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Abstract In this paper a class of singlemachine scheduling
problems is discussed. It is assumed that job parameters, such
as processing times, due dates, or weights are uncertain and
their values are specified in the formof a discrete scenario set.
The ordered weighted averaging (OWA) aggregation opera-
tor is used to choose an optimal schedule. The OWA operator
generalizes traditional criteria used in decisionmaking under
uncertainty, such as the maximum, average, median, or Hur-
wicz criterion. It also allows us to extend the robust approach
to scheduling by taking into account various attitudes of deci-
sionmakers towards a risk. In this paper, a general framework
for solving single machine scheduling problems with the
OWA criterion is proposed and some positive and negative
computational results for two basic single machine schedul-
ing problems are provided.

Keywords Scheduling · Single machine · Robust
optimization · OWA criterion

1 Introduction

Scheduling under uncertainty is an important and extensively
studied area of operations research and discrete optimization.
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Poland

2 Department of Computer Science (W11/K2), Wrocław
University of Technology, Wybrzeże Wyspiańskiego 27,
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The importance of this research direction results from the fact
that in many real-world problems the precise values of para-
meters in schedulingmodels are not known in advance. Thus,
instead of possessing the exact values of the parameters, deci-
sionmakers have rather a set of all their possible realizations,
called a scenario set. In somecases, an additional information
with this scenario set is available. If a probability distribution
in the scenario set is known, then stochastic approach can
be used, which typically consists in minimizing the expected
solution cost (see, e.g., Pinedo 2002). The unknown prob-
ability distribution can be upper bounded by a possibility
distribution, which leads to possibilistic (fuzzy) scheduling
problems (see, e.g., Kasperski and Zieliński 2011). Finally, if
no additional information with scenario set is provided, then
robust approach is usually used (see, e.g., Kouvelis and Yu
1997). In the robust optimization, we seek a solution mini-
mizing a cost in a worst case, which usually leads to applying
themin-max ormin-max regret criterion for choosing a solu-
tion.

The robust approach to decision making is often regarded
as too conservative or pessimistic. It follows from the fact,
that the min-max criterion takes only the worst-case scenar-
ios into account, ignoring the information connected with the
remaining scenarios. This criterion also assumes that deci-
sion makers are very risk averse, which is not always true.
These drawbacks of the min-max criterion are well known
in decision theory, and a detailed discussion on this topic
can be found, for example, in Luce and Raiffa (1957). In
this paper, we will assume that a scenario set associated with
scheduling problem is specified by enumerating all possible
scenarios. Such a representation of scenario sets is called a
discrete uncertainty representation and has been described,
for instance, in Kouvelis and Yu (1997). Our goal is to
generalize the min-max approach to scheduling problems
under uncertainty by using the Ordered Weighted Averaging
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aggregation operator (OWA for short) introduced by Yager
(1988). TheOWAoperator is widely applied to aggregate cri-
teria in multiobjective decision problems (see, e.g., Galand
and Spanjaard 2012; Kacprzyk et al. 2011; Ogryczak and
Śliwiński 2003) but it can also be applied to choose a solution
under the discrete uncertainty representation by identifying
scenarios with objectives in a natural way. The OWA opera-
tor generalizes the classical criteria used in decision making
under uncertainty such as the maximum, minimum, average,
median, or Hurwicz criterion (a description of these crite-
ria can be found, for example, in Luce and Raiffa 1957).
So, by using OWA we can extend the min-max approach,
typically used in the robust optimization. Furthermore, the
weights used in the OWA operator allow us to model various
attitudes of decision makers towards a risk.

Since we generalize the min-max approach to single
machine scheduling problems under the discrete uncertainty
representation, let us briefly recall the known results in this
area (see alsoKasperski and Zieliński 2014 for a survey). The
min-max version of the single machine scheduling problem
with the total flow time criterion has been studied in Yang
and Yu (2002), where it has been shown that the problem is
NP-hard even for two processing time scenarios and strongly
NP-hard when the number of processing time scenarios is a
part of the input (the unbounded case). A generalization of
this problem, with the weighted sum of completion times cri-
terion, has been recently discussed inMastrolilli et al. (2013)
and Regis de Farias et al. (2010) where, in particular, several
inapproximability results for that problem have been estab-
lished. We will describe these results in more detail later in
this paper. In Aloulou and Croce (2008) the min-max version
of the singlemachine scheduling problemwith themaximum
weighted tardiness criterion has been discussed, where it has
been shown that some special cases of the problem are poly-
nomially solvable. In this paper, we generalize and extend
the algorithms proposed in Aloulou and Croce (2008). In
Aissi et al. (2011) and Aloulou and Croce (2008) the min-
max version of the single machine scheduling problem with
the number of late jobs criterion has been investigated. It has
been shown in Aloulou and Croce (2008) that the problem
is NP-hard for deterministic due dates and two processing
time scenarios. On the other hand, it has been shown in Aissi
et al. (2011) that the problem with unit processing times and
the number of due date scenarios being a part of the input
is strongly NP-hard and hard to approximate within a fac-
tor less than 2. In a more general version of this problem
the weighted sum of late jobs is minimized. This problem
is known to be NP-hard for two weight scenarios (Averbakh
2001), strongly NP-hard and hard to approximate within any
constant factor if the number of weight scenarios is a part of
the input (Kasperski et al. 2013).

This paper is organized as follows. Section 2 presents
a formulation of the general problem under consideration

as well as some of its special cases. Section 3 provides
an interpretation of the OWA operator and the resulting
scheduling problems with uncertain parameters. The next
two sections discuss two basic single machine scheduling
problems. Namely, Sect. 4 explores the problem with the
maximumweighted tardiness cost function and Sect. 5 inves-
tigates the problem in which the cost function is the weighted
sum of completion times. We show that both problems have
various computational propertieswhichdependon theweight
distribution in the OWA operator. For some weight distri-
butions the problems are polynomially solvable, while for
other ones they become strongly NP-hard and are also hard
to approximate.

2 Problem formulation

Let J = {J1, . . . , Jn} be a set of jobs which must be
processed on a single machine. For simplicity of notations,
wewill identify job J j with its index j . The set of jobsmay be
partially ordered by some precedence constraints. The nota-
tion i → j means that processing of job j cannot start before
processing of job i is completed (job j is called a successor
of job i). For each job j the following parameters may be
specified: a nonnegative processing time p j , a nonnegative
due date d j , and a nonnegative weight w j . The due date d j

expresses a desired completion time of j and the weight w j

expresses the importance of job j relative to the other jobs in
the system. In all scheduling models discussed in this paper,
we assume that all the jobs are ready for processing at time 0,
in other words, each job has a release date equal to 0.We also
assume that each job must be processed without any inter-
ruptions, so we consider only nonpreemptive models. Under
these assumptions we can define a schedule π as a feasible
permutation of the jobs, in which the precedence constraints
among the jobs are preserved. The set of all feasible sched-
ules will be denoted by �.

Let us denote by C j (π) the completion time of job j in
schedule π . We will use f (π) to denote a cost of sched-
ule π . The value of f (π) depends on job completion times
and may also depend on job due dates or weights. In this
paper, we will investigate two basic scheduling problems, in
which the cost function is the maximum weighted tardiness,
i.e., f (π) = max j∈J w j [C j (π) − d j ]+ (we use the nota-
tion [x]+ = max{0, x}) and the weighted sum of completion
times, i.e., f (π) = ∑

j∈J w jC j (π). In the deterministic
case, we wish to find a feasible schedule which minimizes
the cost f (π), that is:

P : min
π∈�

f (π).

We now study a situation in which some or all problem
parameters are ill-known. Let S be a vector of the prob-
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lem parameters which may occur. The vector S is called a
scenario. We will use p j (S), d j (S), and w j (S) to denote
the processing time, due date, and weight of job j under
scenario S. A parameter is deterministic (precisely known)
if its value is the same under each scenario. Let a sce-
nario set � = {S1, . . . , SK } contain all possible scenarios,
where K > 1. In this paper, we distinguish the bounded
case, where K is bounded by a constant and the unbounded
case, where K is a part of the input. Now, the completion
time of job j in π and the cost of π depend on scenario
Si ∈ � and will be denoted by C j (π, Si ) and f (π, Si ),
respectively.

