paki)’ K
p pf —kt k+
/ /dD 2k, 1 (A.9)
47‘(’ 27rD 2 ka(lfz)pjl) ’ '

We first did the k~-integral. The integral is only non-vanishing when 0 < k* < pj otherwise
all the poles occur at the same side of the complex k™ -plain and one can choose the contour
in the other side of the plain to enclose no poles. To get the 3rd line, we have performed the

— . . . - o (pjl—kl)Q—iO_’_
k~-contour integral around the upper plane which picks the pole k=~ = Py~ T

and we let p; = »/ p;r to reach the final result.

A.2 Fourier transformation

We list some integral formulae for deriving the NLO results.
—ZQL T _ B_ZQLTL cos ¢
/dD 201 o e =Qp-3 / d?7%qL g7~ / dg sin™* ¢ T
D—5—2a it E) Ly o
= /quqL Qp-3 \/7?760171 1—¢—7drl

(A.3)

Here Qp_3 = % the (D — 3)-dimensional solid angle, and from the result we can

easily deduce that

—iq1 T —ig1T1 e”
/dD*ZQLe a1 =0, /dD*que g = —i2 (1 = o)
q7 a7 "
(A.4)
A.3 Mellin transformation
The Mellin transformation or the Nth-moment of a function is given by
! N—-1
My (1) = [ a1 1(6). (A.5)
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If we apply the Mellin transform to the convolution of 2 functions

1 g¢l
GEYGRY| dg,f(é’)g (§) , (A.6)

we will have
My (f(6) ® (€)) = My(f(€) M (9(€)). (A7)

In the resummation part of this work, the transformation we used are

My(6(1-¢)) =1,

1
1
1
() =
Ma-9y A
In(1 — &) o
M [ = —, A8
v ( 1 _5 +> =1 v ( )
where H,, is the harmonic number, defined as
"1
H, = Z. A9
; ; (A.9)

My(6(1=¢)) — 1,
MN(l) —>0,
MN(l—f) —>0,
N B
My <[1n 1_;) ) — %1n2N+ 7;; (A.10)
JF

where N = NeE,

A.4 Color identities

We provide several color identities used in the CGC multi-point correlators.
Through the Fiertz identity, one can derive that

To (W))W () 2] W (1)

_ %Tr W b ) W )| T W ) W ()] -

1
2N¢

T (Wb )WHEL)| (A1)

which relates the 3-point functions to dipole distributions.
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Also one needs the following relation that

2 ,
T W)W (b0) 8] Wi, (1) Wa (1)
C

_ (A%T W e WEE)W ) W) T W ) W () —ngTr o)W WDD -
(A.12)

B Contributions from the other channels

In this section, we list all the remaining channels that contribute to the inclusive jet
production, which are the ¢ — g,¢ — g and g — ¢ sub-processes.

B.1 g — g channel

The LO g — g is given by

dD72b de2b/ )
ol = 7G(r) / z ;)D_Q L e g (b, b)) ST (b, b (B.1)

f
whose form in the momentum space is
doly) = G (1) SL.Fa (pr1: Xy) (B.2)

where T = pj/p;, G(x) denotes the gluon PDF of the proton and Fa(k); Xy) represents
the momentum space nucleus dipole distribution in the adjoint representation, whose
definition is

(@)D 28, Falke, Xp) = [ dbodbly e =80, VSO b)), (B3)

where z; = b, — b|. The relation between the dipole in the adjoint representation F4 and
the fundamental representation Fr is given by

fA(kJL;Xf) = /dD_2k1LFF(kL;Xf).FF(k‘L - le;Xf). (B.4)

The NLO correction of the g — g channel to the jet cross section is found to be

1
daég)

s db dv, ! ,
:%NC 4l7r2L/ dé xG(x) e PIL#L

X <H972 S&?) (bL’b/J_)Sgg) (vabIJ_)+qu72 Sg?) (bJ_,T'J_,b/J_)
dr
+f 75(H%BK*%?)%M.)S&?)<bmi>s§?><bm>5§?>m,b1>>

+ (dag:fST - dag,fsr) + (dag,isr - da;,isr) + (dag,inter. - da;,inter.> + (dagR:SOf'ﬁ - dU;R,soft)ﬁ
(B.5)
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where z = 7/¢ and ¢ = %ﬁ’. Here p, is the momentum of the initial state gluon, pj,
denotes the momentum of éne of the final state gluons that will become the signal jet in
the 2-jets case.

