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Abstract. We study a problem in which a set of n jobs has to be batched as well as scheduled
for processing on a single machine. A constant machine set-up time is required before the first job
of each batch is processed. A schedule specifies the sequence of batches, where each batch comprises
a sequence of jobs. The batch delivery time is defined as the completion time of the last job in a
batch. The earliness of a job is defined as the difference between the delivery time of the batch to
which it belongs and the job completion time. The objective is to find a number B of batches and a
schedule so as to minimize the sum of the total weighted job earliness and mean batch delivery time.
The problem is shown to be strongly NP -hard. It remains strongly NP -hard if the set-up time is
zero and B ≤ U for any variable U ≥ 2 or if B ≥ U for any constant U ≥ 2. The problem is proved
to be ordinary NP -hard even if the set-up time is zero and B ≤ 2. For the case B ≤ U , a dynamic
programming algorithm is presented, which is pseudopolynomial for any constant U ≥ 2. Algorithms
with O(n2) running times are derived for the cases when all weights are equal or all processing times
are equal. For the general problem, a family of heuristics is suggested. Computational experiments on
the proposed heuristic algorithm are conducted. The results suggest that the heuristics are effective
in generating near-optimal solutions quickly.
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1. Introduction. Processing jobs in batches is a common practice in flexible
manufacturing. Scheduling models which combine partitioning jobs into batches and
sequencing jobs in each batch have been extensively studied lately. Most of the results
in the batch scheduling area are obtained for the problem of scheduling jobs in batches
on a single machine to minimize the total weighted job completion time. In this
problem, there is a common set-up time between consecutively scheduled batches,
and the completion time of a job is equal to the completion time of its batch, so
all jobs in the same batch are completed at the same time. Albers and Brucker
[1] proved that this problem is NP -hard but polynomially solvable when the job
sequence is predetermined. Polynomial time algorithms have also been presented for
the cases when all job weights are equal (Coffman, Yannakakis, Magazine, and Santos
[8]) all processing times are equal (Albers and Brucker [1]), and both weights and
processing times are equal (Nadeff and Santos [17]; Coffman, Nozari, and Yannakakis
[9]; Shallcross [19]).
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548 T. C. E. CHENG, M. Y. KOVALYOV, AND B. M.-T. LIN

In this paper, we introduce a scheduling problem with batch delivery and job
earliness penalties, which may be stated as follows. There are n jobs to be scheduled
on a single machine. Each job j has an integer processing requirement pj > 0 and a
weight wj ≥ 0, which may be a noninteger. Jobs may be combined to form batches
containing contiguously scheduled jobs. For each batch, a constant machine set-up
time s ≥ 0 is required before the first job of the batch is processed. The machine can
handle only one job at a time and cannot process any jobs while a set-up is performed.
All jobs in the same batch are delivered to the customer together upon the completion
of the last job in the batch.

Given a number B of batches, a schedule specifies the sequence 1, . . . , B of these
batches, where each batch b is a sequence of jobs it contains. Given a number of
batches and a schedule, the completion time Cj of each job j is easily determined. It
is measured from the beginning of the scheduling horizon, i.e., from time zero. We
define the batch b delivery time Db as the completion time of the last job in the batch
and the earliness Ej of job j in batch b as the difference between the delivery time of
batch b and the completion time of job j: Ej = Db − Cj if j ∈ b.

The objective is to find an optimal number B of batches and an optimal schedule
so as to minimize the sum of the total weighted job earliness and mean batch delivery
time:

n∑
j=1

wjEj +
B∑
b=1

Db/B.

This problem is closely related to the single machine scheduling problem to min-
imize the total weighted job earliness plus a batch delivery penalty depending only
on the number of batches:

∑n
j=1 wjEj + γ(B), where γ(B) is a certain nonnegative

function. Cheng and Kahlbacher [7] first showed that the general version of this prob-
lem is ordinary NP -hard, while Cheng, Gordon, and Kovalyov [6] later proved that
it is strongly NP -hard. Polynomial algorithms for special cases when all weights are
equal or all processing times are equal are presented by Cheng and Gordon [5] and
Cheng, Gordon, and Kovalyov [6].

Motivation of our problem comes from the very large-scale integrated circuit man-
ufacturing, which can be divided into four main stages: wafer fabrication, wafer probe,
assembly, and final testing. Scheduling problems arising at the wafer fabrication stage
have been considered by Dayhoff and Atherton [10], Bitran and Tirupati [3], Chen et
al. [4], Glassey and Resende [13], and Wein [20]. Scheduling models which are typical
for the assembly stage have been addressed in Dobson, Karmarkar, and Rummel [11],
Baker [2], and in the papers indicated at the beginning of this section. The problem
of scheduling semiconductor burn-in operations at the final testing stage has been
studied by Lee, Uzsoy and Martin–Vega [16]. The scheduling problem studied in this
paper arises at the assembly stage. In this stage, chips of various types are attached
and placed on a circuit board by a pick-and-place machine. Each circuit board rep-
resents a job; upon completion, it is loaded onto a pallet. Intermittently, pallets are
moved to the soldering machine and then to the test area. A set of circuit boards
loaded on a pallet corresponds to a batch. The time to move a previous pallet and to
install a new one corresponds to a set-up time.