Since scenario set � contains more than one scenario,
an additional criterion is required to choose a reasonable
solution. In this paper, we suggest to use the Ordered
Weighted Averaging aggregation operator (OWA for short)
proposed by Yager (1988). We now describe this crite-
rion. Let ( f1, . . . , fK ) be a vector of real numbers. Let us
introduce a vector of weights vvv = (v1, . . . , vK ) such that
v j ∈ [0, 1] for all j ∈ [K ] ([K ] stands for the set {1, . . . , K })
and v1 + · · · + vK = 1. Let σ be a permutation of [K ] such
that fσ(1) ≥ fσ(2) ≥ · · · ≥ fσ(K ). The OWA operator is
defined as follows:

owavvv( f1, . . . , fK ) =
∑

i∈[K ]
vi fσ(i).

The OWA operator has several natural properties which
follow directly from its definition (see, e.g., Kacprzyk
et al. 2011). Since it is a convex combination of the
cost functions, min( f1, . . . , fK ) ≤ owavvv( f1, . . . , fK ) ≤
max( f1, . . . , fK ). It is also monotonic, i.e., if f j ≥ g j for
all j ∈ [K ], then owavvv( f1, . . . , fK ) ≥ owavvv(g1, . . . , gK ),
idempotent, i.e., if f1=· · ·= fk = a, then owavvv( f1, . . . , fK )

= a and symmetric, i.e. its value does not depend on the
order of the values f j , j ∈ [K ]. The OWA operator gen-
eralizes some important criteria used in decision making
under uncertainty and we will discuss this fact in detail in
Sect. 3. We now use the OWA operator to aggregate the
costs of a given schedule π under scenarios in �. Let us
define

OWA(π) = owavvv( f (π, S1), . . . , f (π, SK ))

=
∑

i∈[K ]
vi f (π, Sσ(i)),

where σ is a permutation of [K ] such that f (π, Sσ(1)) ≥
· · · ≥ f (π, Sσ(K )). In this paper, we examine the following
optimization problem:

Min- Owa P : min
π∈�

OWA(π).

Table 1 Special cases of Min- Owa P
Name of the problem Weight distribution

Min- Max P v1 = 1 and v j = 0 for
j = 2, . . . , K

Min- Min P vK = 1 and v j = 0 for
j = 1, . . . , K − 1

Min- Average P v j = 1/K for j ∈ [K ]
Min- Quant(k) P vk = 1 and v j = 0 for

j ∈ [K ]\{k}
Min- Median P v�K/2�+1 = 1 and v j = 0

for j ∈ [K ]\{�K/2� + 1}
Min- Hurwicz P v1 = α, vK = 1 − α,

α ∈ [0, 1] and v j = 0 for
j ∈ [K ]\{1, K }

3 Interpretation of the problem

In this section, we discuss in detail an interpretation of
the Min- Owa P problem. We also compare the proposed
approach with the traditional min-max (regret) approach
used in robust discrete optimization (Kouvelis and Yu 1997).
Notice first, that the OWA operator generalizes some clas-
sical criteria used in decision making under uncertainty. If
v1 = 1 and v j = 0 for j = 2, . . . , K , then OWA becomes
the maximum. If vK = 1 and v j = 0 for j = 1, . . . , K − 1,
then OWA becomes the minimum. In general, if vk = 1 and
v j = 0 for j ∈ [K ]\{k}, then OWA is the kth largest element
among f1, . . . , fK . In particular, when k = �K/2� + 1, the
kth element is the median. If v j = 1/K for all j ∈ [K ], i.e.,
when the weights are uniform, then OWA is the average (or
the Laplace criterion). Finally, if v1 = α and vK = 1 − α

for some fixed α ∈ [0, 1] and v j = 0 for the remaining
weights, then we get the Hurwicz pessimism-optimism cri-
terion. Hence Min- Owa P contains the problems listed in
Table 1 as special cases.

The Min- Owa P problem can be consistent with the
concept of robustness. Namely, risk averse decision mak-
ers should choose nonincreasing weights, i.e., such that
v1 ≥ v2 ≥ · · · ≥ vK . We can now consider two extreme
cases of nonincreasing weights. When v1 = 1, then we get
the maximum criterion traditionally used in robust optimiza-
tion. On the other hand, when v1 = 1/K , then we get the
average (the Laplace criterion), which can be seen as the
expected solution cost with respect to the uniform proba-
bility distribution over scenarios. Hence the nonincreasing
weights allow us to establish a trade-off between the very
conservative maximum criterion and the average criterion.

Table 1 contains the basic criteria used in decision mak-
ing under uncertainty, except for the min-max regret (also
called the Savage criterion). The regret of a given sched-
ule π under scenario S is the difference between the cost
of π under S and the cost of an optimal schedule under S.
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Table 2 Two processing times
scenario sets for three jobs

S1 S2

(a)

p1(S) 5 1

p2(S) 5 2

p3(S) 5 3

(b)

p1(S) 1 12

p2(S) 6 8

p3(S) 12 6

It thus expresses an opportunity loss for π under S. In the
Min- Max RegretP problemwe seek a scheduleminimiz-
ing the maximum regret over all scenarios. It has interesting
computational properties for the interval uncertainty repre-
sentation, i.e., when for each job parameter an interval of its
possible values is specified (see, e.g., Lebedev and Averbakh
2006; Kasperski 2005; Kouvelis and Yu 1997). In the tradi-
tional robust approach we apply the min-max and min-max
regret criteria to choose a solution (Kouvelis and Yu 1997).
In order to illustrate some drawbacks of the min-max (regret)
approach, consider the problem 1||∑C j for three jobs and
two processing time scenarios, shown in Table 2.

If the min-max criterion is applied to the scenario set
from Table 2a, then we may get any schedule. This hap-
pens, because the job processing times under S1 are equal
and large enough in comparison with S2. In particular, we
may get schedule π = (3, 2, 1) which is even not Pareto
optimal and, clearly, is not a good choice. We get a better
solution after using the OWA criterion with positive weights
v1 and v2. Notice that when all weights in the OWA crite-
rion are positive, then OWA is a strict convex combination
of the schedule costs, and the resulting optimum schedule
must be Pareto optimal. Since the regret of any schedule
under S1 is 0, we also get a better solution after applying
the min-max regret criterion. However, using the min-max
regret criterion may be also questionable. Indeed, consider
the scenario set shown in Table 2b. Schedule π1 = (2, 1, 3)
has the smallest maximum regret equal to 8. However, its
maximum cost is equal to 54, while the maximum cost of
schedule π2 = (2, 3, 1) is only 48 (the maximum regret of
π2 is equal to 16). This simple example demonstrates that in
the min-max and min-max regret approaches we minimize
quite different quantities. Using the min-max criterion our
aim is to find a cheapest schedule, while using the min-max
regret one we wish to minimize the opportunity loss, rather
than the cost. In this paper, by using the OWA operator, we
generalize the first goal, i.e. we assume that decision makers
are interested in minimizing the schedule cost rather than the
regret. Then, the weights in the OWA operator allow us to
take the attitude of decision maker towards the risk, where

by risk we mean a possibility that a schedule computed will
have a large cost (not regret) under some scenario. This leads
to the classical criteria used in decision making under uncer-
tainty, except for the maximum regret one. An excellent and
deep discussion on the properties of various criteria used in
decision making under uncertainty, including the maximum
regret criterion, can be found in Luce and Raiffa (1957).

Yet another drawback of applying the min-max (regret)
approach in some situations is that only one scenario, i.e., a
worst-case scenario, is taken into account while evaluating a
schedule. For instance, if we add new scenarios to the sample
scenario sets from Table 2, under which the schedules have
small costs (regrets), then these scenarios will be ignored
while computing a solution. This phenomenon is called the
drowning effect (Dubois and Fortemps 1999). Hence, a crite-
rion that takes into account all, or at least a subset of scenarios
in a process of choosing a solution may be appropriate. It is
easy to see that this requirement is satisfied by the OWA
criterion.

