"SINGLE MACHINE SCHEDULING TO
MINIMIZE TOTAL WEIGHTED
LATE WORK"

by
A.M.A. HARIRL*
C.N. POTTS**
and
Luk VAN WASSENHOVE#*#**

N° 92/29/TM

* Department of Statistics, King Abdul-Aziz University, Jeddah,
Saudi Arabia.

** Faculty of Mathematical Studies, University of Southampton, Southampton, England.

*** Professor of Operations Management and Operations Research, INSEAD, Boulevard de Constance,
Fontainebleau 77305 Cedex, France.

Printed at INSEAD,
Fontainebleau, France

SINGLE MACHINE SCHEDULING TO
MINIMIZE TOTAL WEIGHTED
LATE WORK

AM.A. Hariri

Department of Statistics, King Abdul-Aziz Unsversity, Jeddah, Saudi Arabia

C.N. Potts

Faculty of Mathematical Studies, University of Southampton, U.K.

L.N. Van Wassenhove

INSEAD, Fontainebleau, France

In the problem of scheduling a single machine to minimize total weighted late
work, there are n jobs to be processed for which each has an integer processing
time, a weight and a due date. The objective is to minimize the total weighted
late work, where the late work for a job is the amount of processing of this job
which is performed after its due date. An O(nlogn) algorithm is derived for the
preemptive total weighted late work problem. For non-preemptive scheduling, ef-
ficient algorithms are derived for the special cases in which all processing times
are equal and in which all due dates are equal. A pseudopolynomial algorithm is
presented for the general non-preemptive total weighted late work problem. Also, a
branch and bound algorithm in which lower bounds are obtained using the dynamic
programming state-space relaxation method is proposed for this general problem.
Computational results with the branch and bound algorithm for problems with up
to 700 jobs are given.

Subject elassification: Scheduling: single machine, weighted late work, branch and
bound algorithm.

The problem of scheduling a single machine to minimize total weighted late
work may be stated as follows. Each of n jobs (numbered 1,...,n)is to be processed
on a single machine which can handle only one job at a time. Job i ({ =1,...,n)
becomes available for processing at time zero, requires a positive integer processing
time p;, has a positive weight w; and has a positive integer due date d;. In the
preemptive version of this problem, processing may be interrupted and resumed at
a later time, but in the non-preemptive problem no interruption in the processing
of a job is allowed. We assume that jobs are numbered in non-decreasing order of
their due dates (EDD order) so that d; < ... £ dg, and w; 2 w4y if d; = diy
(f =1,...,n —1). Given a schedule o that defines the completion time Ci(c) of
job ¢ (i =1,...,n), the late work V(o) for job ¢, which is the amount of processing
performed on ¢ after its due date, is easily computed. When no ambiguity results,
we abbreviate C;(¢) and V;(o) to C; and V; respectively. If V; = 0, then job i is
early; if 0 < V; < pi, then job ¢ is partially early; alternatively, if V; = p;, then job :
is late. We refer to p; — V; as the early work for job ¢. The objective is to schedule
the jobs so that the total weighted late work Y 7, w;V; is minimized.

Problems which involve the scheduling of jobs with due dates on a single ma-
chine to minimize total cost have been widely studied in the literature. Two of these
are related to the non-preemptive total weighted late work problem. Firstly, in the
total weighted tardiness problem, which is (unary) NP-hard (Lawler (7}, Lenstra et
al. [9]), the cost of scheduling job i (i = 1,...,n) to be completed at time C; is given
by its weighted tardiness w;T; = w, max{C; — d;,0}. Clearly, w;V; = w; min{T}, p;}
for non-preemptive scheduling. An effective branch and bound algorithm which
solves total weighted tardiness problems with up to 40 jobs is given by Potts and
Van Wassenhove [10]. Secondly, in the weighted number of late jobs problem, the
cost associated wi.h job i is w;U;, where U; = 1 if C; > d; and U; = 0 otherwise.
A pseudopolynomial dynamic programming algorithm for this (binary) NP-hard
problem (Karp [5]) is given by Lawler and Moore [8]. Potts and Van Wassenhove
[11] present dynamic programming and branch and bound algorithms which solve
weighted number of late jobs problems with up to 1000 jobs.

The total weighted late work problem is first studied by Blazewicz [2]. He
shows that the problem of preemptively scheduling jobs with release dates on iden-
tical parallel machines can be solved using linear programming and is hence poly-
nomially solvable. Potts and Van Wassenhove [12] derive an O(nlogn) algorithm
for the preemptive single machine problem with unit weights. They also show that
the corresponding non-preemptive problem is (binary} NP-hard and they derive a
pseudopolynomial dynamic programming algorithm which enables problems with
up to 10000 jobs to be solved.

The total weighted late work problem has applications in information pro-
cessing. In this context, a job is a message carrying an amount of information
proportional to its length. All information received after a given due date is useless
and is referred to as information loss. Total weighted information loss is minimized
by solving a total weighted late work problem. More generally, applications occur
in any situation that involves a perishable commodity which deteriorates after a
given due date.

This paper derives algorithms for the preemptive and non-preemptive total
weighted late work problems. The remaining sections are organized as follows. Sec-
tion 1 derives an O(n log n) algorithm for the preemptive problem, while subsequent
sections deal with non-preemptive scheduling. Some special cases for which poly-
nomial time algorithms are available are analyzed in Section 2. In Section 3, after
deriving a key result on the structure of an optimal sequence, a pseudopolynomial
dynamic programming algorithm is given. Subsequent sections of the paper are de-
voted to the derivation and computational testing of a branch and bound algorithm.
Section 4 uses the recursion of Section 3 to derive, through the application of the
dynamic programming state-space relaxation technique, a lower bounding scheme.
Also included is the description of a heuristic which uses dynamic programming to
generate an upper bound. Reduction tests, whereby jobs are discarded from the
problem because they are either necessarily early or necessarily late, are given in
Section 5. Section 6 analyzes various structural properties of the problem which
enable the lower bounding scheme to be implemented more efficiently. Full details
of our branch and bound algorithm are given in Section 7. Section 8 reports on com-
putational experience with the algorithm and some concluding remarks are given
in Section 9.

1. The preemptive problem

This section derives an O(nlogn) algorithm for the preemptive scheduling
problem. For the preemptive problem, whenever a job is being processed at its
due date, it is preempted at this point and processing resumes at some arbitrary
later time after the largest due date. Thus, wo specify a solution of the problem, it
is sufficient to find a schedule of early work up to the largest due date, since any
remaining processing can then be arbitrarily scheduled as late work.

Our algorithm uses backward scheduling, where at each decision point ¢, early
work on a job having the largest weight is scheduled. In the formal description
below, S represents the set of jobs for which some processing remains to be scheduled
and the current value of p; represents the unscheduled processing for job 1 (z =
1,...,n).

