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Abstract: Negative Poisson’s ratio (NPR) materials have broad applications such as heat dissipation,
vibration damping, and energy absorption because of their designability, lightweight quality, and
high strength ratio. Here, we use first-principles calculations to find a two-dimensional (2D) auxetic
material (space group R3m), which exhibits a maximum in-plane NPR of −0.0846 and a relatively
low Young’s modulus in the planar directions. Calculations show that the NPR is mainly related to
its unique zigzag structure and the strong interaction between the 4d orbital of Mo and the 3p orbital
of S. In addition, molecular dynamics (MD) simulations show that the structure of this material is
thermodynamically stable. Our study reveals that this layered MoS2 can be a promising 2D NPR
material for nanodevice applications.

Keywords: two-dimensional materials; DFT; elastic constants; negative Poisson’s ratio; first-principles
calculations; strong p-d orbital interactions

1. Introduction

Young’s modulus is a physical quantity that characterizes the resistance of a material
to tensile or compressive forces within the limits of elasticity [1,2]. Poisson’s ratio (PR) is
defined as the ratio of the transversal strain to the strain along the applied stress direction
when the material is deformed elastically [3]. Generally, PR, by definition, is positive for
most commonly available engineering materials when the applied strain and the resultant
transverse strain have opposite signs [4]. NPR materials refer to the phenomenon of
lateral expansion when subjected to uniaxial tensile stress [5]. NPR materials possess
certain advantageous properties including strong designability [6], light weight [7], high
strength ratio [8], and high damping [9], and moreover have good performance in heat
dissipation [10], vibration reduction [11], and energy absorption [12]. These excellent
mechanical properties greatly expand the scope of the application of NPR materials. At
present, there are broad application prospects in the fields of aerospace, equipment armor,
intelligent manufacturing, coating materials, and so on.

Quantum confinement caused by the low-dimensional effect of two-dimensional (2D)
materials makes them more prone to NPR [13–16]. Therefore, it is possible to find new
2D NPR materials for novel nanomaterial applications. Until now, some NPR materials
have been identified, such as black phosphorus (BP) [17], Be5C2 [18], SnSe [19], TiN [20],
α-phosphorene [21], δ-phosphorene [22], Cd2C [23], Zn2C [24], and Ag2S [25]. However,
the number is still small considering the numerous materials [26,27] that have been discov-
ered and investigated [28]. MoS2 is one of the well-known materials possessing several
different configurations, which have different structures. MoS2 [29] is a material com-
posed of two chemical elements, molybdenum and sulfur, with excellent optical, electrical,
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magnetic, force, and thermal properties, and is widely used in energy storage, catalysis,
semiconductors, lubrication, and other fields. It is notable that in the mechanical properties,
both positive and negative PR are present in the MoS2 configuration, which is rare for the
same material of other compounds. It has been reported that MoS2 has both positive and
negative PR, and small changes in the structure will greatly affect the PR. Yu et al. [30], in
2017, reported 42 1T-type crystals in which the presence of NPR for MoS2 was suggested,
while Hung et al. [31], in 2018, reported three different structures of MoS2 with positive and
negative PR. These results coincide with our calculations. However, for the same material
(MoS2), there is no exact explanation of what causes its many configurations to have both
positive and negative PR. The main reason is that there is a general lack of understanding
of the mechanism of NPR materials. Therefore, in-depth analysis from the perspective of
electron interaction is needed to understand the mechanisms behind the formation of NPR
materials. Such understanding is important for the search and design of new materials
with widened application prospects.

There are three different phases of monolayer MoS2: 1T-phase, 1H-phase, and 1T’-
phase MoS2, respectively [32]. To investigate in-depth the formation mechanism behind
NPR, 1T-phase MoS2 with NPR and three other materials were selected for comparison,
and their respective Young’s modulus, PR, and projected density of states (PDOS) were
calculated. Their geometries and electronic structures were compared to analyze their
effects on the NPR generation of the materials, and the mechanism of NPR formation was
demonstrated in terms of both geometric deformation and electronic structure. Finally, the
formation mechanism of NPR materials was further investigated from the perspective of
layer spacing and intralayer forces.