As we will see in the next sections, the complexity of
Min- Owa P depends on the properties of the underlying
deterministic problem P and the weights v1, . . . , vK . One
general and easy observation can be made. Namely, if P
is solvable in T (n) time, then Min- Min P is solvable in
O(K · T (n)) time. Indeed, in order to solve theMin- Min P
problem it is enough to compute an optimal schedule πk

under each scenario Sk , k ∈ [K ], and choose the one which
has the minimum value of f (πk, Sk), k ∈ [K ]. For the
remaining problems listed in Table 1 no such general result
can be established and their complexity depends on a struc-
ture of the deterministic problem P .

4 The maximum weighted tardiness cost function

Let Tj (π, Si ) = [C j (π, Si ) − d j (Si )]+ be the tardiness of
job j in π under scenario Si , i ∈ [K ]. The cost of sched-
ule π under Si is the maximum weighted tardiness under Si ,
i.e., f (π, Si ) = max j∈J w j (Si )Tj (π, Si ). The underlying
deterministic problem P is denoted by 1|prec|maxw j Tj in
Graham’s notation (Graham et al. 1979). In this section, we
will also discuss a special case of this problem, denoted by
1||Tmax, with unit job weights under all scenarios and no
precedence constraints between the jobs. The deterministic
1|prec|maxw j Tj problem can be solved in O(n2) time by
the well-known algorithm designed by Lawler (1973). It fol-
lows directly from the Lawler’s algorithm that 1||Tmax can
be solved in O(n log n) time by applying the EDD rule, i.e.,
by ordering the jobs with respect to nondecreasing due dates.

This section contains the following results. We will con-
sider first the case when K is unbounded (K is a part of
the input). We will show that the problems of minimizing the
average cost or median of the costs are then strongly NP-hard
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and also hard to approximate. On the other hand, we will
prove that the problems of minimizing the maximum cost
or the Hurwicz criterion are solvable in polynomial time. We
will consider next the problemwith a constant K . It turns out
that in this case the general problem of minimizing the OWA
criterion can be solved in pseudopolynomial time. Finally,
we will propose an approximation algorithm, which can be
efficiently applied to some particular weight distributions in
the OWA criterion.

4.1 Hardness of the problem

The following theorem characterizes the complexity of the
problem:

Theorem 1 If the number of scenarios is unbounded, then

(i) Min- Average 1||Tmax is strongly NP-hard and not
approximable within 7/6−ε for any ε > 0 unless P=NP,

(ii) Min- Median 1||Tmax is strongly NP-hard and not at all
approximable unless P=NP.

Furthermore, both assertions remain true even for jobs with
unit processing times under all scenarios.

Proof Weshowapolynomial timeapproximation-preserving
reduction from the Min k-Sat problem, which is defined as
follows. We are given boolean variables x1, . . . , xn and a
collection of clausesC1, . . . ,Cm , where each clause is a dis-
junction of atmost k literals (variables or their negations).We
ask if there is an assignment to the variables which satisfies at
most L < m clauses. This problem is strongly NP-hard even
for k = 2 (see Avidor and Zwick 2002; Kohli et al. 1994;
Marathe and Ravi 1996) and its optimization (minimization)
version is hard to approximate within 7/6− ε for any ε > 0
when k = 3 (see Avidor and Zwick 2002).

We first consider assertion (i). Given an instance of Min
3- Sat, we construct the corresponding instance of Min-
Average 1||Tmax in the following way. We create two jobs
Jxi and Jxi for each variable xi , i ∈ [n]. The processing
times and weights of all the jobs under all scenarios are
equal to 1. The due dates of Jxi and Jxi depend on sce-
nario and will take the value of either 2i − 1 or 2i . Set
K = m and form K scenario set � in the following way.
Scenario Sk corresponds to clause Ck = (l1 ∨ l2 ∨ l3). For
each q = 1, 2, 3, if lq = xi , then the due date of Jxi is
2i − 1 and the due date of Jxi is 2i ; if lq = xi , then the
due date of Jxi is 2i and the due date of Jxi is 2i − 1; if
neither xi nor xi appears in Ck , then the due dates of Jxi and
Jxi are set to 2i . A sample reduction is shown in Table 3.
Finally, we fix vk = 1/m for all k ∈ [K ]. Let us define
a subset of the schedules �′ ⊆ � such that each sched-
ule π ∈ �′ is of the form π = (J1, J ′

1, J2, J
′
2, . . . , Jn, J

′
n),

Table 3 The due date scenarios
for the formula
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨
x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨
x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

S1 S2 S3 S4 S5

Jx1 1 2 2 1 1

Jx1 2 2 1 2 2

Jx2 4 4 3 3 4

Jx2 3 3 4 4 4

Jx3 6 6 6 5 5

Jx3 5 5 6 6 6

Jx4 8 7 8 8 8

Jx4 8 8 7 8 7

where Ji , J ′
i ∈ {Jxi , Jxi } for i ∈ [n]. Observe that �′ con-

tains exactly 2n schedules and each such a schedule defines
an assignment to the variables such that xi = 0 if Jxi is
processed before Jxi and xi = 1 otherwise. Assume that
the answer toMin 3- Sat is yes. So, there is an assignment
to the variables which satisfies at most L clauses. Choose
schedule π ∈ �′ which corresponds to this assignment. It
is easily seen that if clause Ck is not satisfied, then all jobs
in π under Sk are on-time and the maximum tardiness in π

under Sk is 0. On the other hand, if clause Ck is satisfied,
then the maximum tardiness of π under Sk is 1. In conse-
quence 1

K

∑
k∈[K ] f (π, Sk) ≤ L/m. Assume now that there

is a scheduleπ such that 1
K

∑
k∈[K ] f (π, Sk) ≤ L/m. Notice

that L/m < 1 by the nonrestrictive assumption that L < m.
We first show that π must belong to�′. Suppose that π /∈ �′
and let Ji (J ′

i ) be the last job in π which is not placed prop-
erly, i.e., Ji , (J ′

i ) /∈ {Jxi , Jxi }. Then Ji (J ′
i ) is at least one

unit late under all scenarios and 1
K

∑
k∈[K ] f (π, Sk) ≥ 1,

a contradiction. Since π ∈ �′ and all processing times are
equal to 1 it follows that f (π, Sk) ∈ {0, 1} for all k ∈ [K ].
Consequently, the maximum tardiness in π is equal to 1
under at most L scenarios and the assignment correspond-
ing to π satisfies at most L clauses. The above reduction is
approximation-preserving and the inapproximability result
immediately holds.

In order to prove assertion (ii), it suffices to modify the
previous reduction. Assume first that L < �m/2�. We then
add to scenario set� additionalm−2L scenarioswith the due
dates equal to 0 for all the jobs. So the number of scenarios K
is 2m−2L .We fix vm−L+1 = 1 and vk = 0 for the remaining
scenarios. Now, the answer to Min 3- Sat is yes, if and
only if there is a schedule π whose maximum tardiness is
positive under at most L + m − 2L = m − L scenarios.
According to the definition of the weights OWA(π) = 0.
Assume that L > �m/2�.We then add to� additional 2L−m
scenarios with the due dates to n for all the jobs. The number
of scenarios K is then 2L .We fix vL+1 = 1 and vk = 0 for all
the remaining scenarios. Now, the answer to Min 3- Sat is
yes, if and only if there is a schedule π whose cost is positive
under at most L scenarios. According to the definition of the
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weights OWA(π) = 0. We thus can see that it is NP-hard to
check whether there is a schedule π such that OWA(π) ≤ 0
and the theorem follows. �

The next theorem characterizes the problem complexity
when job processing times and due dates are deterministic
and only job weights are uncertain.

Theorem 2 If the number of scenarios is unbounded, then

(i) Min- Average 1||maxw j Tj is strongly NP-hard.
(ii) Min- Median 1||maxw j Tj is strongly NP-hard and not

at all approximable unless P=NP.

Furthermore, both assertions are true when all jobs have unit
processing times under all scenarios and all job due dates
are deterministic.