Preemptive Scheduling Algorithm
Step 1. Renumber the jobs in EDD order, set 5 = {1,...,n} and set t = d,,.

Step 2. Find the set A, = {i|i € S;d; > t} of jobs available to be completed at time
t and choose j € A, with w; as large as possible. If possible, choose job k, with k
chosen as large as possible, such that t — p; < di <t and set s = di; otherwise set
s = max{t — p;,0}.

Step 3. Schedule t — s units of processing of job j in the interval [s,t], set p; =
pj—(t—s)andsett=s Ifp; =0,set S=5—{j}. f S =@ or t =0, compute
the total weighted late work Y_;_, wp; and stop. Otherwise, if d; < ¢ for all 1 € S,
set t = max;es{d;}. Go to Step 2.

We claim that the Preemptive Scheduling Algorithm generates at most n pre-
emptions. To justify our claim, we note that a preemption occurs when less than
p; units of processing of job j are scheduled in Step 3. This occurs either when
t—pj <di <tforsomek(k=1,...,n-1)or when t—p; < 0 < ¢; thus, our claim
is established. If desired, the number of preemptions may be reduced to at most
n — 1 by rescheduling all early work in EDD order and eliminating any preemption
at time d,, by appropriate scheduling of late work to start at time d,,.

Since at most n preemptions are generated by the Preemptive Scheduling Algo-
rithm, Steps 2 and 3 of the algorithm are executed at most 2n times. It is apparent,
therefore, that the algorithm requires O(n logn) time. Note also that the Preemp-
tive Scheduling Algorithm remains valid if processing times and due dates become
arbitrary positive real numbers.

Lastly in this section, we prove that the algorithm generates an optimal solu-
tion.

Theorem 1. The schedule generated by the Preemptive Scheduling Algorithm
minimizes the total weighted late work.

Proof. Consider an optimal schedule 7* and compare it with a schedule 74 gener-
ated by the Preemptive Scheduling Algorithm. We assume that in 7*, any process-
ing scheduled before time d, is early work; otherwise it can be rescheduled after
time d, without affecting the total late work. It is also assumed that #* has a
finite number of preemptions: we observe that an optimal schedule obtained from
the linear programming algorithm of Blazewicz has this property. We show that a
finite sequence of transformations of #*, each of which does not increase the total
weighted late work, yields the schedule 74.

Suppose that 7* and 74 are not identical in the time interval [0,d,]. Let ¢
be chosen as small as possible so that these schedules are identical in the interval
[t,d.]. In 74, suppose that processing on job j is scheduled in the interval [s,1]
and not processed immediately before time s. (The machine cannot be idle just
before time ¢ in the schedule 74 because if it were, the mechanics of the Preemptive
Scheduling Algorithm ensure that no early work is available, so the machine would
also be idle in 7* immediately before time ¢, thereby contradicting the definition
of t.) Consider first the case that in #*, the machire is idle in the interval [r,1],
but is not idle immediately before time r. Let ¢ = max{r,s}. We transform =* by
moving ¢ — ¢ units of processing of job j into the interval |g, t], where this processing
is originally scheduled before time ¢ or after time d,. Since the processing moved
into (g, t] is completed by time d; (the Preemptive Scheduling Algorithm would not
schedule job ; in the interval {s, t] otherwise), this transformation does not increase
the total weighted late work. We now consider the alternative case that in 7*, job i
(i #) is processed in the interval [r,t] and not processed immediately before time
r. We transform =* by interchanging the t — ¢ units of processing of job ¢ scheduled
in [g,t] with ¢ — ¢ units of processing of job j which are originally scheduled before
time g or after time d,. Since, in the Preemptive Scheduling Algorithm, jobs ¢ and

j are candidates for scheduling immediately before time ¢, job j is selected because
wj 2 w;. Any interchange of processing of job t with early work for job j (scheduled
before time q) leaves the total weighted late work unaltered. Furthermore, any
interchange of processing of job i with processing which corresponds to late work
for job j decreases the total weighted late work by w; — w; per unit of interchange.
Thus, this transformation does not increase the total weighted late work either. In
both cases, the transformed schedule, which is also optimal, is identical with x4
in the interval [¢,d,}. Since #* and 74 each have a finite number of preemptions,
repetition of this argument shows that an optimal schedule 74 is obtained after a
finite number of transformations of #*. [J

2. Special cases

Henceforth, we consider non-preemptive scheduling. In this section, we present
an O(n) algorithm for the case of identical due dates and an O(n?) algorithm for
the case of identical processing times.

We consider first the case of identical due dates for whichd; = dfori=1,...,n,
where d is a positive integer. We assume that d < -, p;; otherwise, any sequence
is optimal. Recall that jobs with equal due dates are numbered in non-increasing
order of weights. Thus, w; > ... > w,. The following result provides a class of
optimal sequences.

Theorem 2. For the case of identical due dates, if j is chosen so that .—1 pi <

d< Z,-:l pi, then any sequence in which jobs 1,...,5 — 1 are scheduled before job
j and jobs j + 1,...,n are scheduled after job j is optimal.

Proof. Suppose that the Preemptive Scheduling Algorlthm is applied. It schedules
all the processing of jobs 1,...,7 — 1 and d — E‘ , Pi units of processing of job
j as early work. By schedulmg jobs 1,...,7 — 1 (in any order) in the interval
[0, Z,_l pi] and then the early work for job j in the interval {372 pi, d], we still
have an optimal preemptive schedule. A non-preemptive schedule is obtained by
appending any late work for job j, followed by jobs j+1,...,n (in any order). Since
this non-preemptive schedule has the same total weighted late work as the optimal
preemptive schedule, it is an optimal non-preemptive schedule. [J

To complete our analysis of the case of identical due dates, we show that
job j of Theorem 2 can be found (without renumbering the jobs) in O(n) time.
We assume that all weights are distinct: this can be achieved, if necessary, by
perturbing the weights. Let w; be the median weight which is found in O(n) time
(Blum et al. [3], Schonhage et al. [13]). Also, let A~ = {h|lws < w;}, A = {i} and
A% = {h|lws > w;}. Either), .4+ pn > d in which case the search for job j is
restricted to A* while the jobs of A~ and A are late; or 3, 4- Pr > Dp_ Pa—d
in which case the search for job j is restricted to A~ while the jobs of A and A™ are
early; or 3,44 Ph < d < Yon_; Ph— Dpea- Pa in which case the search ends with

J =1 while the jobs of A* are early and the jobs of A~ are late. To continue the
search in the former cases, late jobs are discarded immediately, whereas early jobs
are discarded after their processing times are subtracted from d. Furthermore, the
search for job j is restricted to a subset containing at most n/2 jobs. Reapplying the
procedure requires one half of the time required by the first application and restricts
the search to a subset containing at most n/4 jobs. After O(logn) applications of
the procedure which are carried out over subsets which contain at most n, n/2, n/4,
... jobs, job j is found in O(n) time. It is now clear from Theorem 2 that the case
of identical due dates is solvable in O(n) time.