The hard factor Hg 2, Hyg2 and Hg 3 are found as the following,

2 2 2 2
_ 1 F1H 2NfTr, 2
Hgo = {_Pég)(f) In—=5—+ l 3N¢ .

= i
11 4NfTR) 2p%, 2NTg
— = 1 — (1 — B.6

WPrLYL 1 o
Huge = 2350 —¢) [+ [ " ] | i+ (- e @)
L 4+ 70

[1-¢(1 - 5)]2 Tl YL iefilg;fpu-m
(1-8+ 27yt &

ePrLL b ¢ 1, N1 o= PrLyL
+46(1 =€) [yi]Jr/O df[w—gf(l—f)]e Prrbe, (B.8)

where x; =b) —r ,y;, =r; —b| and

1-¢ 11  2N/Tg
P :2[ ¢ 1— } (- A >51— B.9
in eq. (B.9), T = %, Ny denotes the number of flavors in the quark loop, which is taken to
be 3 in our calculation.

The v-related logarithmic term is

—+ 2
vp z
Hgpr =2 <ln — ) lQLQ ] 5(1-9), (B.10)
Pjr/) | *1Y1]y
which is also proportional to the LO kinematics, similar to the ¢ — ¢ channel case.

The kinematic constraint term is given by

In (303, /) | In@RR3L /) | 2ouws (wwf‘}i)] 5(1-¢).

2 2 2.2 2
x| Y1 TiY1

Hgyki’n,. =2 [ 2

(B.11)
Finally, the terms in the last line of eq. (B.5) are

c
g7f8T

asSy L =0 -9) [ » Falpry +ps1; Xy)
=G [l | dp“{“(a”a(‘””) Epes — (- psi]?

Falprr +&pyos Xf)}
[peL — (1 =&pso)?

dog fsr — do

+ 0, 7G(T) Falpsi; Xs) —7G(T)

[pkj_ - (1 - ﬁ)pJJ_P (B12)
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where the factor 2 before Oy accounts for the contribution from filling the second jet to
the histogram if it passes the jet threshold, where we have used the fact that the filling is
symmetric between the 2 gluon jets.

The interference term is given by

c
dag,inter - ng inter.

_ a8 [1-¢0 -9
LNc/ df—l_g)

dD 2ZJ_ dD 2[/ , ,
/ PPt gy gyt YO Fr (U X Frls = 15 Xy)

2 (1= ) (11 — s
e = =)

(B.13)

where a factor 2 is again included in the 2-jet case to account for filling both of the jets in
the final state. In this case, the counter contribution will also be filled twice. The same
situation also happens to the ISR contribution which gives

Qs ! [1 — 5(1 — 2
dO’ngr — dO";isr = 27‘[‘2 NC’/ dg é_(l_/d pkLZEG( )(91 + 2@2 — 2)
db, dV| drydr’, o—iPjLEL iDL T -2 (8 ,
A2 A2 Pt el LiLxL S, (b, ri, b, ).
(B.14)
The soft contribution gives
dagR soft ™ da;R,soft
asN D 2[/
;70 G( ) / dnk/d pkLm (@l,soft+®2,soft_1)
g ’ , 2 D-2 ;o 2Pkl
L PP X ) FR(peL+pin =15 Xy) | o= [ AP L Fp(l+pi =15 Xy) = 50
DPr1 P11
db dv, drydr' z -2, o—iPjLEL iDL (8) ,
47-[-2 47T2 :CJ_ le_Q Pt te Pht lS (bJ_,TJ_, J_JTJ_) 9 (B15)
where 2/, =0 —r/, and 2/, =r| — 7/ and
Sﬁ?; (b, e, b))
1
= T [W @)W )W () W )] Te [W (r) W ()] T [W )W (v))].
C
(B.16)

Here pi and 7, denote the momentum and the rapidity of the final state soft gluon,
respectively. We note that in this work, we assume all the signal jets are energetic with
E; > Qs ~ pji, therefore the soft gluon itself could not form a jet that passes the jet
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criteria and therefore the soft gluon jet will not contribute to the jet spectrum and the ©9
term will only be filled once to the histogram. However, if the condition is relieved, the soft
jet could contribute to the py, spectrum.