Proof As in the proof of Theorem 1, we show a polynomial
time reduction from the Min 3- Sat problem. We start by
proving assertion (i). We create two jobs Jxi and Jxi for each
variable xi . The processing times of these jobs under all sce-
narios are 1 and their due dates are equal to 2i − 1. Now
for each clause Ck = (l1 ∨ l2 ∨ l3) we form the weight sce-
nario Sk as follows: for each q = 1, 2, 3, if lq = xi , then the
weight of Jxi is 1 and the weight of Jxi is 0; if lq = xi , then
the weight of Jxi is 1 and the weight of Jxi is 0; if neither xi
nor xi appears in Ck , then the weights of Jxi and Jxi are 0.
We also add one additional scenario Sm+1 under which the
weight of each job is equal to m. We set K = m + 1 and fix
vk = 1/(m + 1) for each k ∈ [K ]. We define the subset of
schedules �′ ⊆ � as in the proof of Theorem 1.

We will show that the answer to Min 3- Sat is yes if
and only if there is a schedule π such that OWA(π) ≤
(m + L)/(m + 1). Assume that the answer to Min 3-
Sat is yes. Let π ∈ �′ be the schedule corresponding to
the assignment which satisfies at most L clauses (see the
proof of Theorem 1). It is easy to verify that f (π, Sk) = 0
if Ck is not satisfied and f (π, Sk) = 1 if Ck is satis-
fied. Furthermore, f (π, Sm+1) = m. Hence OWA(π) ≤
(m + L)/(m + 1). Assume now that OWA(π) ≤ (m +
L)/(m + 1). Then π must belong to �′ since otherwise
f (π, Sm+1) ≥ 2m and OWA(π) ≥ 2m/(m + 1), which
contradicts the assumption that L < m. It must hold
f (π, Sm+1) = m and f (π, Si ) ∈ {0, 1} for each i ∈ [K ].
Consequently f (π, Si ) = 1 under at most L scenarios,
which means that the assignment corresponding to π sat-
isfies at most L clauses and the answer to Min 3- Sat is
yes.

The proof of assertion (ii) is very similar to the corre-
sponding proof in Theorem 1. �

4.2 Polynomially and pseudopolynomially solvable cases

In this section, we identify some special cases of the Min-
Owa 1|prec|maxw j Tj problem which are polynomially or
pseudopolynomially solvable.

4.2.1 The maximum criterion

It has been shown in Aloulou and Croce (2008) that
Min- Max 1|prec|Tmax is solvable in O(Kn2) time. In
this section, we will show that more general version of
the problem with arbitrary nonnegative job weights, Min-
Max 1|prec|maxw j Tj , is solvable in O(Kn2) time as
well. In the construction of the algorithm, we will use some
ideas fromKasperski (2005) andVolgenant andDuin (2010).
Furthermore, the algorithm with some minor modifications
will be a basis for solving other special cases of Min-
Owa 1|prec|maxw j Tj . In this section the OWA operator
is the maximum, so OWA(π) = maxi∈[K ] f (π, Si ). By
interchanging the maximum operators and some easy trans-
formations, we can express the value of OWA(π) as follows:

OWA(π) = max
j∈J

max
i∈[K ]

[
w j (Si )(C j (π, Si ) − d j (Si ))

]+
. (1)

Fix a nonempty subset of jobs D ⊆ J and define

Fj (D) = max
i∈[K ]

[

w j (Si )

(
∑

k∈D
pk(Si ) − d j (Si )

)]+
. (2)

The following proposition immediately follows from the fact
that all job processing times and weights are nonnegative:

Proposition 1 If D2 ⊆ D1, then for any j ∈ J it holds
Fj (D1) ≥ Fj (D2).

Let pred(π, j) be the set of jobs containing job j and
all the jobs that precede j in π . Since C j (π, Si ) =
∑

k∈pred(π, j) pk(Si ), the maximum cost of π over � can be
expressed as follows (see 1 and 2):

OWA(π) = max
j∈J

Fj (pred(π, j)). (3)

Consider the algorithm shown in the form of Algorithm 1.

Theorem 3 Algorithm 1 computes an optimal schedule for
Min- Max 1|prec|maxw j Tj in O(Kn2) time.

Proof Let π be the schedule returned by the algorithm. It
is clear that π is feasible. Let us renumber the jobs so that
π = (1, 2, . . . , n). Let σ be an optimal min-max schedule.
Assume that σ( j) = j for j = k + 1, . . . , n, where k is the
smallest position among all the optimal min-max schedules.
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Algorithm 1 Algorithm for solving Min- Max 1|prec|
maxw j Tj .
1: D := {1, . . . , n}
2: for all i ∈ [K ] do
3: p(Si ) := ∑

k∈D pk(Si )
4: end for
5: for r := n downto 1 do
6: Find j ∈ D, which has no successor in D and has the minimum

value of Fj (D) = maxi∈[K ][w j (Si )(p(Si ) − d j (Si ))]+
7: π(r) := j
8: D := D\{ j}
9: for all i ∈ [K ] do
10: p(Si ) := p(Si ) − p j (Si )
11: end for
12: end for
13: return π

If k = 0, then we are done, because π = σ is optimal.
Assume that k > 0, and so k �= σ(k) = i . Let us move the
job k just after i in σ and denote the resulting schedule as σ ′
(see Fig. 1). Schedule σ ′ is feasible, because π is feasible.

We need only consider three cases:

1. If j ∈ P ∪ R, then pred(σ ′, j) = pred(σ, j) and
Fj (pred(σ ′, j)) = Fj (pred(σ, j)).

2. If j ∈ Q ∪ {i}, then pred(σ ′, j) ⊆ pred(σ, j) and, by
Proposition 1, Fj (pred(σ ′, j)) ≤ Fj (pred(σ, j)).

3. If j = k, then Fj (D) ≤ Fi (D) from the construction of
Algorithm 1. Since pred(σ, i) = pred(σ ′, j) = D, we
have Fj (pred(σ ′, j)) ≤ Fi (pred(σ, i)).

From the above three cases and equality (3), we conclude
that

OWA(σ ′) = max
j∈J

Fj (pred(σ ′, j)) ≤ max
j∈J

Fj (pred(σ, j))

= OWA(σ ),

so σ ′ is also optimal, which contradicts the minimality of
k. Computing Fj (D) for a given j ∈ D in line 6 requires
O(K ) time (note that p(Si ), i ∈ [K ], store the values of
∑

k∈D pk(Si ) that have been computed in lines 2-4 and they
are updated in lines 9-11), and thus line 6 can be executed in
O(Kn) time. Consequently, the overall running time of the
algorithm is O(Kn2). �

Fig. 1 Illustration of the proof of Theorem 1

4.2.2 The Hurwicz criterion

In this section, we explore the problem with the Hurwicz
criterion. We will examine the case in which α ∈ (0, 1) as
the boundary cases with α equal to 0 (theminimum criterion)
or 1 (the maximum criterion) are solvable in O(Kn2) time.

Theorem 4 Min- Hurwicz 1|prec|maxw j Tj is solvable
in O(K 2n4) time.

Proof The Hurwicz criterion can be expressed as follows:

OWA(π) = α max
i∈[K ] f (π, Si ) + (1 − α) min

i∈[K ] f (π, Si ).

Let us define

Hk(π) = α max
i∈[K ] f (π, Si ) + (1 − α) f (π, Sk).

Hence

min
π∈�

OWA(π) = min
k∈[K ] min

π∈�
Hk(π),

and the problem ofminimizing theHurwicz criterion reduces
to solving K auxiliary problems consisting in minimizing
Hk(π) for a fixed k ∈ [K ]. Let us fix k ∈ [K ] and t ≥ 0, and
define �k(t) = {π ∈ � : f (π, Sk) ≤ t} ⊆ � as the set of
feasible schedules whose cost under Sk is at most t . Define

�k(t) = min
π∈�k (t)

max
i∈[K ] f (π, Si ).