2. Computational Methods

All calculations were performed using the CASTEP (version 8.0.) [33,34] module of
the Materials Studio package. During the computational process, self-consistent periodic
density functional theory (DFT) [35,36] was adopted by the Generalized Gradient Approx-
imation (GGA) method using the Perdew–Burke–Ernzerhof (PBE) exchange–correlation
functional [37]. The energy cutoff was 340 eV and the Self-Consistent Field (SCF) tolerance
was 5.0 × 10−7 eV atom−1. The convergence criteria for max force, max displacement,
max stress, and energy were set to lower than 0.01 eV Å−1, 5.0 × 10−4 Å, 0.02 GPa, and
5.0 × 10−6 eV atom−1, separately [38]. The k-point meshes were set as 5 × 5 × 5 for the
bulk. The Young’s modulus Y(θ) and PR υ(θ) could be indicated as follows [39]:

Y(θ) = C11C22−C2
12

C11sin4θ+Asin2θcos2θ+C22cos4θ

υ(θ) = C12sin4θ−Bsin2θcos2θ+C12cos4θ
C11sin4θ+Asin2θcos2θ+C22cos4θ

where Cij are the elastic constants, A =
(
C11C22 − C2

12
)
/C66 − 2C12 and B = C11 + C22 −(

C11C22 − C2
12
)
/C66. In order to verify the calculation, we calculated the elastic constant of

MoTe2, which was in agreement with the available theoretical values [40]. The calculated
elastic constants of MoS2 and MoTe2 are included in Table S1. The molecular dynamics
(MD) simulation in the NVT (Number of particles, Volume, and Temperature) ensemble
was performed at 300 K with a 3 × 3 × 1 supercell for 6ps with a time step of 1fs. MD
was performed with periodic boundary conditions. In order to ensure the accuracy of the
simulation, a vacuum layer of 15 Å was added to the four models to eliminate a certain
degree periodic interaction and the bottom layer of MoS2 was fixed in the calculation
process. The force field used in the MD simulation was a universal force field (UFF).
UFF was applied to optimize the model and assign charges to ensure the accuracy of the
calculation results. The designation of the algorithm used in the geometry optimization
calculations was a quasi-Newton method. The initial model was minimized by the quasi-
Newton method until the gradient was less than 0.1 kcal/mol. All materials involved were
from the crystallographic database: materials project.
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3. Results and Discussion

1T-phase MoS2 is a member of transition metal dichalcogenides (TMD) [41]. The
unique zigzag structure of MoS2 brings many unique mechanical properties. In the current
work, we explore the mechanical properties by computing the planar Young’s modulus
Y(θ) and PR υ(θ). Results are drawn in Figure 1a. Young’s modulus Y(θ) is a physical
quantity that describes a material’s ability to resist elastic deformation. More rigid materials
have a higher Young’s modulus. As Figure 1a shows, Young’s modulus of MoS2 does not
show anisotropy, which means that the mechanical response to the same strain varies little
along different in-plane directions. Young’s modulus attains a maximum value of 183.1 GPa
at θ = 62◦, 118◦, 224◦, and 298◦ , and a minimum value of 178.9 GPa at θ = 0◦ and 180◦.
This indicates that MoS2 exhibits moderate deformation-resistant stiffness in all directions.
For comparison, Young’s modulus of graphene [42] and TiS2 [43] is added in the bar chart
of Figure 1a. Compared to these two well-known materials, Young’s modulus of MoS2 is
comparatively low. This means that MoS2 exhibits considerable elastic compliance, which
can be traced to its special atomic structure (to be discussed later). The PR υ(θ) of MoS2 is
shown in Figure 1b. It exhibits an NPR in the whole region and reaches the highest value of
−0.0846 at 46◦, 134◦, 226◦, and 314◦, indicating that MoS2 is an auxetic material. The planar
NPR value is bigger than that of penta-graphene (υ = −0.068) [44], PN (υ = −0.078) [45],
and borophene (υ = −0.053) [46].
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Figure 1. (a) Young’s modulus and (b) PR of MoS2 as a function of the angle θ. θ = 0° corresponds 
to the X-axis. The comparative Young’s modulus of the three materials is plotted in the Young’s 
modulus diagram of MoS2. (c) Top view of bulk MoS2 (space group R3m). The partially enlarged 
atoms in the figure are the obscured parts of the layered MoS2, and the red dashed lines indicate the 
spacing between the layers. (d) Side view of MoS2. (e) Local enlargement of the side view of the 
monolayer MoS2. 

Figure 1. (a) Young’s modulus and (b) PR of MoS2 as a function of the angle θ. θ = 0◦ corresponds
to the X-axis. The comparative Young’s modulus of the three materials is plotted in the Young’s
modulus diagram of MoS2. (c) Top view of bulk MoS2 (space group R3m). The partially enlarged
atoms in the figure are the obscured parts of the layered MoS2, and the red dashed lines indicate the
spacing between the layers. (d) Side view of MoS2. (e) Local enlargement of the side view of the
monolayer MoS2.

