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Abstract. Evolution of human genetics is one of the most interesting areas for researchers. 

Determination of Haplotypes not only makes valuable information for this purpose but also performs 

a major role in investigating the probable relation between diseases and genomes. Determining 

haplotypes by experimental methods is a time-consuming and expensive task. Recent progress in 

high throughput sequencing allows researchers to use computational methods for this purpose. 

Although, several algorithms have been proposed but they are less accurate when the error rate of 

input fragments increases. In this paper, first, a fuzzy conflict graph is constructed based on the 

similarities of all input fragments and next, the cluster centers are used as initial centers by fuzzy c-

means (FCM) algorithm. The proposed method has been tested on several real datasets and 

compared with some current methods. The comparison with the existing approaches shows that our 

method can be a complementary role among the others. 

 

Keywords: Bioinformatics; Single individual haplotype; Fuzzy c-means clustering. 

1.   Introduction 

The sequencing efforts of Human genome project revealed that more than 99% of DNA 

sequences of human are identical [1]. As a result, the genomic differences is the 

responsible for diversities in our phenotypes and can be considered for many applications 

such as medical, drug designing, disease diagnosis and studying population history [2, 3]. 

Single Nucleotide Polymorphisms (SNPs) are the sites on DNA sequences that have 

common variations [4]. The nucleotides involved in an SNP are called alleles. Haplotype 

is a set of the number of SNPs that are located in a specific chromosome. Recent works 

show that haplotypes have more valuable information than individual SNPs [5]. In 

diploid organisms, such as humans, genomes are organized into pairs of chromosomes 

one inherited from father and other inherited from mother that are called paternal and 

maternal respectively. Consequently, from each copy one haplotype sequence can be 

gained [6, 7]. Determination of haplotypes from experimental works is so time-

consuming and costing. Hence, using of computational methods is appropriate. In order 

to solve haplotype reconstruction problem, various methods have been proposed. At 

present, there are two chief models: haplotype inference [8-13] and haplotype assembly 

[6, 14-20]. The presented method in this article is based on the haplotype assembly. 
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Lancia and his colleagues[21] first proposed haplotype assembly problem. Suppose there 

are some short SNP fragments that are bellowing to a pair of chromosomes. Their model 

tries to divide these fragments in to two clusters such that each haplotype is 

reconstructed. Existence of errors in fragments and gaps as well as diploid organism lead 

to this problem becomes challenging and more difficult. Due to finding and rectifying 

fragment’s errors, several models have been proposed which Minimum Fragment 

Removal (MFR), Minimum SNP Removal (MSR), Longest Haplotype Reconstruction 

(LHR) and Minimum Error Correction (MEC) are four main chief models. MEC has been 

presented by Lippert and coworkers [22]. Although, this model is the most complicated 

amongst the others, it is so popular and has been used in many related works. It is proved 

that MEC problem is NP-hard [23]. 

Up to now, several approaches have been proposed to address the SIH problem based on 

MEC model which can be categorized as exact, metaheuristic and probabilistic methods. 

Exact based methods attempt to address the problem accurately and reconstruct 

haplotypes optimally. However, these approaches has to contain some constraints for 

input fragments [18, 24-26]. Since MEC problem is NP-hard, metaheuristic algorithms 

such as GA and PSO have been applied to solve this problem. In this case, the objective 

function has been designed based on MEC model and the method attempts to enhance it 

iteratively [6, 15, 27-30]. Existing gaps and errors in the input data, encouraged some 

researchers to propose probabilistic models to solve this problem. For example, 

HASH[19] and CUT[20] are two main approaches which lie in this category.          

Fasthap method was recently proposed by Mazrouee and her colleagues [31]. Developing 

in accuracy and time complexity are the main goals of their method. Algorithmically, 

dissimilarity of every pair of fragments is measured by a new distance metric; next, a 

weighted graph is built based on the obtained measures; then, the created graph is used to 

partitioning the fragments one after another; eventually, the initial partitioning is 

developed in order to improve the overall MEC. The experimental results not only 

outperform but also the time complexity is enhanced. 

Fuzzy c-means (FCM) clustering is an unsupervised technique that has been widely 

applied in many fields such as geology, medical imaging, target recognition, and image 

segmentation [32-37]. The main advantage of this approach against hard c-means is that 

each sample can belong to several clusters based on the measure of its membership 

degree. This ability is more suitable in concerning with noisy data and decrease its 

sensitivity against the existing noise [38]. Single individual haplotype (SIH) 

reconstruction problem is one of the active research areas in bioinformatics which can be 

modelled as a clustering problem. Most of the existing methods cluster the input 

fragments based on their distances. However, existing errors and gaps in the input 

fragments lead to computing their distances becomes unreliable.  