Hence

min
π∈�

Hk(π) = min
t∈[t,t]

α�k(t) + (1 − α)t, (4)

where t = minπ∈� f (π, Sk) (for t < t it holds �k(t) = ∅),
and t = minπ∈� maxi∈[K ] f (π, Si ), which is due to the fact
that maxi∈[K ] f (π, Si ) ≥ f (π, Sk). Computing the value
of�k(t) for a given t ∈ [t, t] can be done by a slightly modi-
fiedAlgorithm 1. It is enough to replace line 6 of Algorithm 1
with the following line:

6′ : find j ∈ Dk(t), which has no successor in D, and has

a minimum value ofFj (D),

where Dk(t) = { j ∈ D : [w j (Sk)(p(Sk) − d j (Sk))]+ ≤ t}.
The proof of the correctness of the modified algorithm is
almost the same as the proof of Theorem 3. It is sufficient to
define a feasible schedule π as the one satisfying the prece-
dence constraints and the additional constraint f (π, Sk) ≤ t .
Hence, if the algorithm returns a feasible schedule, then it
must be optimal. The algorithm fails to compute a feasi-
ble schedule when Dk(t) = ∅ in line 6’. In this case, at
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Fig. 2 The functions �3(t) (the
dotted line) and 0.5�3(t)+ 0.5t ,
t ∈ [18, 60] (the solid line), for
a sample problem (there are no
precedence constraints between
the jobs). The function H3(π) is
minimized for
π2 = (1, 4, 2, 5, 3) and
H3(π2) = 51.5

least one job in D �= ∅ must be completed not earlier than
p(Sk) = ∑

j∈D p j (Sk) and f (π, Sk) > t for all schedules
π ∈ �, which means that �k(t) = ∅. Clearly, the modified
algorithm has the same O(Kn2) running time.

Note that �k is a nonincreasing step function on [t,∞),
i.e., a constant function on subintervals [t1, t1) ∪ [t2, t2) ∪
· · ·∪[tl ,∞), tv−1 = tv ,v = 2, . . . , l, t1 = t . Thus,α�k(t)+
(1−α)t , α ∈ (0, 1), is a piecewise linear function on [t,∞),
a linear increasing function on each subinterval [tv, tv), v ∈
[l], and attains minimum at one of the points t1, . . . , t l . The
functions�k(t) and α�k(t)+(1−α)t for k = 3 are depicted
in the example shown in Fig. 2. We have t1 = 18, t2 = 26,
t3 = 60 and the function α�3(t) + (1 − α)t is minimized
for t = 26. Since π2 = (1, 4, 2, 5, 3) is an optimal solution
to �3(26), we conclude that π2 minimizes H3(π).

Observe that the value of t minimizing α�k(t)+ (1−α)t
can be found in pseudopolynomial time by trying all inte-
gers in the interval [t, t]. We now show how to find the
optimal value of t in polynomial time. We first compute
t1 = minπ∈� f (π, Sk), and the value of �k(t1) by the mod-
ified Algorithm 1. Let us denote by π1 the resulting optimal
schedule, π1 ∈ �k(t1). In the sample problem shown in
Fig. 2, t1 = 18, π1 = (2, 4, 5, 3, 1), and �3(t1) = 91. Our
goal now is to compute the value of t2. Choose the iteration
of the modified Algorithm 1, in which the position of job
j is fixed in π1. The job j satisfies the condition stated in
line 6’. We can now compute the smallest value of t , t > t1,
for which job j violates this condition and must be replaced
by some other job in Dk(t). In order to do this it suffices to
try all values ti = wi (Sk)[p(Sk) − di (Sk)]+ for i ∈ D\{ j}
and fix t∗j as the smallest among them which violates the
condition in line 6’ (if the condition holds for all ti , then
t∗j = ∞). Repeating this procedure for each job we get the
set of values t∗1 , . . . , t∗n and t2 is the smallest value among
them. Consider again the sample problem presented in Fig. 2.

When job 1 is placed at position 5 in π1, it satisfies the condi-
tion in line 6’ for t = 18. In fact, it holds D3(t1) = {1}. Since
D = {1, 2, 3, 4, 5}, we now try the values t2 = 91, t3 = 26,
t4 = 126, and t5 = 60. The condition in line 6’ is violated for
t = t3 = 26 as D3(26) = {1, 3} and F3(D) < F1(D). Hence
t∗1 = 26. In the same way we compute the remaining values
t∗2 , . . . , t∗5 . It turns out that t∗1 = 26 is the smallest among
them, thus t2 = 26. The value of t3 can be found in the same
way. We compute an optimal schedule π2 corresponding to
�k(t2) and repeat the previous procedure.

Consider the sequence of schedules πl , πl−1, . . . , π1,
where πv minimizes �k(tv). Schedule πv−1 can be obtained
from πv by moving the position of at least one job in πv , say
j , whose current position becomes infeasible as t decreases,
to the left. Furthermore the position of j cannot increase in all
the subsequent schedulesπv−2, . . . , π1, because the function
f (π, Sk) is nondecreasing (if j cannot be placed at i th posi-
tion, then it also cannot be placed at positions i + 1, . . . , n).
Hence, if πl is the last schedule, then the position of job
πl(i) can be decreased at most i − 1 times which implies
l = O(n2). Hence problem (4) can be solved in O(Kn4)
time and Min- Hurwicz 1|prec|maxw j Tj is solvable in
O(K 2n4) time. �

4.2.3 The kth largest cost criterion

In this section, we investigate the Min- Quant(k) 1|prec|
maxw j Tj problem. Thus our goal is to minimize the kth
largest schedule cost. It is clear that this problem is poly-
nomially solvable when k = 1 or k = K . It is, however,
strongly NP-hard and not at all approximable when k is a
function of K , in particular, when the median of the costs is
minimized (see Theorem 1). We now explore the case when
k is constant.
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Theorem 5 Min- Quant(k) 1|prec|maxw j Tj is solvable

in O
(( K

k−1

)
(K − k + 1)n2

)
time, which is polynomial when

k is constant.

Proof The algorithmworks as follows.We enumerate all the
subsets of scenarios of size k − 1. For each such a subset,
say C , we solve Min- Max 1|prec|maxw j Tj for the sce-
nario set �\C , using Algorithm 1, obtaining a schedule πC .
Among the schedules computed we return πC for which the
maximum cost over �\C is minimal. It is straightforward
to verify that this schedule must be optimal. The number of
subsets which have to be enumerated is

( K
k−1

)
. For each such

a subset we solveMin- Max 1|prec|maxw j Tj with scenar-
ios set �\C , which requires O((K − k + 1)n2) time and the
theorem follows. �
The algorithm suggested in the proof ofTheorem5 is efficient
when k is close to 1 or close to K . When k is a function of
K , then this running times becomes exponential and may be
prohibitive in practice. In Sect. 4.3, wewill use this algorithm
to construct an approximation algorithm for the generalMin-
Owa 1|prec|maxw j Tj problem.

4.2.4 The OWA criterion: the bounded case

In Sect. 4.1, we have shown that for the unbounded case
Min- Owa 1|prec|maxw j Tj is strongly NP-hard and not at
all approximable unless P=NP. In this section, we investigate
the case when K is constant. Without loss of generality we
can assume that all the parameters are nonnegative integers.
Let fmax be an upper bound on the maximum weighted tar-
diness of any job under any scenario. By Proposition 1 and
equality (3) we can fix fmax = max j∈J Fj (J ).

Theorem 6 Min- Owa 1|prec|maxw j Tj is solvable in
O( f KmaxKn2) time, which is pseudopolynomial if K is con-
stant.

Proof Let ttt = (t1, . . . , tK ) be a vector of nonnegative inte-
gers. Let�(ttt) ⊆ �be a subset of the set of feasible schedules
such that π ∈ �(ttt) if f (π, Si ) ≤ ti for all i ∈ [K ], i.e., the
maximum weighted tardiness in π under Si does not exceed
ti . Consider the following auxiliary problem. Given a vector
ttt , check if �(ttt) is not empty and if so, return any schedule
πttt ∈ �(ttt). We now show that this auxiliary problem can be
solved in polynomial time. Given ttt , we first form scenario set
�′ by specifying the following parameters for each Si ∈ �

and j ∈ J :

• p j (S′
i ) = p j (Si ),

• d j (S
′
i ) = max{C ≥ 0 : w j (Si )(C − d j (Si )) ≤ ti } =

ti/w j (Si ) + d j (Si ),
• w j (S′

i ) = 1.