The crystal structure of bulk MoS2 is displayed in Figure 1c. The band structure as
well as the density of states (DOS) of MoS2 is plotted in Figure S1. It could be regarded as a
laminar structure in which the zigzag layers are linked by the Mo-S bonds. Its primitive
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cell consists of six sulfur atoms and three molybdenum atoms in a trigonal crystal system.
The lattice constants are a = b = 3.190 Å, and the space group is R3m [47]. From the
crystal structure diagram, the structure of this material can be considered as a network of
herringbone Mo-S atomic chains in two directions, one along the monoclinic lattice and the
other perpendicular to the lattice direction. The angles of S-Mo-S along these two directions
are 81.567◦ and 98.433◦, respectively (See Figure 1e).

To investigate how the atomic geometry affects PR, three additional materials were
selected for comparison: the MoS2 with zigzag structure (space group P63/mmc), the MoS2
without the special undulations (space group F43m), and the WS2 with the same R3m space
group but different elements. The calculated results are plotted in Figures 2 and S2. The lattice
constants and the atomic coordinates in every cell after optimization are included in Table S2.
Clearly, among the three compared materials, MoS2 with space group F43m has no obvious
zigzag geometry, and it shows a positive Poisson’s ratio (PPR). This is in agreement with
the previous conclusion that the unique sawtooth-like geometry is necessary for an NPR to
occur [48]. However, the PR of the other two materials with similar sawtooth geometries
(MoS2, space group P63/mmc; WS2, space group R3m) is also positive. This suggests the NPR
is not only related to the material geometry. Other factors may play a role too.
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Figure 2. (a) Structural snapshots (top view) of MoS2 (space group P63/mmc). (b) Side view of MoS2

(space group P63/mmc). (c) Local enlargement of a side view of the monolayer MoS2 (space group
P63/mmc). (d) Structural snapshots (top view) of WS2 (space group R3m). (e) Side view of WS2

(space group R3m). (f) Local enlargement of the side view of the monolayer WS2 (space group R3m).
(g) Summary graph of Young’s modulus and (h) PR of four materials. To show their structure more
clearly, the above materials are enlarged for the part of the atoms that are obscured between the
layers; this does not mean that they are different in size.
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To gain a more in-depth insight into the deformation mechanism behind the NPR, we
further analyzed the electronic interactions. We calculated the PDOS of the four materials
to observe their electronic structures, as shown in Figure 3. The PDOS peak shape and
position of the 4d orbital of the Mo atom and the 3p orbit of the S atom are similar in energy,
indicating the strong orbital interaction of the Mo atom and S atom (the yellow highlighted
portion of Figure 3a). It can be seen that both sets of orbitals overlap above the Fermi
energy level, indicating that the atoms are antibonding. It is well-known that the bonding
state leads to attractive interactions, while the possession of the antibonding state causes
repulsive interactions. This is most likely a key factor in the generation of NPR for MoS2.
Moreover, the MoS2 that shows an NPR has an overlap area of 5.854 above the Fermi level,
while the other three materials showing PPR have overlaps of 1.807, 0, and 2.508 above the
Fermi level, respectively, which all indicate that their coupling is not as strong as that of the
NPR materials at the p-d orbitals.
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Figure 3d indicates that the interaction of the p orbital and d orbital of WS2 is signif-
icantly weaker than MoS2 in the energy range of 0 to 6 eV. Although both MoS2 (space 
group R3m) and WS2 (space group R3m, and the value of PR is 0.25 in Figure 2h) share 
the same space group, there are differences in their electronic structures that lead to very 
different results. Therefore, the electronic structure is one of the characteristics of the NPR 
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Figure 3. (a) PDOS of MoS2(space group R3m). The p-d orbital coupling is reflected in the overlap
of its PDOS. The area of overlap above the Fermi level is 5.854. (b) PDOS of MoS2 (space group
P63/mmc). The area of overlap above the Fermi level is 1.807. (c) PDOS of MoS2(space group F43m).
The area of overlap above the Fermi level is 0. (d) PDOS of WS2(space group R3m). The area of
overlap above the Fermi level is 2.508. The Fermi level is set to 0. The yellow highlighted part
indicates the overlapping part of the PDOS of the materials.