This paper focuses on using FCM approach and introduces a new haplotype 

reconstruction method. Membership degree of each input fragment can interpret their 

belongings more precisely. The proposed method includes two steps. First, the suggested 

distance metric in[31] is used for building fuzzy conflict graph. Then the input fragments 
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are partitioned into two clusters based on their similarities and from each cluster an initial 

haplotype is gained. In the next step, the obtained haplotypes are used by fuzzy c-means 

(FCM) clustering method as preliminary centers and tries to improve the accuracy of the 

pervious partitioning. From the results of several experiments on real data, we can see 

that the proposed method can always find good solutions. Also, comparing the results 

with several methods indicates that our method achieves an appropriate accuracy in most 

cases.  

The rest of this paper is organized as follows: In section 2, SIH problem is formally 

defined and preliminary definitions and notations are given. In the third section data 

representation is discussed and the proposed method is described. In section 4, the 

experimental results of comparing the method with other popular approaches are 

provided. Our conclusions are drawn in the final section.  

2.   Problem formulation 

Given a set of SNP fragments which are read from both chromosomes and the columns 

with identical values have been removed. Next as can be seen in Fig. 1 (a), an m�n 

matrix called SNP matrix is constructed which contains the fragments where m is the 

number of fragments and n is the number of the sites. In reality, there are two possible 

alleles for each SNP. Therefore, alleles of each SNP based on their frequency in 

population can be denoted by ‘0’ and ‘1’ [7] (Fig. 1 (b)). 

 

 

(a)  (b) 
 

Fig. 1. Example of SNP fragments. (a) An SNP matrix with original measures, (b) The SNP matrix which its 

elements have been transformed to 0/1. 

 

Each element of matrix can be 1, 0 or ‘�‘where ‘�‘indicates a gap. The original 

haplotypes are a pair of binary strings H(h1,h2) with length n. The aim of SIH 

reconstruction is division the SNP matrix into two parts by row, and then the 

corresponding haplotype from each part is reconstructed. 

If the fragments are error-free (Fig. 1) then they can be clustered into two groups such 

that all the fragments in each cluster are compatible (Fig. 2). However, in the presence of 

errors, there are some fragments which have conflict with the both clusters. In this case, 

we should reconstruct the haplotypes such that some objective function is minimized. In 

this study, we define this function based on Minimum error correction (MEC)[21, 22]. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607


   
 

4

Suppose that ������, ���	 is the pair of reconstructed haplotypes. The accuracy of the 

algorithm is measured by reconstruction rate (RR)[6] which is defined as follows: 

 



��, ��� 
 1 � ��� ����	��� ,���	����

��
  (1) 

Where �
� 
 ���
, ���� 
 ∑ ���
��� �
�, ����	 and ���, �	 
 �0,       �� � 
 �1, ����������   

Fig. 2. Input fragments have been divided into two groups based on their similarities and �� and �� are 

reconstructed from each group individually. 

 

3.   Materials and methods 

As demonstrated by a series of recent publications[14, 39-46] and summarized as Chou's 

5-step rule[47], to present a suitable analysis method for a biological system, we should 

follow the following five guidelines: (a) select a valid benchmark dataset; (b) formulate 

data with an effective mathematical expression; (c) introduce a powerful algorithm to 

operate the reconstruction; (d) evaluate the accuracy; (e) establish a user-friendly web-

server. Below, we are to describe how to deal with these steps one-by- one. 

3.1.   Materials 

The Geraci’s dataset[48] is one of the major benchmarks which is prepared based on 

Hapmap project. This dataset consists of 22 pairs of human chromosomes from four 

different populations and has widely been used by several researchers [14, 15, 17, 48-50]. 