We consider now the case of identical processing times for which p; = p for
i = 1,...,n, where p is a positive integer. If job ¢ (i = 1,...,n) is sequenced in
position j (j = 1,...,n), then it has completion time jp from which its weighted
late work is given by

cij = wy min{max{jp - d;,0},p;}.

It is now apparent that, using the algorithm of Lawler [6], an optimal sequence may
be found in O(r?) time from the solution of a linear assignment problem with costs
¢;j. Thus, the case of equal processing times is solvable in O(n®}) time.

3. A dynamic programming algorithm

Henceforth, the general problem of non-preemptively scheduling jobs on a single
machine to minimize the total weighted late work is considered. In this section,
we derive a pseudopolynomial dynamic programming algorithm for this problem.
The algorithm relies on the closeness of an optimal schedule of early and partially
early jobs to an EDD sequence; this issue is discussed first. Consider the following
instance. There are two jobs for which p; =3, w; =1,d; =5, p =4, w, = 3 and
d2 = 6. The total weighted late work for the sequence (2,1} is 2, which is less than
the value of 3 that is given by EDD sequence (1,2). Thus, in contrast to the total
late work problem where w; = 1 (i = 1,...,n), we cannot assume that early and
partially early jobs are sequenced in EDD order.

Clearly, an optimal schedule is specified by a sequence of early and partially
early jobs which we call a non-late sequence; any late jobs can be appended to this
sequence in an arbitrary order. Job ¢ is deferred (from its EDD position) in a non-
late sequence o if it is sequenced after a job having a due date larger than d;. If job
i is sequenced immediately after job j in o, where d; > d;, then ji forms a reversed
peirin o,

The following result establishes the ordering of jobs with the same due date in
an optimal non-late sequence o. It also shows we may assume that jobs of o are
almost in EDD order in the sense that for each job j of o, at most one job with a
smaller due date is sequenced after it.

Theorem 3. There exists an optimal non-late sequence o such that jobs of o with
the same due date are sequenced in non-increasing order of their weights and, for

each job j of o, at most one job having a due date smaller than d; appears after j
ino.

Proof. Let o be any optimal non-late sequence. We show that a finite sequence of
transformations of o, each of which does not increase the total weighted late work,
yields an optimal non-late sequence which satisfies the conditions of the theorem.
Suppose that o does not satisfy the conditions of the theorem. We consider first
the case that some job j is sequenced before job i in ¢, where d; = d; and w; > w;.
It is apparent that job j is early in o since if it were partially early, then job @
would be late. Firstly, suppose that Vi(¢) > p;. Consider the effect of removing
job j from ¢ so that it is deemed to be late. The weighted late work for job ¢
decreases by w;p; to give a decrease in the total weighted late work of at least
pj(wi — w;) > 0. However, this contradicts the choice of o as an optimal non-late
sequence. Therefore, 0 < Vi(o) < p;. Consider now the non-late sequence ¢’ which
is obtained from o by removing job j from its original position and inserting it
immediately after job i. Clearly, Vi(¢'} = 0 and V;(¢') = V(o). Furthermore, only
job j has a later completion time in ¢' than in ¢. Thus, we deduce that

wVi(o) + w;Vi(o) — wiVi(o') — w; V(o) = (wi — w;)Vi(o) 2 0

which shows that ¢’ is an alternative optimal non-late sequence. By repeating this
argument, an optimal non-late sequence results in which jobs having the same due
date are sequenced in non-increasing order of their weights.

Alternatively, suppose that o is an optimal non-late sequence in which jobs
having the same due date are sequenced in non-increasing order of their weights,
but does not satisfy the conditions of the theorem. Choose the last job j of ¢ which
is sequenced before jobs i and ', where d; < d; and di < d;. We assume without
loss of generality that job ¢ is sequenced before job i’ in ¢. From the inequality
Ci(a) < dj, which is valid since otherwise job ¢’ would be late in o, we deduce
that Ci(c) < d;. Consider now the non-late sequence ¢’ which is obtained from
o by removing job ; from its original position and inserting it immediately after
job i. We observe that Cj(¢’') = Ci(c) < d;. Since no job is completed later in
o' than in ¢ except job j which has zero late work in ¢ and ¢’, it is clear that o'
is also an optimal non-late sequence. Furthermore, o' also has the property that
jobs with the same due date are sequenced in non-increasing order of their weights.
By repeating this argument, an optimal sequence satisfying the conditions of the
theorem is obtained after a finite sequence of transformations of o. [

We now proceed with the derivation of our pseudopolynomial dynamic pro-
gramming algorithm. It generalizes the algorithms of Lawler and Moore for the
problem of minimizing the weighted number of late jobs and of Potts and Van
Wassenhove [12] for the total late work problem.

We first show how Theorem 3 allows us to perform a structured search for
an optimal non-late sequence. We restrict our search to EDD-mezimal non-late
sequences for which the interchange of jobs j and i in any reversed pair ji results in

an increase in the total weighted late work. Note that if ji is a reversed pair in an
EDD-maximal non-late sequence o, then job ; is early and job : is partially early.
To justify this assertion, we observe that if job j is completed after time d;, then
d; > di shows job i to be late and hence not in o; thus, job j is early. Furthermore, if
job 1 is early, then jobs j and ¢ remain early if they are interchanged which implies
that ¢ is not EDD-maximal; thus, job i is partially early. Thus, if job ¢ of the
reversed pair ji is completed at time ¢, then ¢ € Aj;, where

Ajp={ildi<dj;di<t<di+pi;t=1,...,7-1}.

In our structured search, jobs are considered in natural (EDD) order 1,...,n
Job i can either be declared late, be declared early or partially early and not de-
ferred, or be deferred. Suppose that job ¢ is deferred to be sequenced immediately
after job j, where d; > d; and consequently ; > ¢{. Theorem 3 ensures that all non-
late jobs amongst i + 1,...,J are sequenced in their natural order. Thus, at any
stage of the procedure, there is at most one job which is deferred, but not currently
sequenced.