Figure 3d indicates that the interaction of the p orbital and d orbital of WS2 is signifi-
cantly weaker than MoS2 in the energy range of 0 to 6 eV. Although both MoS2 (space group
R3m) and WS2 (space group R3m, and the value of PR is 0.25 in Figure 2h) share the same
space group, there are differences in their electronic structures that lead to very different
results. Therefore, the electronic structure is one of the characteristics of the NPR of MoS2.
In summary, an NPR material should have a special geometry in terms of structure (i.e.,
undulating structure), while in microscopic terms, it should have a strong enough coupling
between different orbitals (i.e., electron interaction), and the atoms are anti-bonding (the
atoms will tend to interact with each other in a repulsive manner). Materials that have all
these characteristics will have a much higher probability of NPR.
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Electronic interactions can be divided into interlayer and intralayer based on the
geometric configuration of MoS2. Furthermore, we investigated how the electronic structure
affects the interatomic forces that lead to the NPR in the material. Figure 4a displays the
structure of the initial MoS2, and Figure 4b displays the structure with the new alignment
rebuilt by cleaving the (0 0 1) surface of MoS2. The difference between them is that the
initial structure is staggered and aligned, while the modeled structure is overlapping and
aligned. By varying their layer spacing, it is possible to investigate how much the interlayer
forces of these two very different alignments contribute to the generation of NPR. As
illustrated in Figure 4c, the PR of the material varies in value but remains negative overall.
The PR varies from −0.67 to −0.82 and from −0.10 to −0.13, with a moderate variation.
It indicates that the value of the PR does not change greatly with an increase in the layer
spacing, indicating that the layer spacing has almost no impact on the NPR of the material.
Therefore, the interatomic forces caused by the intralayer electronic structure of monolayer
MoS2 may be the dominant factor.
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Figure 4. (a) The original structure of MoS2. (b) The structure with overlapping alignment between
layers of MoS2. (c) The relationship between PR and layer spacing for two different arrangements
of structures.

Based on the above analyses, the force generated by the electronic structure between
the layers has little effect on the deformation of the whole structure. In the next step,
we applied a strain to the single-layer MoS2 (space group R3m) and observed how the
interaction between the electrons in the structure within the layer affected the material’s
PR. Figure 5a shows a sketch of the original structure with a monolayer of MoS2. This is a
material with a folded structure with upper and lower pyramidal shapes. Figure 5b shows
a schematic of the structure after it has been stretched. When two Mo atoms, MoA and MoB,
are pulled in the Y-axis, the structure produces a force of compression in the Z-axis because
of the intense interaction of the p-d orbitals, resulting in the structure being compressed in
that direction and pulled in the X-axis. The bond angles of ∠CAB and ∠CBA are reduced
behind the deformation. In principle, the change of ∠CAB is not impacted by the stretching
of the MoA and MoB atoms, which is only related to the reciprocal action of the p-d orbitals.
That is, the displacements occurring in the MoA and MoB during the deformation are only
relevant to the strength inside the cell. Therefore, the angular variation of ∠CAB could
be used to describe the mechanical behavior generated within the cell. When a 5% stretch
strain is applied in the Y-axis, the bond angle of ∠CAB decreases from 49.216◦ to 45.376◦

(a decrease of 3.84◦), and the interplanar spacings dAC and dCE decrease by 0.052 Å and
0.039 Å, respectively. The strong coupling of the p-d orbitals causes a large amount of
strain energy generated during deformation to be stored in the reduced ∠CAB and ∠CBA,
and this strain energy is released by increasing the distance between Mo atoms D and
Mo atoms A, leading to an NPR. This confirms the above inference that the p-d orbital
interactions lead to a planar NPR in monolayered MoS2. Further observing the PDOS of
MoS2 in Figure 3a, the p-orbital overlaps with the d-orbital at positions above the Fermi
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level, which indicates that the metal atoms exhibit a strong antibonding property, which
leads to mutual repulsion between the atoms. As a result, the NPR phenomenon appears.
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to repel each other, meaning they ended up exhibiting PPR. To better verify our specula-
tion, we also calculated PDOS for four other NPR materials, and the outcomes are listed 
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overlap in the positions of the peaks and energies of the PDOS, indicating that they all 
have strong interactions in their p-d orbitals. Such a comparison shows that the change in 
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Figure 5. (a) Structure of single-layer MoS2 (space group R3m) without strain. (b) Structure of
single-layer MoS2 (space group R3m) after strain is applied. The force is applied along the Y-axis. The
red arrow indicates p-d orbital interaction and the green arrow shows the result of the final movement
of MoS2. (c) Structure of single-layer MoS2 (space group P63/mmc) without strain. (d) Structure of
single-layer MoS2 (space group P63/mmc) after strain is applied. (e) Structure of single-layer WS2

(space group R3m) without strain. (f) Structure of single-layer WS2 (space group R3m) after strain
is applied.