There are three parameters related to the data set: haplotype length, error rate and 

coverage rate which are denoted by l, e, c, respectively. Each parameter has several 

different values, l = 100, 350, and 700, e = 0.0, 0.1, 0.2 and 0.3, c = 3, 5, 8 and 10. Error 

rate refers to the amount of read data which has been read imprecisely. For example when 

e equals 0.1, it means that 10% of available data is noisy. Moreover, the coverage 

parameter refers to the number of times each of the two haplotypes replicates when 

generating the dataset. For each combination of these parameters there are 100 instances.  
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3.2.   Data formulation 

As it is mentioned in the previous section, suppose input SNP fragments as a  � ! 

matrix called SNP matrix. The similarity between each two fragment " 
���, ��, … , ��	 and $ 
 ���, ��, … , ��	 can be defined as follows:  

 

It is be noted that Eq.3 is a type of Hamming distance which has been used in [31]. It is 

required that the distances between all the input fragments are calculated. Next, a 

complete fuzzy conflict graph is constructed which has m vertices equal to the number of 

fragments and each edge representing the distance between two corresponding fragments. 

In fact, this graph represents dissimilarity between pairs of fragments. For example, the 

demonstrated matrix in Fig. 3 represents the normalized distances between all six 

fragments in the Fig. 1. It is be noted that distance between fi and fj is normalized by the 

number of SNP sites which at least have been covered by fi or fj. Moreover, its 

corresponding fuzzy conflict graph is depicted too. 

 

Fig. 3. Distance matrix and corresponding fuzzy conflict graph for six input fragments 

3.3.   Proposed method 

The proposed method has two phases. First, distances between all the fragments are 

calculated according to Eq.3 and the corresponding fuzzy conflict graph is constructed. 

Next, the obtained distances are used to bi-partitioning all the fragments. It is be noticed 

that this clustering is done based on the dissimilarities between the fragments. In the 

second phase, centers of the gained clusters (the obtained haplotypes) are used as initial 

centers by fuzzy c-means algorithm. First step leads to increase the convergence speed of 

FCM and decreases the number of iterations. The FCM algorithm assigns fragments to 

each cluster according to fuzzy memberships. Let %
���� & '0,1( is degree of 

membership of jth fragment to ith cluster which � & )0,1* and matrix U
 '%
�(��� 

contains the membership of all the fragments. In this way each fragment may belong to 

���", $	 
 ∑ �+��
, �
	�

��   

 

(2) 

�+��, �	 
 ,0  �� � 
 �                                 1   �� � - � .!� �, � & )1,0*0.5   1��������                        
�
  

(3) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607


   
 

6

any of the two clusters by different membership degrees. The algorithm is an iterative 

optimization that minimizes the cost function defined as bellows: 

 2 
 ∑ ∑ %
���

��

�
��� �
��   (4) 

Where �
�the distance between each cluster center and input fragments that defined is 

based on relation (1), N is the number of fragments and m is a constant which controls 

the fuzziness of the resulting partition. This measure can be set between one to infinity 

and there isn’t any theoretical way to determine it.  In this study, m equals with 2 based 

on several past researches [33, 37, 51-53]. The updated membership matrix and cluster 

centers are calculated from  

 

%
���	�� 
 ���

��
�����	

∑ ���

��
�����	


���

  (5) 

�
 
 ∑ ���
���



���

∑ ���
�


���
  (6) 

The algorithm is expressed by the flowchart shown in Fig. 4. The last two steps are 

iterated until the improvement over the previous iteration is below a threshold 3. The cost 

function is minimized when fragments close to the centroid of their clusters are assigned 

high membership values, and low membership values are assigned to fragments that far 

from the centroid. 
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Fig. 4. Flowchart of the proposed method    

4.   Experimental results 

To evaluate the performance of our method, as mentioned previously, we have used the 

dataset in Geraci’s research [48, 54].  

In order to assess the performance of the proposed algorithm, it is compared with the 

algorithms that were investigated in Geraci’s research[48]. MLF[55] and 2d [26] are 

based on MEC model. The former uses confidence score for each SNP site and the later 

uses two distance metrics in order to cluster input fragments. Both of DGS[56] and 

Cut[20] methods works with a sub-matrix of input fragments. The first, considers a pair 

of haplotypes as initial and based on the majority rule refines it step by step. The second 
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models the SIH as a max-cut problem in derived SNP graphs. Fast[57] sorts input 

fragments according to the positions which gaps begin and assigns them to the clusters. 

SHR[58] is a randomized-based approach which selects the input fragments in an 

iterative manner and by exploiting hamming distance assigns them to the closest set. 

Finally, SPH[54] is a heuristic-based method expoliting the statistical correlations 

between SNPs and uses for the high noisy fragments with low coverages. The results of 

proposed method called FCMhap as well as the results of other algorithms can be seen as 

follows. It should be noticed that Table 1-3 represents the results of haplotypes with 

length 100, 350 and 700 respectively. The first two columns in these tables indicate error 

rate and coverage separately. The results of our method can be seen in the last column. 