The 8-point correlator is defined as

1
5@ (bLy T, b/J_a Tﬁ_) = WTT [fcdeWJd (TL) Wae (T/J_) fcfgWJf (bL) Wag(bﬁ_)} . (B'17)
C

Similar to Sg?), in the large N¢ limit, the Sg?) can be written as products of the 4-point
f f
function and the dipoles such that

Sg?; ~ Sg??(bb l,?“l,rL)SE?JZ (TL,Tl)SAg??(bL’ V), (B.18)

which is originated from the color identity that

ST (et W ) W (1) Fega Wiy (6 Way (1))
C
- (J\}?’Tr W) WHE) W ) W] T (W) W) | T (W) w )]
C

- Tr [W GOWIE )W (r )W o)W @) W (r )W () Wi (bl)D :
(B.19)

We can see that the ¢ — ¢ channel is very similar to the result of the ¢ — ¢ channel
except for the splitting function and the color structure. In QCD, for the collinear limit, the
only difference between cross sections of different channels is with respect to the splitting
functions [154]. And the shock-wave introduced in CGC, which is the origin of the difference
in dipole structure, will not change this property. For the soft limit, according to the
conclusion of the soft theorem [155], the only difference between these two channels is the
color factor.

B.2 g — g channel

For the ¢ — g + ¢ channel case, we will suppose that the final state quark becomes the
jet in 2-jets case, and then we can get the NLO correction of this channel to the jet cross
section as

asNTr [ dbLdb,
T 472

dr
X (ng,l? SE(Q) (bJ-7b,J_)+ng,22 SE?)(bJ-ab/J_)SE?)(bJ_ab/J_)_’_/;ng,?&‘gg?)(bJ_aTJ_;bl))

+ (dogq,fsr - dU;q,fsr) + (dggq,isr - dO’f;q,isr) +(do gginter. — dggq,inter.) ) (B.20)

1
dagq) =

1 ,
/ déxG(x)e "PIL=L

+
where £ = ?—f, pg is the momentum of the initial state gluon, p;, denotes the momentum of

g
the final state quark.
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The hard factors are

99,12 = qg (5) n 02 ‘5 + 5 ) ( . )
0
1, 22u® 1
Hgg22 = <_3 In lcg + 6) (1 =), (B.22)

AN yL 2671% m

’ng,SZPq(;)(f) Z yL 5

: (B.23)

where qu & =1+01-¢7
The results of terms in the last line of eq. (B.20) are

s Ny T, F + 0 X
dogq,fsr = dogq psr = - f R/ dgp(;)(f)/dQPkL{2@2mG(x) AWrL +pyLi Xy)

[Epre — (1= &)pyo]?

FalprL +E&pyi; Xy) }
[P — (1= &)pyi]?
(B.24)

where the factor of 2 before ©2 accounts for the contribution from the ¢ jet, which at NLO

+ 0, 7G(T) Falpsis Xy) —7G(T)

[prr — (1= &)pyi]?

is identical to the ¢ jet case.
The interference term is found to be

dagq,inter —do
a s N fTR
272

gq inter.
D
/ dePy) (¢ /dzpiu a QM 2G(x) Fr(li; Xy)
2(6per — (1= pjr) - (1L —pjo) }
(per — (1 =psr)?(L —pjo)?
(B.25)

{(2@2 + 01 —2) Fr(per +psi —11;Xy)

and the contribution from the ISR gives

SN T
do_gq,isr_dagqlsr &t R/ ng 1) /d2pkL$G($)(@1+2@2—2>

ddebJ_ drdr', e~ PiL AL g=iPkLE L xJ— S( )(b b )S( )(7”1_ ).

2 Xy
47T 47T xlng_

(B.26)
In both cases, the contribution from the g jet is included through the factor of 2 before ©5
and the counter terms.

B.3 g — g channel

For the ¢ — ¢ channel which means the gluon becomes the jet in 2-jets case of ¢ — ¢+ ¢
process, the NLO correction to the jet cross section is found to be

as N db dbl oiPILz
dofp) = 40 [RLE [ denf()e v Hygn S0, 6P 01, 8)
+ dogg,fsr + (do_qg,isr - daqg,isr) + dogg inter. ; (B.27)
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n
where £ = }% and p, is the momentum of the initial state quark, p;, denotes the momentum

of the final state gluon.
The hard factor is

1) Zilﬂ
Hqg’22 = _qu (5) In 02 +€ ’ (B28)
0

where Pyq(€) = 11+ (1 - 2],
The results of terms in the last line of eq. (B.27) are

sN F ; X
g = o [P [ Oy sio) TEPE PP

(B.29)

as N, dD an
dogg inter. = — C/ dﬁp(l) /dQP kil o—pg L (2) ©O2Fp(pry + psi; Xy)
(fplu — (1 — §)pu) “(lL —py1)
—1: X
Frlprs + s =l ) (Eper — (1 =pyr)?(L —pyo)?
(B.30)
and
ozSN
dO’qg,isr —doy Oqg,ist — —== / df /dQPkaf ) (@2 - 1)
b, dndm NI TN A
47T 47T 1?3_$J_ 3 s 1Yl

(B.31)

Here pi denotes the momentum of the final state quark. Under this definition ©2 has the
same form as the ¢ — ¢ channel cases in terms of pg,& and pj.

