
Single-machine scheduling with trade-off between number of

tardy jobs and compression cost ∗

Yong He1, 2, †

1 Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China
2 State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, P.R. China

Qi Wei3 ‡

3 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, P.R. China

T. C. E. Cheng 4, §

4 Department of Logistics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

We consider a single-machine scheduling problem in which the job processing times are

controllable or compressible. The performance criteria are the compression cost and the

number of tardy jobs. For the problem where no tardy jobs are allowed and the objective

is to minimize the total compression cost, we present a strongly polynomial time algorithm.

For the problem to construct the trade-off curve between the number of tardy jobs and the

maximum compression cost, we present a polynomial time algorithm. Furthermore, we ex-

tend the problem to the case of discrete controllable processing times where the processing

∗This research was supported by the Teaching and Research Award Program for Outstanding Young Teachers

in Higher Education Institutions of the MOE, China, and the National Natural Science Foundation of China

(10271110). The third author was supported in part by The Hong Kong Polytechnic University under a grant

from the ASD in China Business Services.
†Email: mathhey@zju.edu.cn
‡Email: weiqi@nit.zju.edu.cn
§Corresponding author; email: LGTcheng@polyu.edu.hk

1

This is the Pre-Published Version.

time of a job can only take one of some given discrete values. We show that even some special

cases of the discrete controllable version with the objective of minimizing the total compres-

sion cost are NP-hard, but the general case is solvable in pseudo-polynomial time. Moreover,

we present a strongly polynomial time algorithm to construct the trade-off curve between

the number of tardy jobs and the maximum compression cost for the discrete controllable

version.

1 Introduction

Most classical scheduling problems assume that the job processing times are fixed, i.e., they are

determined a priori and cannot be modified by the scheduler. However, in real applications the

processing of a job often requires resources, such as manpower, facilities, funds, raw materials,

etc. By putting more resources into job processing, shorter job processing times may be accom-

plished. Hence, it is possible to compress jobs (control the job processing times) by incurring

extra costs. Scheduling problems with controllable processing times have received much atten-

tion from researchers in the last two decades. Work in this area was initiated by Vickson [11, 12]

and Van Wassenhove and Baker [13]. For the related work on machine scheduling problems with

controllable processing times, the reader is referred to the survey by Nowicki and Zdrzalka [9].

In this paper we consider a single-machine model of joint job sequencing and resource alloca-

tion with the sequencing criterion being the number of tardy jobs, which was first proposed by

Daniels and Sarin [5]. Formally, this problem can be formulated as follows.

We are given a set J = {J1, J2, · · ·, Jn} of independent jobs, which must be scheduled on

a single machine. The processing requirement of a job Ji is specified by four non-negative

parameters pi, di, ui and wi. Here pi denotes the normal (initial) processing time of Ji , di denotes

the due-date of Ji, ui ≤ pi is an upper bound on the compressibility of Ji, and wi is the cost for

unit-time compression of Ji, called the unit-compression cost. By allocating additional resources

to the processing of Ji, the actual processing time of Ji may be compressed from pi to p′i = pi−xi,

where xi ∈ [0, ui] is the amount of compression. The cost of performing this compression equals

wixi. Let Ci denote the completion time of job Ji under a given schedule. Define Ui = 0 if job

Ji is early (Ci < di) or on-time (Ci = di), and Ui = 1 if it is tardy (Ci > di). We assume that

all the jobs are available at time zero. Moreover, let TCC = Σn
i=1wixi be the total compression

cost, and nT = Σn
i=1Ui the number of tardy jobs. Then the objective is to construct the trade-off

curve between nT and TCC. We denote this problem by P0 : 1 | contr, nT ≤ k | TCC in this

paper.

2

For this problem, Daniels and Sarin [5] provided some theoretical results. Cheng, Chen and

Li [2] proved that the problem is NP-hard, and presented a pseudo-polynomial time algorithm.

This paper is an extension of the above work with three main contributions. First, we will

resolve the special case nT = 0 of the problem by presenting an optimal algorithm. Its time

complexity is O(n2), and becomes O(n log n) if all wi are the same. This problem, denoted by

P1: 1|contr, nT = 0|TCC, models the following scenario. For some applications in logistics

and supply chain management, jobs denote orders from customers, and the machine denotes the

manufacturer. In some cases, while tardy jobs are allowed, having tardy jobs may damage the

goodwill of the customers, so the manufacturer is concerned with the trade-off between nT and

TCC. In other cases, customers will accept no tardy jobs. So the manufacturer must find a

solution to minimize the compression cost with the constraint that nT = 0. Note that while the

algorithm given in [2] still requires pseudo-polynomial time for nT = 0, we present a strongly

polynomial time algorithm for this case.