The bold values specify the utmost RRs, also the gray values indicate the second highest 

RRs. It is interesting to note that all compering methods have good performance in the 

error-free cases. However, by increasing the amount of noise and gaps, their 

performances decrease dramatically. By using FCM, each fragment can be belong to both 

clusters. Their belonging have been determined according to their membership degree 

measures. The membership degree can describe the belonging of each fragment more 

accurately especially for input fragments with large amount of noise. Therefore, as can be 

seen here, the comparison of results particularly in cases with a high error rate, 

demonstrates that FCMhap has suitable performance against the other methods. 

In this study, we have focused on the improvement of the reconstruction rate. However, 

in order to provide a comprehensive assessment about the proposed method, its running 

time has been compared against the other approaches.  For this purpose, for each 

combination of the parameters, the methods have been run by an ordinary desktop PC 

over 10 samples which have been selected randomly. The average of running times for 

each set of parameters have been collected which can be seen in Tables 4-6.  
The comparison of the haplotype reconstruction time demonstrates that the running time 

of the proposed method is scalable with the other approaches and it can reconstruct 

haplotypes for each parameter assignment in less than seven seconds. 

 

 

Table 1.  The average of reconstruction rate for 100 examples with length 100 

e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 0.999 0.999 0.990 1.000 0.973 0.816 1.000 1.000 

0 5 1.000 0.999 0.997 1.000 0.992 0.861 1.000 1.000 

0 8 1.000 1.000 1.000 1.000 0.997 0.912 1.000 1.000 

0 10 1.000 1.000 1.000 1.000 0.998 0.944 1.000 1.000 

0.1 3 0.895 0.913 0.911 0.928 0.889 0.696 0.930 0.8816 

0.1 5 0.967 0.964 0.951 0.920 0.969 0.738 0.985 0.9478 

0.1 8 0.989 0.993 0.983 0.901 0.985 0.758 0.989 0.9713 

0.1 10 0.990 0.998 0.988 0.892 0.995 0.762 0.997 0.9725 

0.2 3 0.623 0.715 0.738 0.782 0.725 0.615 0.725 0.7392 

0.2 5 0.799 0.797 0.793 0.838 0.836 0.655 0.813 0.7721 

0.2 8 0.852 0.881 0.873 0.864 0.918 0.681 0.878 0.7926 

0.2 10 0.865 0.915 0.894 0.871 0.938 0.699 0.917 0.8348 

0.3 3 0.480 0.617 0.623 0.602 0.618 0.557 0.611 0.6286 
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0.3 5 0.637 0.639 0.640 0.629 0.653 0.599 0.647 0.6485 

0.3 8 0.667 0.661 0.675 0.673 0.697 0.632 0.663 0.6643 

0.3 10 0.676 0.675 0.678 0.709 0.715 0.632 0.688 0.6754 

 

Table 2. The average of reconstruction rate for 100 examples with length 350 

e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 0.999 0.989 0.965 1.000 0.864 0.830 1.000 1.000 

0 5 1.000 0.999 0.993 1.000 0.929 0.829 1.000 1.000 

0 8 1.000 1.000 0.998 1.000 0.969 0.895 1.000 1.000 

0 10 1.000 1.000 0.999 1.000 0.981 0.878 1.000 1.000 

0.1 3 0.819 0.871 0.839 0.930 0.752 0.682 0.926 0.873 

0.1 5 0.959 0.945 0.913 0.913 0.858 0.7244 0.978 0.9186 

0.1 8 0.984 0.985 0.964 0.896 0.933 0.742 0.996 0.9344 

0.1 10 0.984 0.995 0.978 0.888 0.962 0.728 0.998 0.935 

0.2 3 0.439 0.684 0.675 0.771 0.642 0.591 0.691 0.671 

0.2 5 0.729 0.746 0.728 0.831 0.728 0.632 0.769 0.7186 

0.2 8 0.825 0.853 0.791 0.862 0.798 0.670 0.842 0.7279 

0.2 10 0.855 0.877 0.817 0.867 0.831 0.668 0.878 0.7335 

0.3 3 0.251 0.590 0.593 0.565 0.581 0.548 0.578 0.5975 

0.3 5 0.578 0.602 0.606 0.582 0.606 0.557 0.609 0.6137 

0.3 8 0.629 0.626 0.623 0.621 0.634 0.604 0.628 0.6264 

0.3 10 0.638 0.644 0.634 0.664 0.641 0.619 0.641 0.631 

 