For the assembly stage, an important performance criterion is to minimize the
finished product inventories which are related to the total weighted earliness

∑
wjEj .

For succeeding operations, safety stocks of the product which justify the consideration
of the mean product flow time criterion are important. Since the product flows on
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BATCH SCHEDULING WITH DELIVERY AND EARLINESS COSTS 549

pallets after assembly, the latter criterion is the mean batch delivery time
∑
Db/B.

Our objective
∑
wjEj +

∑
Db/B is a linear combination of the above two criteria.

By changing values for wj , we can increase or decrease the impact of one of these
criteria on the optimal schedule.

An analysis of our problem shows that the creation of small batches increases the
total batch delivery time while the creation of large batches increases the job earliness
within the batches. If only one of these strategies is applied to solve the problem,
it is unlikely to find a solution with a reasonable objective value. This observation
suggests that the batching decision is essential for our problem. As for the sequencing
decision, we now show that we may restrict our search to schedules in which jobs in
each batch are sequenced in LWPT (longest weighted processing time) order so that
pi1/wi1 ≥ pi2/wi2 ≥ · · · ≥ pik/wik if jobs i1, i2, . . . , ik are sequenced in the batch in
that order.

Lemma 1.1. In any optimal solution, jobs within each batch are sequenced in
LWPT order.

Proof. Consider an optimal solution and assume, without loss of generality, that
jobs i, i + 1, . . . , k are sequenced in a certain batch in that order. Assume that the
statement of the lemma is not satisfied: pj/wj < pj+1/wj+1 for a certain i ≤ j ≤ k−1.
It is easily checked that swapping j and j+1 decreases the total weighted job earliness
by wjpj+1−wj+1pj > 0 and does not affect the batch delivery times. This contradicts
the optimality of the original solution.

Since jobs within each batch must be processed in LWPT order, the problem
reduces to one of finding a number B of batches and a partition of the jobs into these
batches.

The remainder of the paper is organized as follows. In the next section, we prove
that the general problem is strongly NP -hard and that it remains strongly NP -hard
when s = 0 and B ≤ U for a variable U ≥ 2 or B ≥ U for any constant U ≥ 2. We
show that the problem is ordinary NP -hard even if s = 0 and B ≤ 2. A dynamic
programming algorithm is presented for the case when B ≤ U . This algorithm runs
in O(nU2(

∑n
j=1 pj)

U−1) time. In the following section, we derive O(n2) algorithms
for the cases when all weights are equal or all processing times are equal. A heuristic
approach for the general problem is then suggested. Computational results for the
heuristics are also included. The paper concludes with some remarks and suggestions
for further research.

2. NP-hardness proofs and dynamic programming. It is convenient to
adopt the three-field notation of Graham et al. [14] to denote our family of problems.
In the notation 1/β/γ, the first field denotes the single machine environment. The
second field, β ⊂ {∅, B ≤ U,B ≥ U,B = U, s = 0, pj = p}, indicates the batch
constraint and job characteristics. Here, B ≤ U and B ≥ U indicate that the number
of batches is bounded from above or from below, respectively, by a number U ; B =
U denotes that the number of batches is equal to U ; s = 0 denotes a zero set-
up time; pj = p denotes that all processing times are equal to p. The third field,
γ ∈ {

∑
wjEj+

∑
Db/B,w

∑
Ej+

∑
Db/B,

∑
Ej+

∑
Db/B}, refers to the optimality

criterion. Here, w
∑
Ej and

∑
Ej arise when wj = w and wj = 1, respectively, for

j = 1, . . . , n. Our original problem is represented by 1//(
∑
wjEj +

∑
Db/B).

In this section, we prove that the general problem, 1//(
∑
wjEj +

∑
Db/B), is

strongly NP -hard and the problem 1/B ≤ U/(
∑
wjEj +

∑
Db/B) is ordinary NP -

hard for any constant U ≥ 2. The complexities of the problems 1/B ≥ U/(
∑
wjEj +∑

Db/B) and 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B) are easily established using the
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550 T. C. E. CHENG, M. Y. KOVALYOV, AND B. M.-T. LIN

same argument. Then, we present a dynamic programming algorithm for the problem
1/B ≤ U/(

∑
wjEj +

∑
Db/B). We begin with the strong NP -hardness proof.

Theorem 2.1. The problem 1//(
∑
wjEj +

∑
Db/B) is strongly NP -hard.