C The small-R limit for other channels channel

In this section, we list all the remaining channels that contribute to the result of jet
production in the small-R limit, which are the ¢ — g,¢ — g and g — ¢ sub-processes.

C.1 g — g channel

In the small-R limit, by performing subtractions similar to the method in section 6 and
omitting O(R?) contributions, we can get the factorized form for the g — g channel as

o= [ d¢ 550G ()dB10(6,02/) To(0), (©.1)
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where x = 7/£¢ and Jy(¢) is the gluon siJF [91, 92] in the large N¢ limit, which is

21

2N, T, R?  (1=C+¢%)? (n(1-
—501-0- 2N {(Pé?<<‘>+ Bl T ()
4NfTR

(957 N9 -0 R Omi -0+ 01

(C.2)

and we have included the contribution from the g — ¢¢ channel, qu Q) =[C+1-¢2.
dog—g(ps1/C) is the cross section to produce a gluon with momentum p;; = pyi/¢.
The explicit results at LO and NLO are given by

d?b dgb’
~ (0 _ L e~ PiL % (2) (2)
N R e AURA A UNAL (©3)
and
R g db db’ i1z
doéllg(pj)zg B / d§ xG(x) e P>t

x (’Hgﬂ S§§) (b, 8)) S (b, b)) + 179 SP (b vy W)
d
o [ (e 100 SR () SR ) S (r0h)),
(C.4)

where Hg%qq, Hgﬁ" ) H%}g and ’Hg;? can be obtained by replacing py | with p; | ineq. (B.7),
eq. (B.8), eq. (B.10) and eq. (B.11), respectively. The H§ 'Y is given by

(11 N 2NfTR> arsn

6 3N¢ 0(2)

2,2
1y :{ PO (6 L 4

99
Co

NfTR 1 1=, ., )

- ——10(1— 1+ = g PiLtEL) C.5
3NC]< 5)}( - g (©5)
We note that dé,_,, is the gluonic cross section for the single hadron production.

C.2 g — q(q@) channel

The contribution of the g — ¢ channel to the small-R limit result is found to be

oy =2 [ A€ 55 aCw) B 20(6,22/) o(0) (C.6)
where x = 7/£C and Jy(¢) is the quark siJF [91, 92] in the large N¢ limit whose form is

given by eq. (6.16). The factor 2 comes from summing up the contributions from the g — ¢
channel and g — ¢ channel, which are the same at this order. Here, d64—4(ps1/¢) is the
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cross section to produce a quark(anti-quark) with momentum p;; = pyi /¢ when the initial
state parton is a gluon. The explicit results at NLO is given by

daél—)>q (pj)

asNyTr [ db ldb'

— d —iPjL-ZL
27 / §aGlz '

< (e S&?(bb V) +H S@)au, AL ONARY Bt IO}
(C.7)

where HY,’? and Hgﬁq can be obtained by replacing py; with p;; in eq. (B.21) and
eq. (B.23) respectively. The Hi, ? is given by

22 12 1 1=,
My = (-P(g)(g) In tig —2¢? ¢ 2§> ae e (C.8)
C.3 q — g channel

The contribution of the ¢ — ¢ channel to the small-R limit result is found to be

s = [ 655 £ (@000, 6.91/0) TC). (©9)

where x = 7/£¢ and J4(() is the gluon siJF [91, 92] in the large N¢ limit whose form is
given by eq. (C.2).

dGq—¢(ps1/C) is the cross section to produce a gluon with momentum p;| = pyi /¢
when the initial state parton is a qurak. The explicit results at NLO is given by

1
daég)

_asNe dbldb’ .
o 472 /df;cf ’

d
(M2 S 0u 6D+ 5P 08P b+ [ TEHTISP 01 b)),
(C.10)

where H4,"Y can be obtained by replacing py, with p;, in eq. (B.28). The H%,"Y and H{ ™7
are given by

%;f;g—<‘a§;><s>1 ff+€> 512 T (C11)
and

Hg*g:Pg(J(s)ZZf z ERCE (C.12)
respectively.
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