Table 3. The average of reconstruction rate for 100 examples with length 700 

e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 0.999 0.988 0.946 1.000 0.782 0.781 1.000 1.000 

0 5 1.000 0.999 0.976 1.000 0.854 0.832 1.000 1.000 

0 8 1.000 1.000 0.992 1.000 0.919 0.868 1.000 1.000 

0 10 1.000 0.999 0.997 1.000 0.933 0.898 1.000 1.000 

0.1 3 0.705 0.829 0.786 0.927 0.698 0.668 0.931 0.8344 

0.1 5 0.947 0.941 0.880 0.916 0.809 0.716 0.977 0.881 

0.1 8 0.985 0.986 0.948 0.896 0.863 0.743 0.987 0.8833 

0.1 10 0.986 0.995 0.965 0.889 0.884 0.726 0.997 0.996 

0.2 3 0.199 0.652 0.647 0.753 0.624 0.591 0.669 0.6517 

0.2 5 0.681 0.712 0.697 0.825 0.682 0.617 0.741 0.6718 

0.2 8 0.801 0.808 0.751 0.856 0.747 0.653 0.818 0.6863 

0.2 10 0.813 0.872 0.778 0.861 0.765 0.675 0.861 0.7458 

0.3 3 0.095 0.581 0.583 0.552 0.570 0.536 0.573 0.5923 

0.3 5 0.523 0.591 0.596 0.555 0.594 0.562 0.595 0.5988 

0.3 8 0.616 0.615 0.613 0.597 0.614 0.611 0.614 0.606 

0.3 10 0.627 0.616 0.622 0.645 0.625 0.625 0.622 0.6064 

 

Table 4. The average of runing time for examples with length 100 (in seconds) 

e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 0.006 0.001 0.004 0.013 0.012 0.002 0.001 0.018 

0 5 0.009 0.001 0.003 0.022 0.029 0.001 0.002 0.026 

0 8 0.013 0.002 0.013 0.033 0.046 0.002 0.006 0.055 

0 10 0.016 0.003 0.016 0.136 0.067 0.003 0.016 0.047 

0.1 3 0.007 0.001 0.004 0.060 0.012 0.001 0.001 0.017 

0.1 5 0.009 0.002 0.006 0.083 0.023 0.001 0.005 0.027 

0.1 8 0.013 0.002 0.012 0.107 0.052 0.002 0.009 0.039 

0.1 10 0.014 0.003 0.024 0.162 0.071 0.003 0.011 0.051 
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0.2 3 0.007 0.001 0.004 0.053 0.013 0.001 0.001 0.018 

0.2 5 0.011 0.001 0.008 0.085 0.019 0.001 0.005 0.027 

0.2 8 0.008 0.002 0.017 0.146 0.040 0.003 0.010 0.041 

0.2 10 0.014 0.002 0.016 0.185 0.050 0.004 0.009 0.046 

0.3 3 0.008 0.001 0.003 0.093 0.009 0.001 0.001 0.015 

0.3 5 0.011 0.001 0.007 0.093 0.028 0.002 0.004 0.029 

0.3 8 0.011 0.002 0.014 0.176 0.038 0.002 0.009 0.038 

0.3 10 0.013 0.002 0.022 0.182 0.071 0.002 0.017 0.044 

 

Table 5. The average of running time for examples with length 350 (in seconds) 
e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 
0.212 0.009 0.055 0.178 0.197 0.010 0.047 0.196 

0 5 0.369 0.011 0.166 0.352 0.457 0.013 0.107 0.273 

0 8 0.363 0.016 0.453 0.385 0.533 0.027 0.212 0.493 

0 10 0.428 0.031 0.756 0.657 1.384 0.032 0.329 0.604 

0.1 3 0.281 0.008 0.050 2.990 0.215 0.007 0.034 0.162 

0.1 5 0.406 0.017 0.208 4.762 0.263 0.017 0.106 0.291 

0.1 8 0.398 0.015 0.504 10.140 0.525 0.026 0.264 0.469 

0.1 10 0.431 0.019 0.625 15.785 1.316 0.032 0.271 0.621 

0.2 3 0.231 0.009 0.065 3.985 0.155 0.010 0.032 0.185 

0.2 5 0.296 0.017 0.129 8.534 0.445 0.011 0.110 0.284 

0.2 8 0.443 0.018 0.346 12.543 0.566 0.015 0.269 0.509 

0.2 10 0.495 0.029 0.718 18.354 1.423 0.029 0.408 0.596 

0.3 3 0.380 0.009 0.072 4.734 0.196 0.009 0.030 0.163 

0.3 5 0.400 0.015 0.188 6.252 0.458 0.015 0.081 0.276 

0.3 8 0.526 0.015 0.404 15.668 0.712 0.017 0.242 0.455 

0.3 10 0.486 0.024 0.736 16.343 1.881 0.022 0.460 0.679 

 