Proof. We show that the decision version of our problem is strongly NP -complete
by a transformation from the strongly NP -complete problem 3-Partition (Garey
and Johnson, [12]): given positive integers a1, . . . , a3U and A such that A/4 < aj <

A/2 for j = 1, . . . , 3U and
∑3U
j=1 aj = AU , is there a partition of the set X =

{1, . . . , 3U} into U disjoint setsX1, . . . , XU such that for 1 ≤ b ≤ U ,
∑
j∈Xb aj = A?

Define cj = 3Uaj for j = 1, . . . , 3U and C =
∑3U
j=1 cj/U = 3UA. Given any

instance of 3-Partition, we construct an instance of our problem in which the set-
up time

s = 2
∑

1≤i<j≤3U

cicj − C2U2 + C2U + 2CU + (C + 1)(U + 1)

and there are 4U jobs with wj = pj = cj for the partition jobs j = 1, . . . , 3U and
pj = 1, wj = y = (U + 2)s/2 for the enforcer jobs j = 3U + 1, . . . , 4U . We show that
there exists a solution to 3-Partition if and only if there exists a solution to our
problem with a value not exceeding y.

If X can be divided into U disjoint sets X1, . . . , XU such that
∑
j∈Xb aj = A for

b = 1, . . . , U , then we construct a schedule with U batches, where batch b consists of
the partition jobs of the set Xb and one enforcer job scheduled last. Since wj = pj
for j = 1, . . . , 3U , the order of the partition jobs in each batch does not affect the
objective value F , which can be calculated as follows:

F =

4U∑
j=1

wjEj +

U∑
b=1

Db/U,

where

4U∑
j=1

wjEj=
U∑
b=1

 ∑
i<j, i,j∈Xb

cicj +
∑
j∈Xb

cj


=

∑
1≤i<j≤3U

cicj −
∑

1≤b<e≤U

∑
j∈Xb

cj

∑
j∈Xe

cj

+
3U∑
j=1

cj

and

U∑
b=1

Db/U = (U + 1)s/2 +
U∑
b=1

(U + 1− b)

∑
j∈Xb

cj + 1

 /U.

Since

(CU)2 =

 3U∑
j=1

cj

2

=
U∑
b=1

∑
j∈Xb

cj

2

+ 2
∑

1≤b<e≤U

∑
j∈Xb

cj

∑
j∈Xe

cj

 ,

we have

F = (U + 1)s/2 +
∑

1≤i<j≤3U

cicj − C2U2/2(1)
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BATCH SCHEDULING WITH DELIVERY AND EARLINESS COSTS 551

+
U∑
b=1

∑
j∈Xb

cj

2

/2 + CU +
U∑
b=1

(U + 1− b)

∑
j∈Xb

cj + 1

 /U.

Setting
∑
j∈Xb cj = 3U

∑
j∈Xb aj = 3UA = C for b = 1, . . . , U , we get F = y.

Assume that there is a solution to the problem 1//(
∑
wjEj +

∑
Db/B) with a

value F ≤ y. It is apparent that there cannot be more than U batches, since then
there are at least U+1 set-ups and we have F > (U+2)s/2 = y. If there are less than
U batches, then at least one batch includes at least two enforcer jobs. In this case, at
least one enforcer job is not scheduled last in one of the batches. Since the weight of
each enforcer job is equal to y, we again get F > y. Thus, there are exactly U batches
and each batch includes exactly one enforcer job which is scheduled last. Denote the
set of the partition jobs in batch b by Xb. Then the value F of our solution can be
calculated as shown in (1). By simplifying F ≤ y, we obtain

U∑
b=1

∑
j∈Xb

cj

2

/2 +
U∑
b=1

(U + 1− b)
∑
j∈Xb

cj/U ≤ C2U/2 + C(U + 1)/2.

The latter inequality can be represented as follows:

U∑
b=1

∑
j∈Xb

cj − C

∑
j∈Xb

cj + C

+ 2(U + 1− b)

∑
j∈Xb

cj − C

 /U ≤ 0.

Define δb =
∑
j∈Xb cj − C for b = 1, . . . , U . Clearly,

∑U
b=1 δb = 0. We have∑U

b=1(δ2b + 2(U + 1− b)δb/U) ≤ 0 or, equivalently,

U∑
b=1

(δb + (U + 1− b)/U)2 ≤
U∑
b=1

(U + 1− b)2/U2 ≤ U.

Thus, max1≤b≤U |δb| ≤ U1/2 + 1 ≤ 2U . The latter relations provide

C − 2U ≤
∑
j∈Xb

cj ≤ C + 2U for b = 1, . . . , U.

Substituting 3Uaj for cj and 3UA for C, we deduce that

A− 2/3 ≤
∑
j∈Xb

aj ≤ A+ 2/3 for b = 1, . . . , U.