Second, we consider the problem with a new objective. The objective is to construct the

trade-off curve between nT and the bottleneck objective function MCC = maxi=1,···,n wixi, i.e.,

the maximum compression cost. This problem, denoted by P2: 1|contr, nT ≤ k|MCC, models

the following situation: Given that the resource is limited, the decision maker (scheduler) seeks

to find a solution that balances the amount of resource used by each job under the constraint

that the number of tardy jobs is no greater than a given nonnegative integer k. We will show

that this problem can be solved in O(n2 log W) time, where W = maxi=1,···,n wiui.

Third, we consider the problems with discrete controllable processing times. Scheduling

problems with discrete controllable processing times have been studied by Chen, Lu and Tang [1],

De et al. [3], [4], and Skutella [10], which have many real-world applications. For this situation,

the allowed compression amount xi of job Ji is in a finite set, i.e., it must be one of some given

discrete values, instead of any value in the interval [0, ui]. Hence, we assume that for each Ji ∈ J ,

the actual processing time p′i = pi − xi has li possible values ai1 = pi > ai2 > · · · > aili . Let

wij be the compression cost for the processing time aij , i = 1, · · · , n, j = 1, · · · , li. It is assumed

that 0 = wi1 < wi2 < · · · < wili . This assumption is reasonable because to achieve smaller

processing times requires more resources, hence incurring higher costs [1]. We show that both

P3 : 1|disc contr, nT ≤ k|TCC and P4 : 1|disc contr, nT = 0|TCC are NP-hard even for a

very special case where all the jobs have the same due-date, all li = 2 and all unit-compression

costs wi2/ai2, i = 1, · · · , n, are the same (i.e., all the unit-compression costs are the same for all

the jobs), and present pseudo-polynomial time algorithms based on dynamic programming for

the general case of P3 and P4. Moreover, we will present a strongly polynomial time algorithm

3

for the problem P5 : 1|disc contr, nT ≤ k|MCC. The time complexity is O(n2 log(nl)), where

l = maxi=1,···,n li.

This paper is organized as follows: Sections 2 and 3 consider the problems P1 and P2,

respectively, Section 4 studies the problems P3 and P4, and Section 5 studies the problem P5.

Final remarks are presented in Section 6.

2 Strongly polynomial solvability of the problem P1

Definition 2.1 For the problem P1, a solution is called feasible if it satisfies Σn
i=1Ui = 0.

Lemma 2.2 There exists an optimal solution such that all the jobs are scheduled in the ”Earliest

Due-Date” (EDD) order.

Proof. It can be shown by applying the standard pairwise job interchange argument. 2

Hence, in the remainder of this section, we assume that the jobs are re-indexed such that

d1 ≤ d2 ≤ · · · ≤ dn. Since ui is the upper bound on the compressibility of job Ji, i = 1, 2, · · · , n,

we have

Corollary 2.3 The problem P1 has a feasible solution satisfying the EDD order if and only if

Σi
j=1(pj − uj) ≤ di, i = 1, 2, · · · , n.

For each job Ji, i = 1, 2, · · · , n, let the actual compression be xi. Then job Ji is not tardy

if and only if Σi
j=1(pj − xj) ≤ di, i.e., Σi

j=1xj ≥ Σi
j=1pj − di. Thus, the problem P1 can be

formulated as the following linear program:

min Σn
i=1wixi

s.t. Σi
j=1xj ≥ Σi

j=1pj − di, i = 1, 2 · ··, n,

0 ≤ xi ≤ ui, i = 1, 2, · · ·, n.

It is clear that the linear program can be solved in polynomial time, so can P1. In the following,

we present a strongly polynomial time algorithm for this problem.

Algorithm A1:

1. Renumber all the jobs in the EDD order such that d1 ≤ d2 ≤ · · · ≤ dn. Set xi = 0,

u′i = ui, i = 1, 2, · · · , n, and k = 1.

4

2. Schedule the jobs in the order of J1, J2, · · · , Jn with the actual processing times p1−x1, p2−
x2, · · · , pn − xn, respectively. If there are no tardy jobs after processing all the jobs, then

go to 4; otherwise let Jtk be the first tardy job with completion time Ctk , go to 3.