Our dynamic programming algorithm utilizes this search procedure. In addi-
tion to the variable j which indicates that jobs 1,...,J only are considered, the
algorithm uses a state-space that consists of (t,1). The last element specifies which
job, if any, is deferred: if ¢ = 0, there is no deferred job; however ¢ € {1,...,5}
indicates that job i is deferred and will be sequenced immediately after one of
the jobs j + 1,...,n. Also, t represents the time at which non-late jobs amongst
{1,...,7} - {{} are completed. The dynamic programming recursion is defined
on values f;(¢,:) which represent the minimum total weighted late work for jobs
1,...,7 when non-late jobs amongst {1,...,j} — {t} are completed at time ¢, where
any deferred job i contributes w;p; in the computation of f;(t,1). (An equivalent al-
gorithm can be derived in which a deferred job i has a zero contnibution in f,(t z))
Thus, for each j (j = 1,...,n}, fj(t,1) is defined for ¢ = T and 1 =0,.
where T; = }:h=1 Dh-

Our recursion equations are:

mln{f] l(t 0)+w1p11 fJ l(t Pj))
+w; max{t - d;,0}, mlnaeA,,{f; 1(t = pj = pi, 1)
£i(2,0) = ¢ twi(t —di - pi)}} fort < d; +p;,
min{f;-1(¢,0) + w;p;, min;e a;, { fj-1(t — pj ~ pi, 1)
{ +w.-(t-—d.-—p,-)}} for t > d; + p;;
1 _1(t, 1) + w;p;, fi-1(t — py,1 fort < d;, .
fj(t,i)= {mln{fJ 1(') w;Dp; fJ l(P ')} T —L---,J"'l)
0o for t > d;;
_ fi-1(t,0) + w;p; fort < dj,
fj(tv]) = ! ’ ’
for t > d;;

where fo(0,0) = 0 and all other initial values are set to infinity.

Some explanation of these recursion equations is appropriate. In the compu-
tation of f;(t,0) for t < d; + p;, the three terms in the minimization correspond
to the decisions that job j is late, job j is scheduled in the interval [t — p;,¢] to be
non-late, and job ; and the deferred job ¢ are sequenced successively in the interval
[t —pj —pi,t]- In the latter case, the definition of A;, ensures that job j is early and
job 1 is partially early, while the weighted late work w;(t — d;) of job i is added and
the contribution w;p; assumed in f;_;(¢t — p; — pi,?) is subtracted from the function
value. When t > d; + p;, the computation is similar except that the second term,
which assumes that job j is non-late when completed at time ¢, is deleted. For
fi(t,1), which is defined for ¢ < d; since otherwise job ¢ must be late, the cases
that job j is late or is early are considered (job j cannot be partially early when
completed at time t since t < d; < d;). Finally, the computation of f;(t,5), which
is defined for ¢t < d; since otherwise job j must be late, sets job j to be deferred.

The recursion equations for f;(t,i) are solvedfor j = 1,...,n,t =0,...,T; and
i=0,...,j after which mins=o, . 1, {fn(t,0)} provides the minimum total weighted
late work. Since |Aj¢| < n, our dynamic programming algorithm requires O(n?T,)
time. This establishes that the total weighted late work problem is pseudopolyno-
mially solvable because T, = 3 _,_, Pa.

In Sections 5 and 6, various devices are presented which help to reduce the time
and storage requirements of the dynamic programming algorithm. Even with these
devices, however, the algorithm is awkward to implement and storage requirements
are substantial. As an alternative, we propose a branch and bound algorithm in
which the lower bounds are derived, using the dynamic programming state-space
relaxation method, from the recursion given above. The remainder of the paper is
devoted to a description and an evaluation of our branch and bound algorithm.

4. Lower and upper bounds

In this section, dynamic programming is used to establish lower and upper
bounds on the minimum total weighted late work; these bounds are used in our
branch and bound algorithm. Firstly, we derive a lower bounding scheme by ap-
plying the dynamic programming state-space relaxation method to the recursion
of the previous section. Dynamic programming state-space relaxation is a tech-
nique proposed by Christofides et al. [4] for routing problems and is developed by
Abdul-Razaq and Potts [1] for single machine scheduling. The method maps the
state-space of a dynamic programming recursion onto a smaller state-space and
computes a lower bound by performing the recursion on the smaller state-space.

In addition to the state variable j, the recursion of the previous section uses
a state-space consisting of (¢,1), where the value of ¢ defines any deferred job. We
relax this state-space by mapping (¢, 1) onto ¢, i.e., the mapping discards the state
variable defining any deferred job.

Our relaxed dynamic programming recursion is defined on values f}(t). To en-
sure that a valid lower bound is obtained, we require that f(t) < mini=o,...; { f;(¢,1)}.

By defining
min{ f]_,(t) + w;pj, f;_;(t - p;} + wjmax{t — d;,0},
mine 4, {fj—1(t = pj — pi) + wi(t —d; — p;)}} for t < d; + p;,

min{f]_;(t) + w;p;, minie,, {f_1(t - p; — pi)
+wi(t —di — pi)}} for t > d; + pj,

A0 =

where f;(0) = 0 and all other initial values are set to infinity, a straightforward
inductive argument shows that this requirement is satisfied. We note that in the
computation of f(t), decisions may be taken to schedule a job twice, the first time
in its EDD position and the second time as a deferred job.

The recursion equations for f/(t) are solved for j =1,...,nand t =0,...,T;
after which the lower bound is computed using LB = min¢=o,...,7, {f0(t)}. The
computation of the lower bound requires O(n?T,) time. A backtracking procedure
yields the corresponding non-late ‘sequence’. If this ‘sequence’ contains no repeated
job, then it is optimal. Otherwise, the branch and bound algorithm described in
Section 7 is applied.

Included in Section 6 is the derivation of a procedure that allows jobs to be
eliminated from A;,. Results of initial experiments show |4;¢| to be very small for
all ; and t, after this procedure is applied. Therefore, for practical purposes, our
recursion for computing lower bounds resembles an O(nT,,) procedure, and is more
efficient than the O(n?T,,) dynamic programming algorithm of Section 3.

The following dynamic progremming heuristic is applied at the root node of
the search tree in our branch and bound algorithm. Our heuristic computes an
optimal solution to the problem in which deferred jobs are not allowed, i.e., early
and partially early jobs are constrained to be sequenced in EDD order. Let g,(i)
denote the minimum total weighted late work incurred when scheduling jobs 1,...,;
so that early and partially early jobs are sequenced in EDD order and the last of
these non-late jobs is completed at time ¢t. From the equations of Section 3 for
fi(¢,0), we obtain the following recursion:

min{gj_l(t) + w;p;,gj-1(t - p;)

gi-1(t) + w;p; fort > d; + p;

where ¢o(0) = 0 and all other initial values are set to infinity. After computing
gj(t)forj=1,...,nand t =0,...,T;, we obtain UB = minyo,..., 7, {gn(t)} as the
weighted late work for our approximate solution. Clearly, this heuristic requires
O(nT,) time. The substantial computational requirements are partly justified by
the results of initial experiments which show that the the heuristic generates an
optimal solution in many cases.

The two following sections present various devices which help to improve the
effectiveness of our branch and baund algorithm. Section 5 describes reduction
tests whereby jobs can be discarded from the problem. Also, we give a redundant

state elimination procedure which allows the recursions of this section to be solved
more efficiently. In Section 6, we derive a reversed pair elimination procedure which
restricts the cardinality of the sets A;;: in addition to reducing the computation
time for LB, there is a decreased likelihood that the ‘sequence’ corresponding to LB
contains repeated jobs and consequently the lower bound becomes tighter.