For comparison, we applied tensile strain on both WS2 (space group R3m) and MoS2
(space group P63/mmc), which exhibited PPR. Figure 5 shows that after applying a tensile
strain, the whole structure shrunk to a certain extent. Combined with the previous analysis,
these two materials used as comparisons have a weaker coupling in their p-d orbitals,
resulting in a reduction in the strain energy that can be stored in the bond angles during
tensile strain. As a result, the changing bond angles release less energy and have a reduced
effect on the surrounding atoms when the structure shrinks. The PDOS of the two compared
materials did not exhibit strong antibonding properties and the atoms did not tend to repel
each other, meaning they ended up exhibiting PPR. To better verify our speculation, we
also calculated PDOS for four other NPR materials, and the outcomes are listed in Figure
S4. It is clear from the figure that the four NPR materials have similar degrees of overlap in
the positions of the peaks and energies of the PDOS, indicating that they all have strong
interactions in their p-d orbitals. Such a comparison shows that the change in interatomic
forces due to the interaction between p-d orbitals is a major factor in the NPR behavior
of the 2D materials, which can be used as a feature for screening NPR materials. More
specifically, the NPR of single-layer MoS2 is related to the strong coupling between the 4d
orbital of the Mo atom and the 3p orbital of the S atom, and the antibonding orbits of the
atoms present. This eventually causes the interaction forces between the Mo and S atoms
to tend to repel each other, leading to their extension and triggering NPR.
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Finally, we performed molecular dynamics (MD) simulations at 500 K for 6 ps with
NVT (Number of particles, Volume, and Temperature) ensemble to evaluate the structural
stability of MoS2 [49]. In the process of structural evolution, temperature fluctuations and
the mean potential energy of atoms are displayed in Figure 6. Throughout the simulation
process, the changes in potential energy remained near the average. Figure 6 and Figure
S5 give three different configurations of MoS2 and WS2 structural snapshots at the end of
6 ps. The diagram shows that the geometry is well-saved and no significant structured
fractures are observed, which indicates that the structure of MoS2 is stable. The calculated
elastic constants of the 2D molybdenum disulfide meet the Born−Huang criteria [50], in
which C11, C22, C66 > 0 and C11 + C22 − 2C12 > 0. Judging from the data in Table S1, it is
confirmed that the MoS2 structure is stable.
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mean potential energy and temperature per atom in MD (molecular dynamics) simulations at 500 K
and 6 ps.

4. Conclusions

To sum up, we used first-principles calculations for the elastic constants of 2D molyb-
denum disulfides and have succeeded in finding a molybdenum disulfide with NPR (space
group R3m). This serrated structure with unique layer overlap exhibits a separate NPR of
υx = −0.0736 and υy = −0.0750 in the X- and Y-axis. In addition, we explored the effect of
layer spacing on its NPR behavior. Finally, we found that the unusual NPR behavior of
single-layer MoS2 is linked to its unique geometry and the strong interaction between the
4d orbitals of Mo and the 3p orbitals of S. Moreover, we also found that the strong coupling
of p-d orbitals and the zigzag structure of the antibonding state are notable features for
screening 2D NPR materials. These discoveries provide insight into the influence of the
geometry and electronic structure of 2D molybdenum disulfide on the mechanical perfor-
mance of the material. These results could propel progress in the screening and design of
other 2D materials in the future.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/coatings13020283/s1. Figure S1: The band structure and the DOS
of MoS2. The energy band structure describes the energy that electrons are forbidden or allowed to
carry, which is caused by the diffraction of quantum dynamics electron waves in a periodic lattice.
The energy band structure of a material determines various properties, especially its electronic and
optical properties; Figure S2: MoS2 (space group F43m); Figure S3: Comparison graphs of Young’s
modulus and Poisson’s ratio for the four materials; Figure S4: Four negative Poisson’s ratio materials
and their PDOS plots. (a) MoS2 (space group P3m1). (b) MoS2 (space group I42d). (c) MoSe (space
group P6m2). (d) WS2 (space group I42d); Figure S5: Structural snapshots (side view) of the (a) MoS2
(space group R3m) (b) MoS2 (space group P63/mmc) (c) MoS2 (space group F43m) and (d) WS2
(space group R3m) with the evolution of the average potential energy and temperature per atom in
AIMD simulations at 500 K and 6 ps; Table S1: The calculated elastic constants (units of GPa) of 2D
MoS2 and MoTe2; and Table S2: Structural information of three configurations of MoS2.
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