These inequalities and the integrality of aj yield
∑
j∈Xb aj = A for b = 1, . . . , U ,

as required.
Similar reductions show that the problem 1/B ≥ U/(

∑
wjEj +

∑
Db/B) is

strongly NP -hard if U is a constant and the problems 1/B ≤ U/(
∑
wjEj +

∑
Db/B)

and 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B) are strongly NP -hard if U is a given vari-

able. For the former problem, the only modification of the above proof is that the
(variable) number U of sets in 3-Partition is substituted by B, since B is a variable
number of batches now and U is a constant. For the second problem, the proof is
completely the same. For the third problem with zero set-up time, we should set

y =
∑

1≤i<j≤3U

cicj − C2U2/2 + C2U/2 + CU + (C + 1)(U + 1)/2
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552 T. C. E. CHENG, M. Y. KOVALYOV, AND B. M.-T. LIN

in order to show that B ≥ U . In Theorem 2.1, a nonzero set-up time has been used
to show only that B ≤ U . Therefore, if B ≤ U is given a priori, we can set s = 0 in
our proof.

Theorem 2.2. The problem 1/B ≤ U/(
∑
wjEj+

∑
Db/B) is ordinary NP -hard

for any constant U ≥ 2.
Proof. Our proof is similar to the one in the previous theorem. A transformation

from the NP -complete problem Partition (Garey and Johnson [12]) is used.
Besides the above results, we have also proved that the problem with a zero set-up

time, 1/s = 0, B ≤ U/(
∑
wjEj +

∑
Db/B), is ordinary NP -hard for any constant

U ≥ 2.
It should be noted that all of the above complexity results remain valid if the total

set-up time is included in the objective function instead of the mean batch delivery
time.

We now present a dynamic programming algorithm DP for the problem 1/B ≤
U/(

∑
wjEj +

∑
Db/B). This algorithm is based on Lemma 1.1. Assume that jobs

are numbered in SWPT (shortest weighted processing time) order so that p1/w1 ≤
· · · ≤ pn/wn. In Algorithm DP , jobs are considered in natural order 1, . . . , n. Job j is
either assigned to the beginning of one of the current batches or it starts a new batch.
Thus, jobs within each batch are sequenced in LWPT order. We recursively compute
the value of Fj(P1, . . . , PB), which represents the minimal objective value subject to j
jobs being scheduled in B batches, and the total processing time of the jobs in batch
b is equal to Pb for b = 1, . . . , B. Note that the set-up time is not included in Pb.

Set Tj =
∑j
i=1 pi for j = 1, . . . , n. A formal description of Algorithm DP is as

follows.
Algorithm DP .

Step 1 (Initialization) Number jobs in SWPT order so that p1/w1 ≤ · · · ≤
pn/wn. Set Fj(P1, . . . , PB) =∞ for j = 0, 1, . . . , n, 0 ≤ Pb ≤ Tn, b = 1, . . . , B
and B = 1, . . . , U . Set F0(0) = 0. Set j = 1.

Step 2 (Recursion) Compute the following for all tuples (P1, . . . , PB) such that
pj ≤ Pb ≤ Tj , b = 1, . . . , B,B = 1, . . . ,min{j, U}.

Fj(P1, . . . , PB) = min
1≤b≤B

min(2)


Fj−1(P1, . . . , Pb−1, Pb − pj , Pb+1, . . . , PB)
+wj(Pb − pj) + pj(B − b+ 1)/B if Pb > pj ,
Fj−1(P1, . . . , Pb−1, Pb+1, . . . , PB) + s/2 + pj(B − b+ 1)/B

+(
∑B
k=1,k 6=b(k − 1)Pk −

∑B
k=b+1(B − k + 1)Pk)/(B2 −B) if Pb = pj ,

∞ if Pb < pj .

The three quantities in the right-hand side of equation (2) represent the three
possible scheduling choices for job j with respect to batch b:
1. Add job j to the beginning of the existing batch b.
2. Form a new batch b consisting of the sole job j.
3. Do not assign job j to batch b.
If j = n, go to Step 3; otherwise set j = j + 1 and repeat Step 2.

Step 3 (Optimal solution) Define optimal solution value

F ∗ = min{Fn(P1, . . . , PB)|0 ≤ Pb ≤ Tn, B = 1, . . . , U}

and use backtracking to find the corresponding optimal solution.
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BATCH SCHEDULING WITH DELIVERY AND EARLINESS COSTS 553

Theorem 2.3. Algorithm DP solves the problem 1/B ≤ U/(
∑
wjEj +

∑
Db/B)

in O(nU2(
∑n
j=1 pj)

U−1) time.
Proof. Due to Lemma 1.1, there is always an optimal schedule with jobs arranged

in LWPT order within each batch. Therefore, at each stage of the algorithm we need
only decide whether to include job j in batch b and, if so, whether batch b is new
or not. It is now easy to apply the general dynamic programming justification for
scheduling problems (Rothkopf, [18]; Lawler and Moore, [15]) to show that DP solves
the problem 1/B ≤ U/(

∑
wjEj +

∑
Db/B). The time complexity of this algorithm

can be established as follows.
In each iteration of Step 2, only B − 1 of the values P1, . . . , PB are independent,

since P1 + · · · + PB = Tj . Hence, in iteration j of Step 2, the number of different
tuples (P1, . . . , PB) for B = 1, . . . , U is at most UTU−1

j . For each tuple (P1, . . . , PB),
the right-hand side of equation (2) can be calculated in O(B) time. Thus, Step 2
requires O(nU2TU−1

n ) time, which is the overall time complexity of Algorithm DP as
well.