Table 6. The average of running time for examples with length 700 (in seconds) 
e c SPH Fast 2d Cut MLF SHR DGS FCMhap 

0 3 
4.328 0.022 0.508 0.855 1.235 0.028 0.352 1.601 

0 5 4.043 0.059 2.009 1.513 2.689 0.037 0.650 3.025 

0 8 3.935 0.064 5.537 3.696 4.371 0.100 3.581 4.381 

0 10 5.897 0.134 6.460 3.825 9.093 0.124 6.084 6.866 

0.1 3 3.060 0.050 0.822 38.525 2.029 0.051 0.351 1.613 

0.1 5 2.781 0.035 2.110 40.845 2.477 0.060 0.614 2.580 

0.1 8 3.588 0.076 4.937 82.105 4.546 0.058 2.308 4.226 

0.1 10 5.743 0.162 7.153 134.104 8.764 0.136 5.989 6.765 

0.2 3 3.310 0.033 0.333 24.271 0.757 0.026 0.400 1.609 

0.2 5 3.529 0.047 2.132 54.829 2.421 0.055 0.970 2.524 

0.2 8 4.408 0.084 5.141 102.456 6.004 0.067 4.169 4.558 

0.2 10 5.274 0.102 7.826 100.052 6.737 0.110 5.118 6.410 

0.3 3 2.755 0.021 0.332 41.529 0.713 0.026 0.306 1.612 

0.3 5 3.867 0.061 1.674 63.359 1.439 0.063 0.965 2.874 
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0.3 8 3.912 0.097 5.368 119.681 3.764 0.070 3.464 4.918 

0.3 10 5.403 0.111 8.848 173.903 7.265 0.108 6.828 6.983 

 

5.   Conclusion 

Providing huge amount of genomic sequences has been increased the importance of 

single individual haplotype problem. Determination of haplotype can be useful in several 

domains such as understanding the relation between genetic variations and complicated 

diseases. Since laboratory-based methods are time consuming and expensive, several 

computational-based approaches have been proposed which reconstruct haplotypes 

directly from the reads. But their performance can be dramatically decreased in dealing 

with the noisy input data. We have presented FCMhap, an effective method that utilizes 

Fuzzy c-means (FCM) algorithm as a main step. FCM by considering a fuzzy 

membership for each read can efficiently cluster the noisy data. The obtained results 

demonstrate that FCMhap can improve reconstruction rate especially for high-error-rate 

data. It should be noted that the codes used to prepare this article are available from the 

author upon request. 

 

Acknowledgement 

We would like to acknowledge the help that received from our colleagues in Machine 

Learning and Bioinformatics Laboratory (MLBL) of University of Zanjan, Zanjan, Iran. 

The authors would also like to thank Dr. F. Geraci for providing his benchmark data set. 

 

References 

1. Venter, J.C., et al., The sequence of the human genome. science, 2001. 291(5507): p. 1304-1351. 

2. Hoehe, M.R., et al., Sequence variability and candidate gene analysis in complex disease: 

association of µ opioid receptor gene variation with substance dependence. Human 

molecular genetics, 2000. 9(19): p. 2895-2908. 

3. Bafna, V., et al., Polynomial and APX-hard cases of the individual haplotyping problem. 

Theoretical Computer Science, 2005. 335(1): p. 109-125. 

4. Wang, Z. and J. Moult, SNPs, protein structure, and disease. Human mutation, 2001. 17(4): p. 

263-270. 

5. Stephens, J.C., et al., Haplotype variation and linkage disequilibrium in 313 human genes. 

Science, 2001. 293(5529): p. 489-493. 

6. Wang, R.-S., et al., Haplotype reconstruction from SNP fragments by minimum error correction. 

Bioinformatics, 2005. 21(10): p. 2456-2462. 

7. Zhao, Y., et al., An overview of the haplotype problems and algorithms. Frontiers of Computer 

Science in China, 2007. 1(3): p. 272-282. 