5. Reduction tests

5.1 Earliness test

For our earliness test, we establish conditions whereby jobs can be removed
from the problem because they are necessarily early when sequenced after all other
early and partially early jobs. Specifically, we aim to show, for some index j, that
jobs 7 + 1,...,n are early in at least one optimal schedule; we choose ; as small
as possible, subject to the conditions of the test. For the problem involving jobs
I,...,tonly (i = 1,...,n), we define recursively the latest completion time TL of
the last early or partially early job using

L _ mi L ; d -1
T; mm{T,_l =+ Pi, her{I}?f,i}{ r+ D }}1 (1)

where T = 0. (A justification for the use of this recursion is given below in the
proof of Theorem 4.) If jobs j + 1,...,n are necessarily early when sequenced in
EDD order after the last early or partially early job amongst 1,...,J, then clearly
J +1,...,n are early in at least one optimal schedule. The earliness test selects j
as small as possible, subject to

k
TF+ > pp<difork=j+1,...,n, (2)
h=j+1

and discards jobs j 4+ 1,...,n from the problem. We show next that an optimal
solution is obtained by appending jobs j + 1,...,n to an optimal non-late sequence
for the reduced problem.

Theorem 4. An optimal solution is obtained by applying the earliness test, solving
the reduced problem, and then inserting jobs j+1,...,n immediately after the last
early or partially early job of the optimal sequence for the reduced problem.

Proof. If the last early or partially early job of the reduced problem is completed
by time T;L , then clearly (2) allows jobs j+1,...,n to be inserted without increasing
the total weighted late work. Thus, it is sufficient to show that the last early or
partially early job amongst 1,...,; is completed not later than time TJ-L.

We consider three cases. Firstly, if TJ-L = ¥°J_, pi, then it is clear that jobs
1,...,7 are completed by time TJ-L. Secondly, if TJ-L = maX,=1,.,;{di + pi — 1}, then

10

any of the jobs 1,...,j is late if it is completed after time T}. Finally, suppose that
TJ.L = maxh=1,..i{ds +pa — 1} + 24 _;,, ps for some job i (i = 1,...,j — 1). The
last early or partially early job amongst 1,...,¢ is completed not later than time
maxXp=1,. ;{dr +ps —1}. Furthermore, after this last job is completed, a maximum
of 3 1_.41 p» additional units of processing are required to complete any further
early or partially early jobs amongst 1,...,j. Thus, the desired result holds for all
three cases. [J

5.2 Lateness test

Our lateness test gives conditions under which jobs can be removed from the
problem because they are necessarily late in any optimal schedule. Let LB; be
a lower bound on the total weighted late work when job j is constrained to be
early or partially early. (The computation of LB; using the Preemptive Scheduling
Algorithm is explained below.) If LB; > UB, where UB is obtained by applying our
dynamic programming heuristic of Section 4 (although any other upper bound on
the total weighted late work can be used), then in any optimal schedule job j must
be late. Thus, after the evaluation of its contribution w;p; to the total weighted
late work, job j is discarded to give a reduced problem. The test is applied for each
job j except those which, in the solution generated by the Preemptive Scheduling
Algorithm applied to the original problem, are early.

The computation of the lower bound LB, using the Preemptive Scheduling
Algorithm is described now. Since job j is constrained to be early or partially early,
it must be completed no later than time d; + p; — 1. To enforce this constraint,
we assign a large weight to job j and reset its due date to d; + p; — 1. The value
LB; is the minimum total weighted late work for the przemptive problem having
processing times p; = p; (i = 1,...,n), weights w}, = w; (i =1,...,n; 1 # j) and
w; =00, and due dates d; = d; (i=1,...,n; i #j)and d; = d; + p; — 1.

The following results justifies the use of our lateness test.

Theorem 5. An optimal solution is obtained by applying the lateness test to
eliminate some set L of jobs, solving the reduced problem, and then appending the
Jobs of L to the optimal sequence for the reduced problem.

Proof. For a fixed job j, it is sufficient to establish that LB; is a valid lower bound
on the total weighted late work for the (non-preemptive) constrained problem. Let
7 denote an optimal sequence for this problem which defines V;(x) as the late
work for job ¢ (i = 1,...,n). Suppose that n is evaluated with respect to the
data for the preemptive problem to give V/(7) as the late work for each job i.
Clearly, V/(z) = Vi(x) for 1 = 1,...,n and ¢ # j. Since by the constraint on job
J we have Cj(7) < d; + p; — 1, it follows that Vi(r) = 0 £ Vj(n). Therefore,
S wiVi(r) 2 S, wiV/(m) > LB;, where the final inequality holds because
LB; is the minimum total weighted late work for the preemptive problem. It is now
apparent that LB; is a valid lower bound for use in our lateness test.]

11

5.9 Redundant state elimination

In this subsection, we aim to improve the efficiency of the computation of the
lower and upper bounds described in Section 4. In particular, we show that the
range of values of t for which f](t) and g;(t) are computed can be restricted through
redundant state elimination. For each state variable j, we use the definition of latest
completion times in Section 5.1 to eliminate states for which ¢ > TjL. Thus, it is
sufficient to compute fi(¢) and g;(t) for j=1,...,nand t=0,... ,TJ-L.

Further state variables are eliminated as follows. Let TF (i = 1,...,n - 1)
denote the latest start time for the processing of jobs 1 + 1,...,n if each is to be
completed by its due date (when sequenced in EDD order). It is clear that TF is
computed from the backward recursion

TF = min{TE,,dit1} — Pi+1
where TE > d,,. It is convenient to set TF = T'X, where T! is obtained from (1).
After our earliness test is applied, it is easily verified that T, ,{‘ > d, and T,-E < T,L
(i=1,...,n-1).

When T_,-E > 0 for any job j, our redundant state elimination procedure restricts
the range of values of ¢ for which f}(t) and g;(t) are required in the solution of
subsequent recursion equations. More precisely, under the assumptions that define
the function values f(t) and g;(t), the values of the minimum total weighted late
work for any schedule in which jobs j + 1,...,n are early are respectively

0= pin 0] V=i, {s,0)

TV d g

If schedules having total weighted late work less than U; and V; are to be found,
jobs j +1,...,n cannot each be early. In such schedules, the last early or partially
early job amongst 1,...,] is, therefore, completed later than time TJ-E . Thus, after
calculation of U; and Vj, we assume f;(t) = oo and g;(t) = oo for ¢ = 0,...,TF,
and store fi(t) and g;(t) only for t = TJE +1,.. .,TJL. We note that the indices
t=20,... ,TJE are not considered further since the relevant recursions show that
fi(t) = oo and gi(t) = oo for t = 0,...,TJ-E when k > j. After U, and V, are
found, we compute the lower and upper bounds LB = minj=]},,_‘n{UjiTJE > 0} and
UB = minj=1,“_,,,{Vj|TJE > 0}.