Theorem 3 shows that the problem 1/B ≤ U/(
∑
wjEj+

∑
Db/B) is not strongly

NP -hard for any constant U ≥ 2.

3. Polynomially solvable cases. In this section, we present polynomial time
algorithms for two special cases of our problem; namely, all weights are equal and
all processing times are equal. We first show that the problem with equal weights,
1//(w

∑
Ej +

∑
Db/B), can be solved in O(n2) time.

Consider a certain solution to the problem 1//(w
∑
Ej +

∑
Db/B). To facilitate

discussion, we represent it as a pair (U, x), where U is the number of batches, x is a
sequence of the batches 1, 2, . . . , U , and each batch b includes jobs ib1, i

b
2, . . . , i

b
j(b) in

that order. The total earliness of the jobs in batch b can be calculated as follows:

∑
k∈b

Ek = (j(b)− 1)pib
j(b)

+ (j(b)− 2)pib
j(b)−1

+ · · ·+ pib2 =

j(b)∑
k=1

(k − 1)pib
k
.

For all n jobs, we have
∑n
j=1Ej =

∑U
b=1

∑j(b)
k=1(k − 1)pib

k
.

Recall the definition of the total processing time of jobs in batch b: Pb =
∑j(b)
k=1 pibk

.

For the mean batch delivery time, we have

U∑
b=1

Db/U = s(U +1)/2+
U∑
b=1

(U +1− b)Pb/U = s(U +1)/2+
U∑
b=1

j(b)∑
k=1

pib
k
(U +1− b)/U.

Thus, the problem 1//(w
∑
Ej +

∑
Db/B) reduces to one of minimizing s(U +

1)/2 + F (U, x), where

F (U, x) =

U∑
b=1

j(b)∑
k=1

((U + 1− b)/U + w(k − 1))pib
k
.

Let (U∗, x∗) be an optimal solution to this problem and let x(U) be an optimal
solution to the problem of minimizing F (U, x). We have

s(U∗ + 1)/2 + F (U∗, x∗) = min{s(U + 1)/2 + F (U, x(U))|U = 1, . . . , n}.

D
ow

nl
oa

de
d 

08
/0

4/
13

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



554 T. C. E. CHENG, M. Y. KOVALYOV, AND B. M.-T. LIN

Table 1

(U).

b\k 1 2 3 ... n
1 1 1 + w 1 + 2w ... 1 + (n− 1)w
2 (U − 1)/U (U − 1)/U + w (U − 1)/U + 2w ... (U − 1)/U + (n− 1)w
. . . . ... .
. . . . ... .
. . . . ... .

U − 2 3/U 3/U + w 3/U + 2w ... 3/U + (n− 1)w
U − 1 2/U 2/U + w 2/U + 2w ... 2/U + (n− 1)w
U 1/U 1/U + w 1/U + 2w ... 1/U + (n− 1)w

Consider the problem of minimizing F (U, x). In this problem, F (U, x) is a
weighted sum of n number of pj values where the weights are presented in Table
1(U).

In F (U, x), each element in Table 1(U) may be used at most once in order to
satisfy the restriction that each job should be assigned to exactly one batch, and at
least one element from each row of this table should be used in order to satisfy the
restriction that there are exactly U batches. To find an optimal solution x(U), it is
obvious that we have to choose the smallest elements satisfying the above conditions,
i.e., all U elements from the first column and the n − U smallest elements from the
remaining part of the table, and then match the smallest chosen elements with the
largest processing requirements pj . The procedure of choosing the r smallest elements
tUbk = (U+1−b)/U+w(k−1) can be implemented in O(r) time. If pj is matched with
an element tUbk, then job j is sequenced kth in batch b. Thus, x(U) can be found in
O(n) time and (U∗, x∗) can be found in O(n2) time. Therefore, we have the following
theorem.

Theorem 3.1. The problem 1//(w
∑
Ej +

∑
Db/B) is solved in O(n2) time.

We now study the problem with equal processing times, 1/pj = p/(
∑
wjEj +∑

Db/B). For this problem, we first rearrange the jobs such that w1 ≥ w2 ≥ · · · ≥
wn. Assume that there are exactly U batches, B1, B2, . . . , and BU , 1 ≤ U ≤ n.
Because the jobs have the same processing time, there is an optimal solution in which
|Bi| ≤ |Bj | if batch Bi precedes batch Bj . With this observation, we devise the
following algorithm for a fixed U :

Step 1: Assign jobs 1, 2, . . . , and U to batch BU , BU−1, . . . , and B1 as a partial
schedule.