8. Wei, B. and J. Zhao, Haplotype inference using a novel binary particle swarm optimization 

algorithm. Applied Soft Computing, 2014. 21: p. 415-422. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607


   
 

12 

9. He, D., B. Han, and E. Eskin, Hap-seq: an optimal algorithm for haplotype phasing with 

imputation using sequencing data. Journal of Computational Biology, 2013. 20(2): p. 80-

92. 

10. Graça, A., et al., Efficient and accurate haplotype inference by combining parsimony and 

pedigree information. 2012: Springer. 

11. Stephens, M. and P. Scheet, Accounting for decay of linkage disequilibrium in haplotype 

inference and missing-data imputation. The American Journal of Human Genetics, 2005. 

76(3): p. 449-462. 

12. Gusfield, D. Haplotype inference by pure parsimony. in Combinatorial Pattern Matching. 

2003. Springer. 

13. Lin, S., et al., Haplotype inference in random population samples. The American Journal of 

Human Genetics, 2002. 71(5): p. 1129-1137. 

14. Chen, X., et al., An effective haplotype assembly algorithm based on hypergraph partitioning. 

Journal of theoretical biology, 2014. 358: p. 85-92. 

15. Wang, T.-C., J. Taheri, and A.Y. Zomaya, Using genetic algorithm in reconstructing single 

individual haplotype with minimum error correction. Journal of biomedical informatics, 

2012. 45(5): p. 922-930. 

16. Aguiar, D. and S. Istrail, HapCompass: a fast cycle basis algorithm for accurate haplotype 

assembly of sequence data. Journal of Computational Biology, 2012. 19(6): p. 577-590. 

17. Mousavi, S.R., et al., Effective haplotype assembly via maximum Boolean satisfiability. 

Biochemical and biophysical research communications, 2011. 404(2): p. 593-598. 

18. He, D., et al., Optimal algorithms for haplotype assembly from whole-genome sequence data. 

Bioinformatics, 2010. 26(12): p. i183-i190. 

19. Bansal, V., et al., An MCMC algorithm for haplotype assembly from whole-genome sequence 

data. Genome research, 2008. 18(8): p. 1336-1346. 

20. Bansal, V. and V. Bafna, HapCUT: an efficient and accurate algorithm for the haplotype 

assembly problem. Bioinformatics, 2008. 24(16): p. i153-i159. 

21. Lancia, G., et al., SNPs problems, complexity, and algorithms, in Algorithms—ESA 2001. 2001, 

Springer. p. 182-193. 

22. Lippert, R., et al., Algorithmic strategies for the single nucleotide polymorphism haplotype 

assembly problem. Briefings in bioinformatics, 2002. 3(1): p. 23-31. 

23. Cilibrasi, R., et al., On the complexity of several haplotyping problems, in Algorithms in 

bioinformatics. 2005, Springer. p. 128-139. 

24. Chen, Z.-Z., et al., Better ilp-based approaches to haplotype assembly. Journal of 

Computational Biology, 2016. 23(7): p. 537-552. 

25. Chen, Z.-Z., F. Deng, and L. Wang, Exact algorithms for haplotype assembly from whole-

genome sequence data. Bioinformatics, 2013: p. btt349. 

26. Wang, Y., E. Feng, and R. Wang, A clustering algorithm based on two distance functions for 

MEC model. Computational biology and chemistry, 2007. 31(2): p. 148-150. 

27. Ting, C.-K., et al., A genetic algorithm for diploid genome reconstruction using paired-end 

sequencing. Plos one, 2016. 11(11): p. e0166721. 

28. Wu, J. and J. Wang, A practical algorithm based on particle swarm optimization for haplotype 

reconstruction. Applied mathematics and computation, 2009. 208(2): p. 363-372. 

29. Wu, J. and J. Wang, A parthenogenetic algorithm for single individual SNP haplotyping. 

Engineering Applications of Artificial Intelligence, 2009. 22(3): p. 401-406. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607


   
 

13

30. Qian, W., et al., Particle swarm optimization for SNP haplotype reconstruction problem. 

Applied mathematics and Computation, 2008. 196(1): p. 266-272. 

31. Mazrouee, S. and W. Wang, FastHap: fast and accurate single individual haplotype 

reconstruction using fuzzy conflict graphs. Bioinformatics, 2014. 30(17): p. i371-i378. 

32. Gong, M., et al., Fuzzy c-means clustering with local information and kernel metric for image 

segmentation. Image Processing, IEEE Transactions on, 2013. 22(2): p. 573-584. 