6. Reversed pair elimination

. The analysis in this section establishes conditions under which j: cannot form
a reversed pair in an optimal EDD-maximal non-late sequence. These conditions
are used to eliminate jobs from the sets A;;. In addition to reducing computational
requirements for our lower bound, a reduction in |4 ;| often leads to a tighter lower
bound since the likelihood is reduced that the corresponding ‘sequence’ contains
repeated jobs.

12

Lemma 1. If ¢ is any non-late sequence containing a reversed pair ji, then o is
not EDD-maximal if at least one of the following conditions is satisfied:

(a) Ci(o) < d;;

(b) wi 2 wy;

(c) Ci(e) < min{(w;d; — widi)/(w; — wi),di + p;};

(d) di + pj < Ci(0) < d; + wip;/wj.

Proof. Let ¢’ be the non-late sequence obtained from ¢ by interchanging jobs :
and j, and let V(o) and V(o') denote the total weighted late work associated with
o and o’ respectively. We establish, whenever at least one of (&), (b), (¢} and (d)
holds, that ¢ is not EDD-maximal by showing V(¢)—V(¢') 2 w,Vi(0) —w;Vi(e') -
w;Vi(e') 2 0 which implies V(o) > V(o).

Consider first the case that condition (a} is satisfied. Clearly, C;(¢') = Ci(o) <
d; yields Vj(a') = 0. Also, since C;(¢') < Ci(c) we have Vj(¢') < V(o). We deduce
that V(o) — V(o') 2 wi(Vi(c) — Vi(¢')) = 0 when condition (a) is satisfied.

It remains to be shown that the lemma holds when Ci(¢) > d; and at least
one of (b), (c) and (d) is satisfied. When C;(o) > d;, the condition d; > d, shows
job i cannot be early in 0. Thus, it is partially early and

Vi(e) = Ci(o) - di. (3)
Since Cj(¢') = Ci(c), by definition we have
Vi(o') = min{Ci(¢) — d;,p;} < Ci(g) — d,. (4)
Noting that Ci(¢') = Ci(o) — p;, if Ci(¢) — p; < d;, we have
Vi(e') = 0. (5)
Alternatively, if C;(0) — p; > d; + 1, we have
Vi(e') = Ci(e} — p; — di. (6)
Firstly, suppose that C;(¢) < d; + p;. From (3), (4) and (5) we obtain
V(o) - V(o') 2 wi(Ci(o) — di) — w;(Ci(a} - d})
which shows that V(o) — V(o') > 0 either when w; > w; or when w; < w; and
Ci(o) < {wjd; — widi)/(w; — wi).
Alternatively, suppose that Ci(c) > di + p;. Using the inequality V;(¢') < p;
together with (3) and (6) we obtain
V(o) - V(c') 2 (wi — w;)p;

which shows that V(¢) — V(¢') > 0 when w; > w;. Also, we deduce from (3), (4)
and (6) that
V(e) = V(o") 2 wip; — w;(Ci(c) — d;)

13

which shows that V(¢) — V(¢') > 0 when Ci(¢) < d; + w;p;j/w;. Therefore,
V(e)~V(o') 2 0 either when w; > w; or when w; < w; and Ci(o) < d; + wip;/w;.

It is now clear from the analysis of the cases Ci(0) < d;+p; and Ci(o) > d; +p;
that if (b) holds, then V(o) > V(¢'). When w; < w; so that (b) is not satisfied,
it is apparent from the analysis of the case C;(¢) < d; + p; that if (c) holds, then
V(o) = V(o'), and from the analysis of the case Ci(o) > d; + p; that if (d) holds,
then V(o) 2 V(¢'). O

Apart from (b), the conditions of Lemma 1 depend on the position in o of
the reversed pair ji. However, using Lemma 1 and bounds on C;(¢), Theorem 6
establishes conditions which are independent of the position in ¢ of the reversed
pair ji.

Theorem 6. If o is any non-late sequence containing a reversed pair ji, then o is
not EDD-maximal if at least one of the following conditions is satisfied:

(@) dj > di +pi - 1;

(B) wi > wj;

(v) pj 2 pi — 1 and w;(d; — di) 2 pj{w; — w;);

(6} wj(d; — di} > max{p;(w; — wi), w;(pi — 1) — wip;}.

Proof. As o contains only early and partially early jobs, each having an integer
processing time and due date, we have

Cio)<di+pi—1 (M

since otherwise job i would be late. If (a) holds, then (7) yields Ci(o) < dj, so
the result follows from condition (a) of Lemma 1. Also if () holds, then the result
follows trivially from condition (b) of Lemma 1.

In the remainder of the proof we assume that (f) does not hold, so w; < w;.
Suppose next that () holds. Substituting p; — 1 < p; into (7) yields

Ci(e) < di + p;- (8)
Also, the inequality
pi(w; — w;) < w;(d; —di) (9)
of () implies that
di + p; < (wjd; — wid;)/(w; — wi) (10)

which, when combined with (8), shows that condition (¢) of Lemma 1 is satisfied.
Thus, we have established the result if condition () holds and (3) does not.

Finally, suppose that condition (é) is satisfied. As above, the inequality (9),
which is deduced from (6), implies (10). The other inequality of (),

wj(p;i — 1) — wip; < wyi(d; —di),

14

which, when combined with (7), shows that
C.-(a)Sd.--*-p.--lSd5+w;p,-/u'j. (11)

Now if Ci(¢) < d; + pj, then (10) shows that condition (c) of Lemma 1 holds.
Alternatively, if Ci(0) > d; + p;, then (11) shows that condition (d) of Lemma 1 is
satisfied. Thus, in both cases at least one condition of Lemma 1 holds to give the
required result. [J

Next, we establish a lower bound on the completion time of job ¢ of a reversed
pair ji in an EDD-maximal sequence.

Theorem 7. If o is an EDD-maximal non-late sequence containing a reversed pair
ji, then

C,'(O’) P min{l + [(wjdj - w.»d,-)/(w,- - wi)Jil + Ld, + w,-pj/wjj}. (12)
Furthermore, if p; > p; — 1, then

Ci(o) 2 1+ [(w;dj — widi)/(w; — wi)]. (13)

Proof. Since ¢ is an EDD-maximal sequence, none of the conditions of Lemma 1
are satisfied. If Ci(0) < d; + pj, then because (c) does not hold, we have

Ci(o) > (wjd; — widy)/(wj — w;). (14)
Similarly, if C;(o) > d; + p;, the violation of (d) yields
C.‘(O’) >d,>+w.<p,~/w,—. (15)

Since Ci(¢) < d; + p; or Ci(¢) > d; + pj, either (14) or (15) holds. Using the
integrality of C;(¢) and the lower bound given by the smaller of the right hand
sides of (14) and (13), we deduce inequality (12).