Step 2: Loop for job j over U + 1, U + 2, . . . , and n: For each partial sched-
ule, find the last batch Br satisfying |Br| < |BU |, and then assign job j in
accordance with the following cases.
Case 1. There is no such a batch, i.e., all batches have the same number

of jobs: Assign job j as the first job of batch BU .
Case 2. |Br| = |BU | − 1:

• Enhance the partial schedule by assigning job j as the first job of
batch BU . If j = n, output the schedule as a candidate solution.
• Enhance the partial schedule by assigning job j as the first job of

batch Br. If j = n, output the schedule as a candidate solution.
Case 3. |Br| = |BU | − 2: Assign jobs j, j + 1, . . . , n to batch BU in the

order of non-decreasing weights. Output this schedule as a candidate
solution.

Step 3: Amongst the candidate solutions, output one of those with the mini-
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BATCH SCHEDULING WITH DELIVERY AND EARLINESS COSTS 555

mum cost.
To establish the correctness of the proposed algorithm, we first consider an impor-

tant property. Let si denote the number of successors of job i in the batch containing
job i. By a simple interchange argument, we readily see that there is an optimal
solution where, for any two jobs i and j, if wi ≥ wj , then si ≤ sj . Assume that
schedule S is an optimal solution satisfying this property. We show that S can be
transformed into a candidate solution delivered by the algorithm without increasing
the costs. Suppose that the partial schedule for jobs 1, 2, . . . , j − 1 in S is the same
as some partial schedule proposed by the algorithm. Now, consider the assignment of
job j. In Case 1, it is evident that job j can be assigned to batch BU to minimize the
delivery penalty. In analyzing Case 2, we know, by the property just stated, that job
j should be in some batch Bp with either |Bp| = |Br| or |Bp| = |BU |. Therefore, if job
j is not in one of the two specified positions, i.e., one in Br and the other in BU , we
can swap the job positions without increasing the costs. As for Case 3, we note that
the first job in batch BU must be job j−1. Suppose that job k, j ≤ k ≤ n, is assigned
to batch Bp, p 6= U . We can assume, without loss of generality, that p = U − 1.
By swapping the positions of jobs j − 1 and k, the cost will not increase. Further-
more, the derived solution has a partial schedule for jobs 1, 2, . . . , and j − 1 that
is the same as a partial schedule proposed by the algorithm. Continuing the above
interchange arguments, we finally obtain a schedule that is the same as a candidate
solution proposed by the algorithm.

Now, we turn to the issue of the time complexity of the algorithm. Because the
branching from a partial schedule terminates when the condition in Case 2 is satisfied,
the total number of candidate solutions is bounded by O(n). By performing a simple
preprocessing step to compute the cumulative job weights, the objective values of all
candidate solutions can be calculated in O(n) time. Noting that there are n possible
values for the variable U , we conclude with the following theorem.

Theorem 3.2. The problem 1/pj = p/(
∑
wjEj +

∑
Db/B) is solved in O(n2)

time.
Theorems 3.1 and 3.2 resolve the computational complexities of all special cases

of our problem in which either all weights or all processing times are equal.

4. Heuristics. In this section, we present a heuristic approach to solving the
general problem 1//(

∑
wjEj +

∑
Db/B).

We first describe a list-scheduling algorithm for the problem with a fixed number
of batches, 1/B = U/(

∑
wjEj +

∑
Db/B).

Let LIST be a sequence of jobs and let RULE be a rule of assigning a job from
LIST to a batch. In a list-scheduling algorithm, jobs are considered in an order
determined by LIST . Each successive job is scheduled according to RULE. We con-
sider LIST ∈ {LWPT, SWPT, SPT, LPT, SW,LW}, where the jobs are numbered
so that

p1/w1 ≥ p2/w2 ≥ · · · ≥ pn/wn in LWPT,
p1/w1 ≤ p2/w2 ≤ · · · ≤ pn/wn in SWPT,

p1 ≥ p2 ≥ · · · ≥ pn in LPT,
p1 ≤ p2 ≤ · · · ≤ pn in SPT,
w1 ≥ w2 ≥ · · · ≥ wn in LW,
w1 ≤ w2 ≤ · · · ≤ wn in SW.