The scenario set �′ can be determined in O(Kn) time.
We solve Min- Max 1|prec|maxw j Tj with the scenario
set �′ by Algorithm 1 obtaining schedule π . If the max-
imum cost of π over �′ is 0, then πttt = π ; otherwise
�(ttt) is empty. Since Min- Max 1|prec|maxw j Tj is solv-
able in O(Kn2) time, the auxiliary problem is solvable in
O(Kn2) time as well. We now show that there exists a vec-
tor ttt∗ = (t∗1 , . . . , t∗K ), where t∗i ∈ {0, . . . , fmax}, i ∈ [K ],
such that eachπttt∗ ∈ �(ttt∗)minimizesOWA(π). Letπ∗ be an
optimal schedule and let t∗t∗t∗ = (t∗1 , . . . , t∗K ) be a vector such
that t∗i = f (π∗, Si ) for i ∈ [K ]. Clearly, t∗i ∈ {0, . . . , fmax}
for each i ∈ [K ] and π∗ ∈ �(t∗t∗t∗). By the definition of t∗t∗t∗,
it holds owavvv(t∗t∗t∗) = OWA(π∗). For any π ∈ �(t∗t∗t∗) it holds
f (π, Si ) ≤ t∗i = f (π∗, Si ), i ∈ [K ]. From themonotonicity
of OWA, we conclude that each π ∈ �(t∗t∗t∗) must be optimal.
The algorithm enumerates all possible vectors ttt and com-
putes πttt ∈ �(ttt) if �(ttt) is nonempty. A schedule πttt with
the minimum value of owavvv(ttt) is returned. The number of
vectors ttt which must be enumerated is at most f Kmax. Hence
the problem is solvable in pseudopolynomial time provided
that K is constant and the running time of the algorithm is
O( f KmaxKn2). �

4.3 Approximation algorithm

When K is a part of the input, i.e., in the unbounded case, then
the exact algorithmproposed inSect. 4.2.4maybe inefficient.
Notice, that due to Theorem 1, no efficient approximation
algorithm can exist for Min- Owa 1|prec|maxw j Tj in this
case unless P=NP. We now prove the following result, which
can be used to obtain an approximate solution in some special
cases of the weight distributions in the OWA operator.

Theorem 7 Suppose that v1 = · · · = vk−1 = 0 and
vk > 0, k ∈ [K ]. Let π̂ be an optimal solution to the
Min- Quant(k) 1|prec|maxw j Tj problem. Then for each
π ∈ �, it holds OWA(π̂) ≤ (1/vk)OWA(π) and the bound
is tight.

Proof Let σ be a sequence of [K ] such that f (π̂, Sσ(1)) ≥
· · · ≥ f (π̂, Sσ(K )) and ρ be a sequence of [K ] such that
f (π, Sρ(1)) ≥ · · · ≥ f (π, Sρ(K )). It holds:

OWA(π̂) =
K∑

i=k

vi f (π̂, Sσ(i)) ≤ f (π̂, Sσ(k)).

From the definition of π̂ and the assumption that vk > 0 we
get

f (π̂, Sσ(k)) ≤ f (π, Sρ(k)) ≤ 1

vk

∑

i∈[K ]
vi f (π, Sρ(i))

= 1

vk
OWA(π).
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Table 4 An example of due date scenario set for which the approxi-
mation algorithm achieves a ratio of 1/vk

S1 S2 S3 . . . SK

J1 1 1 1 . . . 1

J2 2 2 2 . . . 1

J3 3 3 3 . . . 3

J4 4 4 4 . . . 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

J2K−1 2K − 1 2K − 1 2K − 1 . . . 2K − 1

J2K 2K 2K 2K . . . 2K − 1

Hence OWA(π̂) ≤ (1/vk)OWA(π). To see that the bound is
tight consider an instance of the problem with K scenarios
and 2K jobs. The job processing times and weights are equal
to 1 under all scenarios. The job due dates are shown in
Table 4. We fix vi = (1/K ) for each i ∈ [K ].

Since v1 > 0, we solveMin- Max 1|prec|maxw j Tj . As
a result we can obtain the schedule π = (J2, J1, J4, J3, . . . ,
J2K , J2K−1) whose average cost over all scenarios is 1.
But the average cost of the optimal schedule π∗ =
(J1, J2, J3, J4, . . . , J2K−1, J2K ) is 1/K . �

We now show several consequences of Theorem 7.
Observe first that if v1 > 0, then we can use Algorithm 1
to obtain the approximate schedule in polynomial time.

Corollary 1 If v1 > 0, then Min- Owa 1|prec|maxw j Tj

is approximable within 1/v1.

Consider now the caseof nondecreasingweights, i.e.,v1 ≥
v2 ≥ · · · ≥ vK . Recall that nondecreasing weights are used
when the idea of robust optimization is adopted. Namely,
larger weights are assigned to larger schedule costs. Since
in this case the inequality v1 ≥ 1/K must hold, we get the
following result:

Corollary 2 If the weights are nonincreasing, then Min-
Owa 1|prec|maxw j Tj is approximable within 1/v1 ≤ K.

Finally, the following corollary is an immediate consequence
of the previous corollary:

Corollary 3 Min- Average 1|prec|maxw j Tj is approx-
imable within K .

5 The weighted sum of completion times cost
function

Let the cost of schedule π under scenario Si be the
weighted sum of completion times in Si , i.e., f (π, Si ) =
∑

j∈J w j (Si )C j (π, Si ). Using the Graham’s notation, the
deterministic version of the problem is denoted by 1|prec|

∑
w jC j .Wewill also examine the special cases of this prob-

lem with no precedence constraints between the jobs, i.e.,
1|| ∑w jC j and all job weights equal to 1, i.e., 1||∑C j .
It is well known that 1|prec|∑C j is strongly NP-hard for
arbitrary precedence constraints (Lenstra and Rinnooy Kan
1978). It is, however, polynomially solvable for some special
cases of the precedence constraints such as in-tree, out-tree,
or sp-graph (see, e.g., Brucker 2007). If there are no prece-
dence constraints between the jobs, then an optimal schedule
can be obtained by ordering the jobs with respect to nonde-
creasing ratios p j/w j , which reduces to the SPT rule when
all job weights are equal to 1.

In this section, we will show that if the number of sce-
narios is a part of the input, then Min- Owa 1||∑ w jC j is
stronglyNP-hard and not at all approximable. This is the case
when the weights in the OWA criterion are nondecreasing, or
OWA is the median. We then propose several approximation
algorithmswhichwill be valid for nonincreasingweights and
the Hurwicz criterion.

5.1 Hardness of the problem

The Min- Max 1||∑w jC j and Min- Max 1||∑C j prob-
lems have been recently investigated in literature, and the
following results have been established:

Theorem 8 (Yang andYu 2002)Min- Max 1||∑C j is NP-
hard even for K = 2.

Theorem 9 (Mastrolilli et al. 2013) If the number of scenar-
ios is unbounded, then

(i) Min- max 1||∑ w jC j is strongly NP-hard and not
approximable within O(log1−ε n) for any ε > 0 unless
the problems in NP have quasi-polynomial time algo-
rithms.

(ii) Min- max 1||∑C j and Min- max 1|p j = 1| ∑ w jC j

are strongly NP-hard and not approximable within 6/5−
ε for any ε > 0 unless P=NP.

We now show that the general case is much more complex.

Theorem 10 If the number of scenarios is unbounded, then
Min- Owa 1||∑w jC j is strongly NP-hard and not at all
approximable unless P=NP.