We now establish inequality (13) when p; 2 p; — 1. Combining Ci{o) < d; +
pi — 1, which holds because job i is non-late, with p; — 1 < p; yields Ci(o) < d; +p;.
Thus, (14) holds in this case, from which we use the integrality of C;(o) to obtain
(13). O

We explain next how Theorems 6 and 7 are used in a reversed pair elimination
procedure. Initially, each possible choice of job j and job i, where d; > d; and
d; > pj (if the latter inequality is.not satisfied, job ¢ is late when sequenced after
job j), defines a candidate reversed pair ji in an optimal EDD-maximal non-late
sequence. Many candidates are eliminated immediately because one of the condi-
tions of Theorem 6 holds. For candidates ji which are not eliminated, Theorem 7

15

defines a lower bound of the form C; > a;; on the completion time of job ¢ if jiis a
reversed pair of an EDD-maximal non-late sequence. Let LB;; be a lower bound on
the total weighted late work for the constrained problem in which ji is forced to be
a reversed pair, t.e., job i is constrained to be sequenced immediately after job j and
have a completion time which satisfies a;; < Ci < di +pi ~ 1. If ji forms a reversed
pair in an optimal sequence, then LB;; < UB, where UB is obtained by applying
our dynamic programming heuristic of Section 4 (although any other upper bound
on the total weighted late work can be used). Thus, if LB;; > UB, the reversed
pair jt cannot exist in an optimal non-late sequence and, hence, is eliminated as a
candidate.

It remains to define the lower bound LB;; on the total weighted late work for
the constrained problem which is used in the reversed pair elimination procedure.
We adopt a similar approach to that for obtaining lower bounds for use in the
lateness test. Since job j is constrained to be early and job : is constrained to be
completed not after time d; + p; — 1 (and not before time aj;), we enforce these
constraints by assigning large weights to jobs j and ¢ and resetting the due date of
job ¢ to d;i + p; — 1. Thus, to obtain LB;;, we solve the preemptive total weighted
late work problem having processing times p;, = ps (k = 1,...,n), weights w} = w
(h=1,....n;h#;h# jland v = w;- = oo and due dates d), =d, (h=1,...,n;
h # i) and d] = d;+p;— 1. If LB, is the total weighted late work for this preemptive
problem, obtained by applying the Preemptive Scheduling Algorithm of Section 1,
our lower bound is defined by LB;; = LB},- + wi(a;; — d;): since the late work for
job 1 is zero in the preemptive problem, but is at least a;; — d; in the constrained
problem, the final term in LBj; accounts for this difference. We now give a formal
justification the use of LB;; as a lower bound on the total weighted late work for
the (non-preemptive) constrained problem.

Theorem 8. No optimal EDD-maximal solution contains a reversed pair which is
eliminated by the reversed pair elimination procedure.

Proof. It is sufficient to establish that LBj; is a lower bound on the total weighted
late work for the constrained problem. Let o denote an optimal non-late sequence
for the constrained problem which defines V(o) as the late work for job h (k =
1,...,n), where Vi(¢) = ps if h does not appear in 6. The constraint a;; < C; <
d; + pi — 1 and the observation that aj; > d; implies job 7 is partially early in o.
Since job j is early in o, we obtain

wVi(o) + w;Vj(e) = w;Vi(o) = wi(Ci(o) — d;) = wi(aji — d;). (16)
Suppose that ¢ is evaluated with respect to the data for the preemptive problem to
give V,(0) as the late work for job h (h = 1,...,n). We have V/(c) = V/(a) =0
since jobs ¢ and j are early with respect to the due dates d; and d;, whereas V(o) =
Vi(o)for h=1,...,n, h #{ and h # j. Therefore, we deduce from (16) that

> waVilo) 2) waVi(e) + wilaji — di) 2 LB}; + wi(aji — di) = LB,
h=1 h=1

16

where the final inequality holds because LB},— is the minimum total weighted late
work for the preemptive problem. It is now apparent that LB,, is a valid lower
bound for use in our reversed pair elimination procedure. (]

In view of the above analysis, we modify each set A4;; so that it contains only
those jobs { such that ji remains a candidate after the reversed pair elimination
procedure is applied and such that a;; <t < d;+pi —1. The modified 4, is used in
the computation of our lower bounds and increases their effectiveness. Also, these
modified sets can be used in the dynamic programming algorithm of Section 3.

7. The branch and bound algorithm

In this section, we give full details of our branch and bound algorithm. Prior
to applying branch and bound, the earliness test of Section 5.1 is first applied.
Then, we use the dynamic programming heuristic of Section 4 (incorporating the
redundant state elimination procedure of Section 5.3) to generate an upper bound.
To economize on storage space, the recursion is used to obtain the value UB only,
with no attempt made to find a corresponding sequence of jobs. (The branch
and bound algorithm finds a sequence with total weighted late work of UB or less.)
Having obtained UB, the lateness test of Section 5.2 is applied to reduce further the
number of jobs. The final preprocessing step applies the reversed pair elimination
procedure of Section 6.

The branch and bound algorithm first computes the lower bound of Section 4
(using redundant state elimination and the modified sets 4;), and the correspond-
ing non-late ‘sequence’ of jobs is obtained. If there are no repeated jobs in this
non-late ‘sequence’, then it provides an optimal solution at the root node of the
search tree. QOtherwise, a repeated job i is found in the non-late ‘sequence’. A
binary branching rule constrains job i so that either it is sequenced in EDD order
or it is not in EDD order. When job i is sequenced in EDD order, ¢ is removed
from each set A;, and the recursion equations for f;(¢) are modified from those
given in Section 4 by deleting the expression f]_,(t) + w;p; which corresponds to
cases that job i is late or is deferred. Alternatively, when job i is not sequenced
in EDD order (it is either late or deferred), the values of f/(t) are computed using
fi(t) = fi_;(t)+w;p;. In either case, job { cannot again appear twice in a ‘sequence’
obtained from the lower bounding procedure.

For any node of the search tree in which the lower bound is not greater than
the current upper bound and the corresponding non-late ‘sequence’ is feasible, the
upper bound is updated and the node is discarded. A node is also discarded if its
lower bound exceeds the current upper bound. A newest active node search selects
a node from which to branch.

8. Computational experience
The algorithm was tested on problems with numbers of jobs ranging from

17

n = 100 to n = 700 in steps of 100. For each job ¢, an integer processing time p;
was generated from the uniform distribution [1,100] and an integer weight w; was
generated from the uniform distribution [1,10]. Two parameters d' and d* were
chosen to provide lower and upper bounds on the relative values of the due dates.
Having selected d' and d*, where d' € {0.2,0.4,0.6,0.8}, d* € {0.4,0.6,0.8,1.0} and
d' < d* and having computed P = }"_, p;, an integer due date d; was generated
from the uniform distribution [Pd', Pd*] for each job i. For each value of n, five
problems were generated for each of the 10 pairs of values of d' and d“. This yields
50 problems for each value of n.