We use two types of RULE: RULE1 and RULE2. According to RULE1, a job
is assigned to the end of the earliest batch b with the minimal total processing time
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556 T. C. E. CHENG, M. Y. KOVALYOV, AND B. M.-T. LIN

Table 2

Computational results for s = 500 and n = 100.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 30399.40 22561.75 17931.31∗ 7210.09
RULE1, SWPT 30194.13 23130.77 18563.15 7536.56
RULE1, LPT 30436.84 22486.16∗ 18000.67 7251.58
RULE1, SPT 30157.10∗ 23021.43 18502.26 7496.78
RULE1, LW 30281.10 23105.58 18487.39 7495.54
RULE1, SW 30311.46 22664.68 18011.39 7251.39
RULE2, LWPT 30399.40 22648.63 17934.77 7204.55∗

RULE2, SWPT 30194.13 23116.94 18557.74 7530.62
RULE2, LPT 30436.84 22641.48 18009.04 7252.37
RULE2, SPT 30157.10∗ 23021.43 18502.26 7489.33
RULE2, LW 30281.10 23089.33 18480.68 7487.63
RULE2, SW 30311.46 22669.87 18011.33 7258.79
EQUAL W AV G 30157.10 22423.06 18009.20 7245.77
EQUAL W MIN 30157.10 21824.43 17611.56 6958.70

Pb =
∑
j∈b pj . According to RULE2, a job is assigned to the end of the earliest

batch b with the minimal total weighted earliness Fb =
∑
j∈b wjEj . Values Pb or

Fb, b = 1, . . . , U , are stored in a heap. The heap can be initiated in O(U logU)
time and updated in O(logU) time. Therefore, our list-scheduling algorithm can be
implemented in O(U logU) time.

We apply the list-scheduling algorithm for all possible combinations of LIST and
RULE. Let LIST (U) be an algorithm which performs all twelve combinations and
chooses the best constructed schedule S(U) with the value F (S(U)) with respect to the
problem 1/B = U/(

∑
wjEj +

∑
Db/B). Our final algorithm H is to apply LIST (U)

for U = 1, . . . , n, and select the best schedule SH with the value

F (SH) = min{F (S(U))|U = 1, . . . , n}.

The complexity of the algorithm H is O(n2 logn).
In the following, we conduct computational experiments to test the proposed

heuristic algorithm. Because of the intractability of the general problem, it is hard to
derive exact solutions. Therefore, we make use of the polynomial algorithm designed
for the equal-weight case in the previous section.

In the experiments, four parameters (namely, set-up time (s), number of jobs (n),
job length (p′), and job weight (w′)), are taken into consideration, and two possible
values for each parameter will be set. There are a total of 16 combinations from

{s = 50 or 500} × {n = 20 or 100} × {p′ = 10 or 100} × {w′ = 1 or 10}.

Note the actual implication of p′ and w′. For a given p′ (w′), all processing times
(weights), pi (wi), are randomly drawn from the uniform distribution [p′ − 0.1p′, p′ +
0.1p′] ([w′− 0.1w′, w′+ 0.1w′]). For example, p′ = 100 means that all the job lengths,
pi, are randomly drawn from the uniform distribution [100 − 10, 100 + 10]. This
indicates a ten percent variation in processing times. Such an assumption is reasonable
in real-world applications because the processing times of jobs on a production line
often exhibit some degree of variation.

The platform of our experiments is a personal computer that contains an Intel
Pentium 75 processor and runs MS-DOS 6.2. All the programs are coded in Turbo
Pascal 6.0. Tables 2–5 display the numerical results. For each parameter combina-
tion, 12 objective values are listed for all possible RULE × LIST pairs. Besides, we
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Table 3

Numerical results for s = 500 and n = 20.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 6304.15 4807.89∗ 3824.19∗ 1671.08
RULE1, SWPT 6259.10 4922.49 3920.09 1715.72
RULE1, LPT 6308.85 4821.18 3853.32 1679.34
RULE1, SPT 6254.40∗ 4907.74 3871.92 1710.37
RULE1, LW 6286.15 4916.87 3906.86 1704.23
RULE1, SW 6278.30 4818.16 3836.68 1681.63
RULE2, LWPT 6304.15 4813.10 3826.13 1668.98∗

RULE2, SWPT 6259.10 4918.23 3920.24 1715.55
RULE2, LPT 6308.85 4834.14 3857.70 1679.16
RULE2, SPT 6254.40∗ 4907.74 3871.92 1700.69
RULE2, LW 6286.15 4910.27 3907.97 1709.12
RULE2, SW 6278.30 4819.40 3836.59 1682.32
EQUAL W AV G 6254.40 4782.91 3837.49 1672.71
EQUAL W MIN 6254.40 4659.33 3749.47 1634.29

Table 4

Numerical results for s = 50 and n = 100.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 7706.68 7609.11 3040.94 2244.61
RULE1, SWPT 7462.55 7374.40 3023.33 2310.07
RULE1, LPT 7742.37 7646.22 3046.20 2240.97∗

RULE1, SPT 7426.82∗ 7337.13∗ 3018.05∗ 2298.52
RULE1, LW 7574.22 7484.05 3033.05 2302.99
RULE1, SW 7587.10 7500.85 3031.20 2251.14
RULE2, LWPT 7706.68 7609.11 3040.94 2250.04
RULE2, SWPT 7462.55 7374.40 3023.33 2307.61
RULE2, LPT 7742.37 7646.22 3046.20 2253.24
RULE2, SPT 7426.82∗ 7337.13∗ 3018.05∗ 2298.52
RULE2, LW 7574.22 7484.05 3033.05 2302.79
RULE2, SW 7587.10 7500.85 3031.20 2253.51
EQUAL W AV G 7426.82 7337.13 3018.05 2230.09
EQUAL W MIN 7426.82 7337.13 3018.05 2169.22

Table 5

Numerical results for s = 50 and n = 20.