Proof We show a polynomial time reduction from the Min
2- Sat problem which is known to be strongly NP-hard
(see the proof of Theorem 1). Given an instance of Min
2- Sat, we construct the corresponding instance of Min-
Owa 1||∑w jC j in the following way. We associate two
jobs Jxi and Jxi with each variable xi , i ∈ [n]. We then set
K = m and form scenario set � in the following way. Sce-
nario Sk corresponds to clause Ck = (l1 ∨ l2). For q = 1, 2,
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Table 5 Processing times and weights (p j (Si ), w j (Si )) corresponding
to the formula (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x1 ∨ x4)∧ (x1 ∨ x3)∧ (x1 ∨ x4)

S1 S2 S3 S4 S5

Jx1 (0, 1) (0, 0) (1, 0) (0, 1) (0, 1)

Jx1 (1, 0) (0, 0) (0, 1) (1, 0) (1, 0)

Jx2 (1, 0) (1, 0) (0, 0) (0, 0) (0, 0)

Jx2 (0, 1) (0, 1) (0, 0) (0, 0) (0, 0)

Jx3 (0, 0) (1, 0) (0, 0) (0, 1) (0, 0)

Jx3 (0, 0) (0, 1) (0, 0) (1, 0) (0, 0)

Jx4 (0, 0) (0, 0) (1, 0) (0, 0) (1, 0)

Jx4 (0, 0) (0, 0) (0, 1) (0, 0) (0, 1)

if lq = xi , then the processing time of Jxi is 0, the weight
of Jxi is 1, the processing time of Jxi is 1, and the weight
of Jxi is 0; if lq = xi , then the processing time of Jxi is 1,
the weight of Jxi is 0, the processing time of Jxi is 0 and the
weight of Jxi is 1. If neither xi nor xi appears inCk , then both
processing times and weights of Jxi and Jxi are set to 0. We
complete the reduction by fixing v1 = v2 = · · · = vL = 0
and vL+1 = . . . vK = 1/(m − L). A sample reduction is
presented in Table 5.

We now show that there is an assignment to the variables
which satisfies at most L clauses if and only if there is a
schedule π such that OWA(π) = 0. Assume that there is
an assignment xi , i ∈ [n], that satisfies at most L clauses.
According to this assignment we build a schedule π as
follows. We first process n jobs Jzi , zi ∈ {xi , xi }, which
correspond to false literals zi , i ∈ [n], in any order and then
the rest n jobs that correspond to true literals zi , i ∈ [n],
in any order. Choose a clause Ck = (l1 ∨ l2) which is not
satisfied. It is easy to check that the cost of the schedule π

under scenario Sk is 0. Consequently, there are at most L
scenarios under which the cost of π is positive and, accord-
ing to the definition of the weights in the OWA operator, we
get OWA(π) = 0. Suppose now that there is a schedule π

such that OWA(π) = 0. We construct an assignment to the
variables by setting xi = 0 if Jxi appears before Jxi in π

and xi = 1 otherwise. Since OWA(π) = 0, the cost of π

must be 0 under at least m − L scenarios. If the cost of π

is 0 under scenario Sk corresponding to the clause Ck , then
the assignment does not satisfy Ck . Hence, there is at least
m−L clauses that are not satisfied and, consequently, at most
L satisfiable clauses. �

Corollary 4 Min- Median 1||∑w jC j is strongly NP-hard
and not at all approximable unless P=NP.

Proof The proof is similar to the proof of Theorem 1 and
consists in adding some additional scenarios to an instance
of problem constructed in Theorem 10. �

5.2 Approximation algorithms

In this section, we show several approximation algorithms
forMin- Owa 1|prec|∑ w jC j . We will explore the case in
which the weights in the OWA criterion are nonincreasing,
i.e., v1 ≥ v2 ≥ · · · ≥ vK . We will then apply the obtained
results to the Hurwicz criterion. Observe, that the case with
nondecreasing weights, i.e., v1 ≤ v2 ≤ · · · ≤ vK , is not at all
approximable (see the proof of Theorem 10).We first recall a
well known property (see, e.g., Mastrolilli et al. 2013) which
states that each problem with uncertain processing times and
deterministic weights can be transformed into an equivalent
problemwith uncertainweights and deterministic processing
times (and vice versa). This transformation is cost preserving
and works as follows. Under each scenario Si , i ∈ [K ], we
invert the role of processing times and weights obtaining
scenario S′

i . The new scenario set �′ contains scenario S′
i

for each i ∈ [K ]. We also invert the precedence constraints,
i.e., if i → j in the original problem, then j → i in the
new one. It can be easily shown that the cost of schedule π

under S is equal to the cost of the inverted schedule π ′ =
(π(n), . . . , π(1)) under S′. Consequently OWA(π) under �

equals OWA(π ′) under�′. Notice that if the processing times
are deterministic in the original problem, then the weights
become deterministic in the new one (and vice versa).

Let wmax, wmin, pmax, pmin be the largest (smallest)
weight (processing time) in the input instance. We first con-
sider the case then both processing times and weights can be
uncertain. We prove the following result:

Theorem 11 If v1 ≥ v2 ≥ · · · ≥ vK and the deter-
ministic 1|prec|∑ w jC j problem is polynomially solvable,
then Min- Owa 1|prec|∑ w jC j is approximable within
K · min{wmax

wmin
,
pmax
pmin

}.

Proof Let p̂ j = ∑
i∈[K ] p j (Si ), ŵ j = owavvv(w j (S1), . . . ,

w j (SK )), Ĉ j (π) = ∑
i∈[K ] C j (π, Si ), and f̂ (π) = ∑

j∈J

ŵ j Ĉ j (π). Let π̂ ∈ � minimize f̂ (π). Of course, π̂ can be
computed in polynomial time provided that the determin-
istic counterpart of the problem is polynomially solvable.
Let σ be a sequence of [K ] such that f (π̂, Sσ(1)) ≥ · · · ≥
f (π̂, Sσ(K )). It holds

OWA(π̂) =
∑

i∈[K ]
vi

∑

j∈J

w j (Sσ(i))C j (π̂, Sσ(i))

≤
∑

j∈J

∑

i∈[K ]
viw j (Sσ(i))Ĉ j (π̂)

=
∑

j∈J

Ĉ j (π̂)
∑

i∈[K ]
viw j (Sσ(i))

≤
∑

j∈J

ŵ j Ĉ j (π̂) = f̂ (π̂), (5)
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where the inequality ŵ j ≥ ∑
i∈[K ] viw j (Sσ(i)) follows from

the assumption that v1 ≥ v2 ≥ · · · ≥ vK . We also get for
any π ∈ �

f̂ (π̂) ≤ f̂ (π) =
∑

j∈J

ŵ j Ĉ j (π)

=
∑

j∈J

ŵ j

∑

i∈[K ]
C j (π, Si )

≤ wmax

wmin

∑

j∈J

∑

i∈[K ]
w j (Si )C j (π, Si )

= = wmax

wmin

∑

i∈[K ]

∑

j∈J

w j (Si )C j (π, Si ), (6)

where the second inequality follows from the fact that ŵ j ≤
wmax ≤ (wmax/wmin)w j (Si ) for each j ∈ J , i ∈ [K ]. Again,
from the assumption that v1 ≥ v2 ≥ · · · ≥ vK we have

(1/K )
∑

i∈[K ]

∑

j∈J

w j (Si )C j (π, Si ) ≤ OWA(π). (7)

From (5), (6), and (7) we get OWA(π̂) ≤ K · wmax
wmin

OWA(π).

Since the role of job processing times and weights can be
inverted we also get OWA(π̂) ≤ K · pmax

pmin
OWA(π) and the

theorem follows. �
In Mastrolilli et al. (2013) a 2-approximation algorithm

forMin- Max 1|prec|∑ w jC j has been recently proposed,
provided that either job processing times or job weights are
deterministic (they do not vary among scenarios). In this sec-
tion, we will show that this algorithm can be extended to
Min- Owa 1|prec|∑ w jC j under the additional assump-
tion that the weights in the OWA operator are nonincreasing,
i.e., v1 ≥ v2 ≥ · · · ≥ vK . The idea of the approximation
algorithm is to design amixed integer programming formula-
tion for the problem, solve its linear relaxation, and construct
an approximate schedule based on the optimal solution to this
relaxation.