Our algorithm was coded in FORTRAN V and run on a CDC 7600 com-
puter. Computational results given in Table 1 aim to demonstrate the accuracy of
the upper bound obtained from the dynamic programming heuristic, to assess the
effectiveness of the earliness and lateness tests and the reversed pair elimination
procedure, to gauge the ability of the lower bounding scheme to provide an optimal
solution at the root node of the search tree and to examine the overall effectiveness
of the algorithm through average computation times in seconds.

We first observe from Table 1 that our dynamic programming heuristic gener-
ates the minimum total weighted late work as an upper bound for all but 8 of the
350 test problems. Since the minimum total weighted late work can be achieved
only when there are no deferred jobs in an optimal solution, it is apparent that
most test problems have an optimal schedule in which non-late jobs are sequenced
in EDD order.

The accuracy of our upper bounds suggests that the lateness test and the re-
versed pair elimination procedure, which use the value UB, are likely to be effective.
Examination of the average number of jobs remaining after the earliness and late-
ness test are applied, shows that approximately 20% of jobs are eliminated by these
tests. A further study of results shows that almost all of these jobs are eliminated
using the lateness test. Since the parameter d* roughly measures the average num-
ber of late jobs and for our test problems the average value of d* is 0.8, the lateness
test eliminates almost as many jobs as is possible for a test of this type.

It is also evident from Table 1 that the reversed pair elimination procedure
leaves very few candidates to be considered. Since it is only candidate reversed
pairs which cause repeated jobs in the non-late ‘sequence’ corresponding to the
lower bound, this non-late ‘sequence’ is expected to be feasible or almost feasible.
Table 1 verifies our intuition, since over 90% of problems are solved at the root
node of the search tree with the lower bounding scheme generating a feasible non-
late ‘sequence’. For 28 of the 29 problems in which this non-late ‘sequence’ is not
feasible, a single branching which creates two search tree nodes in addition to the
root node solves the problem: for the other problem, four nodes are created in
addition to the root node.

The final column of Table 1 lists average computation times in seconds. Al-
though computation times become quite large for n = 600 and » = 700, our al-
gorithm, nevertheless, provides an effective method of solution. Its success is at-
tributed to the accurate upper bounds generated by our dynamic programming
heuristic, to the ability of the lateness test to eliminate jobs from the problem and

18

Table 1

Computational results

n NHO ANJR ANRP NSRN ACT

100 46 73 2.5 47 0.91
200 49 160 2.7 45 3.44
300 50 246 2.2 45 7.84
400 49 325 2.2 46 12.98
500 49 387 1.9 44 20.71
600 49 487 1.8 49 30.27
700 50 555 4.4 45 43.16

NHO: number of problems (out of 50) for which the dynamic programming

heuristic is optimal.

ANIJR: average number of jobs remaining after the reduction tests are ap-
plied.

ANRP: average number of candidate reversed pairs remaining after the re-
versed pair elimination procedure is applied.

NSRN: number of problems {cut of 50) solved at the root node of the search
tree.

ACT: average computation time in seconds.

19

to the lower bounding procedure which, through the aid of the reversed pair elimi-
nation procedure, enables an optimal solution to be generated at the root node of
the search tree in many cases.

9. Concluding remarks

We have established the computational complexity of preemptive and non-
preemptive scheduling on a single machine to minimize total weighted late work.
The preemptive problem is solvable in O{n logn) time using our algorithm of Sec-
tion 1. Also, through the use of Theorem 3 which shows that early and partially
early jobs are sequenced almost in EDD order, we have derived a dynamic program-
ming algorithm for the non-preemptive problem which requires pseudopolynomial
time. Since the non-preemptive total late work problem is already known to be
NP-hard, there is little hope of finding a polynomial algorithm.

This paper also gives a practical branch and bound algorithm for the non-
preemptive total weighted late work problem. The lateness test of Section 5 and
the reversed pair elimination procedure of Section 6 have a major influence on the
success of the algorithm. Armed with these devices to restrict the search, our lower
bounding scheme, derived using the dynamic programming state-space relaxation
method, produces an optimal sequence in many cases. Even if it does not solve the
problem at the root node, the branch and bound search tree is likely to be small
since all our test problems are solved after at most two branchings.

Acknowledgement

The research by the first author was supported by a grant from King Abdul-
Aziz University, Jeddah, Saudi Arabia. The authors are grateful to an anonymous
referee for suggestions on improving the structure of the paper.

References

[1] T.S. Abdul-Razaq and C.N. Potts, 1988. Dynamic Programming State-Space
Relazation for Single Machine Scheduling. Journal of the Operational Re-
search Society 39, 141-152.

[2] J. Blazewicz, 1984. Scheduling Preemptible Tasks on Parallel Processors with
Information Loss, Technique et Science Informatique 3, 415-420.

[3] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan, 1973. Time
Bounds for Selection, Journal of Computer and System Sciences 7, 448-
461.

[4] N. Christofides, A. Mingozzi and P. Toth, 1981. State-Space Relazation Pro-
cedures for the Computation of Bounds to Routing Problems, Networks 11,
145-164.

[5) R.M. Karp, 1972. Reducibility among Combinatorial Problems, in Complexity
of Computer Computations, J.W. Thatcher and J.W. Miller (eds.), Plenum
Press, New York, pp. 85-103.

20

[6] E.L. Lawler, 1976. Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York.

[7) E.L. Lawler, 1977. A ‘Pseudopolynomial’ Algorithm for Sequencing Jobs to
Minimize Total Tardiness, Annals of Discrete Mathematics 1, 331-342.

[8] E.L. Lawler, and J.M. Moore, 1969. A Functional Equation and its Application
to Resource Allocation and Sequencing Problems, Management Science 16,
77-84.

[9] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, 1977. Complezity of Ma-
chine Scheduling Problems, Annals of Discrete Mathematics 1, 343-362.

{10} C.N. Potts and L.N. Van Wassenhove, 1985. A Branch and Bound Algorithm
for the Total Weighted Tardiness Problem, Operations Research 33, 363-
377.

[11] C.N. Potts and L.N. Van Wassenhove, 1988. Algorithms for Scheduling a Sin-
gle Machine to Minimize the Weighted Number of Late Jobs, Management
Science 34, 843-858.

[12] C.N. Potts and L.N. Van Wassenhove, 1992. Single Machkine Scheduling to
Minimize Total Late Work, Operations Research 40, to appear.

[13] A. Schonhage, M. Paterson and M. Pippenger, 1976. Finding the Median,
Journal of Computer and System Sciences 13, 189-199.

21

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