RULE, LIST p′ = 100 p′ = 100 p′ = 10 p′ = 10
w′ = 10 w′ = 1 w′ = 10 w′ = 1

RULE1, LWPT 1610.45 1569.60 630.01 473.78∗

RULE1, SWPT 1571.05 1544.70 626.09 487.67
RULE1, LPT 1619.95 1583.55 630.77 477.60
RULE1, SPT 1561.55∗ 1530.75∗ 625.34∗ 486.05
RULE1, LW 1594.45 1562.35 628.27 486.21
RULE1, SW 1589.95 1550.20 627.94 478.25
RULE2, LWPT 1610.45 1569.60 630.01 476.33
RULE2, SWPT 1571.05 1544.70 626.09 487.09
RULE2, LPT 1619.95 1583.55 630.77 475.46
RULE2, SPT 1561.55∗ 1530.75∗ 625.34∗ 486.05
RULE2, LW 1594.45 1562.35 628.27 487.23
RULE2, SW 1589.95 1550.20 627.94 478.58
EQUAL W AV G 1561.55 1530.75 625.34 472.97
EQUAL W MIN 1561.55 1530.75 625.34 463.17
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have two values that are categorized as EQUAL W AVG and EQUAL W MIN. The
EQUAL W AVG and EQUAL W MIN values are obtained by applying the O(n2)
algorithm for w =

∑n
i=1 wi and w = minni=1{wi}, respectively. For each column

of the table, the entries with an asterisk denote the objective value output by the
heuristic algorithm, H.

It is not hard to see that the EQUAL W MIN values serve as lower bounds for
H values. An analysis of Tables 2–5 shows that the results delivered by algorithm
H are quite close to that delivered by the polynomial algorithm. The largest relative
percentage deviation between H and EQUAL W MIN occurs when n = 100, s =
500, p′ = 10, and w′ = 10, and the value is around 3.61 percent, which is much smaller
than the assumed 10 percent deviation among the data instances. In other words,
the effectiveness of algorithm H in producing near-optimal solutions is convincingly
evident. Detailed observations further show some interesting properties:

1. When the set-up time, s, is relatively small, the impact of the weight, wi, is
alleviated. In Tables 4 and 5, the cases in which EQUAL W AVG = EQUAL W MIN
indicate that all batches contain exactly one job and that the effect of the weights is
null.

2. For most of the data instances (or columns), the minimal objective values for
H occur when using RULE1.

3. For a specific list-scheduling policy, the difference between the objective values
for RULE1 and RULE2 is small.

Finally, the above numerical results show no preference to any specific list-schedul-
ing policy. Therefore, we do not expect to obtain satisfactory solutions by simply
applying a specific combination of RULE×LIST . Another supporting argument for
employing algorithm H is that the running sessions take less than three seconds.

5. Conclusions. The problems 1//(
∑
wjEj +

∑
Db/B), 1/B ≥ U/(

∑
wjEj +∑

Db/B), 1/B ≤ U/(
∑
wjEj +

∑
Db/B), and 1/s = 0, B ≤ U/(

∑
wjEj +

∑
Db/B)

have been shown to be strongly NP -hard. The problems 1/B ≤ 2/(
∑
wjEj +∑

Db/B) and 1/s = 0, B ≤ 2/(
∑
wjEj +

∑
Db/B) have been proved to be ordi-

nary NP -hard. Algorithms with O(n2) running times have been derived for the cases
when all weights are equal or all processing times are equal. Thus, the computational
complexities of all special cases of the problem in which all weights or all processing
times are equal have been resolved. A dynamic programming algorithm has been
presented for the case with a limited number of batches. A heuristic approach has
been suggested for the general problem. The numerical results reveal the practical
significance of this algorithm in producing near-optimal solutions quickly.

An interesting problem for further research is one for which there is a natural
restriction that each batch can include no more than a given number of jobs. The
complexity aspects of this problem are yet to be studied. However, our dynamic
programming algorithm DP and heuristic algorithm H can easily be modified to
solve this problem. These algorithms can also be adopted for the problem in which,
besides the job weights, the batch weights are given and the total weighted batch
delivery time is included in the objective function.

Acknowledgments. The authors wish to thank the referees for their construc-
tive comments and helpful discussions of the presented model.
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