Assume now that job processing times are deterministic
and equal to p j under each scenario Si , i ∈ [K ]. Let δi j ∈
{0, 1}, i, j ∈ [n], be binary variables such that δi j = 1 if job
i is processed before job j in a schedule constructed. The
vectors of all feasible job completion times (C1, . . . ,Cn) can
be described by the following system of constraints (Potts
1980):

VC : C j = p j + ∑
i∈J\{ j} δi j pi j ∈ J

δi j + δ j i = 1 i, j ∈ J, i �= j
δi j + δ jk + δki ≥ 1 i, j, k ∈ J
δi j = 1 i → j
δi j ∈ {0, 1} i, j ∈ J

(8)

Let us denote by VC ′ the relaxation of VC , in which the
constraints δi j ∈ {0, 1} are replaced with 0 ≤ δi j ≤ 1. It has

been proved in Schulz (1996a, b) (see also Hall et al. 1997)
that each vector (C1, . . . ,Cn) that satisfies VC ′ also satisfies
the following inequalities:

∑

j∈I
p jC j ≥ 1

2

⎛

⎜
⎝

⎛

⎝
∑

j∈I
p j

⎞

⎠

2

+
∑

j∈I
p2j

⎞

⎟
⎠ for all I ⊆ J (9)

In order to build a MIP formulation for the problem, we
will use the idea of a deviationmodel introduced inOgryczak
and Śliwiński (2003). Let σ be a permutation of [K ] such
that f (π, Sσ(1)) ≥ · · · ≥ f (π, Sσ(K )) and let θk(π) =
∑k

i=1 f (π, Sσ(i)) be the cumulative cost of schedule π .
Define v′

i = vi − vi+1 for i = 1, . . . , K − 1 and v′
K = vK .

An easy verification shows that

OWA(π) =
K∑

k=1

v′
kθk(π). (10)

Lemma 1 Given π , the value of θk(π) can be obtained by
solving the following linear programming problem:

min
∑K

i=1 ui − (K − k)r
r ≤ ui i ∈ [K ]
ui ≥ f (π, Si ) i ∈ [K ]
ui ≥ 0 i ∈ [K ]
r ≥ 0

(11)

Proof Consider the following linear programming problem:

max
∑K

i=1 βi f (π, Si )
αi + βi ≤ 1 i ∈ [K ]
∑K

i=1 αi ≥ (K − k)
αi , βi ≥ 0 i ∈ [K ]

(12)

It is easy to see that anoptimal solution to (12) canbeobtained
by setting βσ(i) = 1 and ασ(i) = 0 for i = 1 . . . k, βσ(i) = 0
and ασ(i) = 1 for i = k + 1, . . . K , where σ is such that
f (π, Sσ(1)) ≥ · · · ≥ f (π, Sσ(K )). This gives us the maxi-
mum objective function value equal to θk(π). To complete
the proof it is enough to observe that (11) is the dual linear
program to (12). �
If v1 ≥ v2 ≥ · · · ≥ vK , then v′

i ≥ 0 and (8), (10), (11) lead
to the following mixed integer programming formulation for
the problem:

min
∑K

k=1 v′
k(

∑K
i=1 uik − (K − k)rk)

Constraints VC
rk ≤ uik i, k ∈ [K ]
uik ≥ ∑

j∈J C jw j (Si ) i, k ∈ [K ]
uik ≥ 0 i, k ∈ [K ]
rk ≥ 0 k ∈ [K ]

(13)
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In order to construct the approximation algorithm we will
also need the following easy observation:

Observation 1 Let ( f1, . . . , fK ) and (g1, . . . , gK ) be two
nonnegative real vectors such that fi ≤ γ gi for some con-
stant γ > 0. Then, owavvv( f1, . . . , fk) ≤ γ owavvv(g1, . . . , gK )

for each vvv.

Proof From the monotonicity of the OWA operator and the
assumption γ > 0, it follows that owavvv( f1, . . . , fK ) ≤
owavvv(γ g1, . . . , γ gK ) = γ owavvv(g1, . . . , gK ). �

The approximation algorithm works as follows. We first
solve the linear relaxation of (13) in which VC is replaced
with VC ′ . Clearly, this relaxation can be solved in polyno-
mial time. Let (C∗

1 , . . . ,C
∗
n ) be the relaxed optimal job com-

pletion times and z∗ be the optimal value of the relaxation. It
holds z∗ = owavvv(

∑
j∈J C

∗
jw j (S1), . . . ,

∑
j∈J C

∗
jw j (SK )).

We now relabel the jobs so thatC∗
1 ≤ C∗

2 ≤ . . . C∗
n and form

schedule π = (1, 2, . . . , n). Since the vector (C∗
j ) satisfies

VC ′ itmust also satisfy (9).Hence, by setting I = {1, . . . , j},
we get

j∑

i=1

piC
∗
i ≥ 1

2

⎛

⎜
⎝

⎛

⎝
j∑

i=1

pi

⎞

⎠

2

+
j∑

i=1

p2i

⎞

⎟
⎠ ≥ 1

2

⎛

⎝
j∑

i=1

pi

⎞

⎠

2

.

Since C∗
j ≥ C∗

i for each i ∈ {1 . . . j}, we get C∗
j

∑ j
i=1 pi ≥

∑ j
i=1 piC

∗
i ≥ 1

2 (
∑ j

i=1 pi )
2 and, finally C j = ∑ j

i=1 pi ≤
2C∗

j for each j ∈ J – this reasoning is the same as in Schulz
(1996b). For each scenario Si , i ∈ [K ], it holds f (π, Si ) =
∑

j∈J C jw j (Si ) ≤ 2
∑

j∈J C
∗
jw j (Si ), and Observation 1

implies

OWA(π) = owavvv

⎛

⎝
∑

j∈J

C jw j (S1), . . . ,
∑

j∈J

C jw j (SK )

⎞

⎠

≤ 2z∗.

Since z∗ is a lower bound on the value of an optimal solu-
tion, π is a 2-approximate schedule. Let us summarize the
obtained result.

Theorem 12 If v1 ≥ v2 ≥ · · · ≥ vK , and job processing
times (or weights) are deterministic, thenMin- Owa 1|prec|
∑

w jC j is approximable within 2.

We now use Theorem 12 to prove the following result:

Theorem 13 Min- Hurwicz 1|prec|∑ w jC j is approx-
imable within 2, if job processing times (or weights) are
deterministic.

Proof Assume that job processing times are determinis-
tic (the reasoning for deterministic processing times is the

same). The problemwith theHurwicz criterion can be rewrit-
ten as follows:

min
π∈�

OWA(π) = min
π∈�

min
k∈[K ] Hk(π),

where

Hk(π)

= α max
i∈[K ]

∑

j∈J

w j (Si )C j (π) + (1 − α)
∑

j∈J

w j (Sk)C j (π)

= max
i∈[K ]

⎛

⎝α
∑

j∈J

w j (Si )C j (π) + (1 − α)
∑

j∈J

w j (Sk)C j (π)

⎞

⎠

= max
i∈[K ]

∑

j∈J

ŵ j (Si )C j (π),

where ŵ j (Si ) = αw j (Si )+ (1−α)w j (Sk). Hence the prob-
lem reduces to solving K auxiliaryMin- Max 1|prec|∑ w j

C j problems. Since Min- Max 1|prec|∑ w jC j is approx-
imable within 2 (see Mastrolilli et al. 2013, or Theorem 12),
the theorem follows. �

6 Conclusion and open problems

In this paper, we have proposed a new approach to scheduling
problemswith uncertain parameters. Thekey idea is to use the
OWAoperator to aggregate all possible values of the schedule
cost. Theweights inOWAallow decisionmakers to take their
attitude towards a risk into account. In consequence, themain
advantage of the proposed approach is to weaken the very
conservative min-max criterion, traditionally used in robust
optimization. Apart from proposing a general framework, we
have discussed the computational properties of two basic sin-
gle machine scheduling problems. We have shown that they
have various computational and approximation properties,
which make their analysis very challenging. However, there
is still a number of open problems regarding the considered
cases. For the problemwith themaximumweighted tardiness
criterion, we do not know if the problem is weakly NP-hard
when the number of scenarios is constant (the bounded case).
It may be also the case that the pseudopolynomial algorithm
designed for a fixed K can be converted into a polynomial
one by using a similar idea as for the Hurwicz criterion. We
also do not know if the problem with the average criterion
admits an approximation algorithm with a constant worst-
case ratio (we only know that it is approximablewithin K and
not approximable within a ratio less than 7/6). For the prob-
lem with the weighted sum of completion times criterion,
the complexity of Min- Average 1||∑w jC j with uncer-
tain processing times and weights is open. The framework
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proposed in this paper can also be applied to other schedul-
ing problems, for example to the single machine scheduling
problem with the sum of late jobs criterion (the min-max
version of this problem was discussed in Aissi et al. 2011;
Aloulou and Croce 2008).
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