33. Chuang, K.-S., et al., Fuzzy c-means clustering with spatial information for image 

segmentation. computerized medical imaging and graphics, 2006. 30(1): p. 9-15. 

34. Cai, W., S. Chen, and D. Zhang, Fast and robust fuzzy c-means clustering algorithms 

incorporating local information for image segmentation. Pattern recognition, 2007. 

40(3): p. 825-838. 

35. Zhang, S., R.-S. Wang, and X.-S. Zhang, Identification of overlapping community structure in 

complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and 

its Applications, 2007. 374(1): p. 483-490. 

36. Tari, L., C. Baral, and S. Kim, Fuzzy c-means clustering with prior biological knowledge. 

Journal of Biomedical Informatics, 2009. 42(1): p. 74-81. 

37. Chaira, T., A novel intuitionistic fuzzy C means clustering algorithm and its application to 

medical images. Applied Soft Computing, 2011. 11(2): p. 1711-1717. 

38. Suganya, R. and R. Shanthi, Fuzzy c-means algorithm-a review. International Journal of 

Scientific and Research Publications, 2012. 2(11): p. 1. 

39. Jia, J., et al., pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble 

random forest approach. Journal of Theoretical Biology, 2016. 

40. Jia, J., et al., iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein 

binding sites by optimizing imbalanced training datasets. Molecules, 2016. 21(1): p. 95. 

41. Chen, W., et al., iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 

2016. 

42. Liu, Z., et al., pRNAm-PC: Predicting N 6-methyladenosine sites in RNA sequences via 

physical–chemical properties. Analytical biochemistry, 2015. 

43. Liu, B., et al., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength 

by pseudo k-tuple nucleotide composition. Bioinformatics, 2015: p. btv604. 

44. Liu, B., et al., iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-

pair composition approach. Journal of Biomolecular Structure and Dynamics, 2015: p. 1-

13. 

45. Jia, J., et al., iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating 

sequence-coupling effects into pseudo components and optimizing imbalanced training 

dataset. Analytical biochemistry, 2015. 

46. Chen, W., et al., Using deformation energy to analyze nucleosome positioning in genomes. 

Genomics, 2015. 

47. Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition. 

Journal of theoretical biology, 2011. 273(1): p. 236-247. 

48. Geraci, F., A comparison of several algorithms for the single individual SNP haplotyping 

reconstruction problem. Bioinformatics, 2010. 26(18): p. 2217-2225. 

49. Chen, Z.-Z., F. Deng, and L. Wang, Exact algorithms for haplotype assembly from whole-

genome sequence data. Bioinformatics, 2013. 29(16): p. 1938-1945. 

50. Deng, F., W. Cui, and L. Wang, A highly accurate heuristic algorithm for the haplotype 

assembly problem. BMC genomics, 2013. 14(2): p. 1. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607


   
 

14 

51. Fan, J., M. Han, and J. Wang, Single point iterative weighted fuzzy C-means clustering 

algorithm for remote sensing image segmentation. Pattern Recognition, 2009. 42(11): p. 

2527-2540. 

52. Maraziotis, I.A., A semi-supervised fuzzy clustering algorithm applied to gene expression data. 

Pattern Recognition, 2012. 45(1): p. 637-648. 

53. Pedrycz, W. and P. Rai, Collaborative clustering with the use of Fuzzy C-Means and its 

quantification. Fuzzy Sets and Systems, 2008. 159(18): p. 2399-2427. 

54. Genovese, L.M., F. Geraci, and M. Pellegrini, SpeedHap: an accurate heuristic for the single 

individual SNP haplotyping problem with many gaps, high reading error rate and low 

coverage. IEEE/ACM Transactions on Computational Biology and Bioinformatics 

(TCBB), 2008. 5(4): p. 492-502. 

55. Zhao, Y.-Y., et al., Haplotype assembly from aligned weighted SNP fragments. Computational 

Biology and Chemistry, 2005. 29(4): p. 281-287. 

56. Levy, S., et al., The diploid genome sequence of an individual human. PLoS biology, 2007. 

5(10): p. e254. 

57. Panconesi, A. and M. Sozio. Fast hare: A fast heuristic for single individual SNP haplotype 

reconstruction. in International workshop on algorithms in bioinformatics. 2004. 

Springer. 

58. Chen, Z., et al., Linear time probabilistic algorithms for the singular haplotype reconstruction 

problem from SNP fragments. Journal of Computational Biology, 2008. 15(5): p. 535-

546. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.348607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348607