3. Assume that the unit-compression weights of the job set {J1, J2, · · · , Jtk} satisfy wj1 ≤
wj2 ≤ · · · ≤ wjtk

(that is to say, Jji is the job with the i-th smallest unit-compression cost

in {J1, J2, · · · , Jtk}). Note that the current bounds on the compressibility of these jobs are

u′1, u
′
2, · · ·, u′tk , respectively. Let s = min{i|Σi

p=1u
′
jp

> Ctk − dtk , 1 ≤ i ≤ tk}. Then for

i = j1, j2, · · · , js−1, set xi ← xi+u′i and u′i ← 0; for i = js, set xi ← xi+Ctk−dtk−Σs−1
p=1u

′
jp

and u′i ← u′i − xi. Set k ← k + 1, go to 2.

4. Output xi, i = 1, 2, · · · , n, as the final compression of job Ji, and the objective value

Σn
i=1wixi, stop.

Lemma 2.4 Consider the following linear program:

min Σt
i=1wiyi

s.t. Σt
i=1yi ≥ L,

0 ≤ yi ≤ li, i = 1, 2, · · ·, t.

(1)

where L is a positive number and 0 ≤ wj1 ≤ wj2 ≤ · · · ≤ wjt. Let s = min{i|Σi
p=1lji > L, 1 ≤

j ≤ t}. Then

yji =

lji , if 1 ≤ i ≤ s− 1,

L− Σs−1
i=1 lji , if i = s,

0, if s + 1 ≤ i ≤ t

is an optimal solution.

Proof. It is a continuous relaxation of the minimization version of a special bounded Knapsack

problem [8], hence the lemma holds. 2

Theorem 2.5 Algorithm A1 produces an optimal solution to the problem P1, and runs in time

O(n2).

Proof. First, it is clear that the solution produced by algorithm A1 is feasible. We next prove

its optimality.

5

Let xk
i and x◦i denote the compression of job Ji, i = 1, 2, · · · , n, right after the k-th iteration of

the algorithm, and the compression of job Ji in an optimal solution satisfying the EDD order,

respectively.

We prove by induction on k that Σtk
i=1wix

◦
i ≥ Σtk

i=1wix
k
i , and Σtk

i=1x
k
i is exactly the minimum

possible total compression to assure no jobs in {J1, J2, · · · , Jtk} are tardy, and thus Σtk
i=1x

◦
i ≥

Σtk
i=1x

k
i for every k ≥ 1. It states that the algorithm yields a solution that has the objective value

and the total compression no greater than those of the optimal solution, and thus is optimal.

For k = 1, in order to guarantee that job Jt1 is not tardy, Σt1
i=1xi ≥ Ct1 − dt1 must hold.

From Lemma 2.4, we conclude that x1
1, x

1
2, · · · , x1

t1 is an optimal solution to the following linear

program:
min Σt1

i=1wiyi

s.t. Σt1
i=1yi ≥ Ct1 − dt1 ,

0 ≤ yi ≤ ui, i = 1, 2, · · ·, t1.

(2)

On the other hand, x◦1, x
◦
2, · · · , x◦t1 is a feasible solution to (2), hence Σt1

i=1wix
◦
i ≥ Σt1

i=1wix
1
i .

Because Σt1
i=1x

1
i = Ct1 − dt1 , we know that Σt1

i=1x
1
i is the minimum possible total compression

such that job Jt1 is not tardy. Hence, the result is true for k = 1.

In general, suppose that the result is true for k − 1, that is, Σtk−1

i=1 wix
◦
i ≥ Σtk−1

i=1 wix
k−1
i and

Σtk−1

i=1 x◦i ≥ Σtk−1

i=1 xk−1
i , and no jobs in {J1, J2, · · · , Jtk−1

} are tardy with the processing times

pi − xk−1
i , i = 1, 2, · · · , tk−1.

Since Σtk−1

i=1 xk−1
i is the minimum possible total compression that guarantees that no jobs

in {J1, J2, · · · , Jtk−1
} are tardy, to make job Jtk not tardy, the new compression must be at

least Ctk − dtk . From the algorithm, we know that Σtk
i=1x

k
i = Σtk−1

i=1 xk−1
i + Ctk − dtk . It im-

plies that Σtk
i=1x

k
i is exactly the minimum possible total compression to ensure that no jobs in

{J1, J2, · · · , Jtk} are tardy, and thus

Σtk
i=1x

◦
i ≥ Σtk

i=1x
k
i . (3)

To show that Σtk
i=1wix

◦
i ≥ Σtk

i=1wix
k
i , we divide the compressions x◦i , i = 1, 2, · · · , tk into

two parts x′i and x′′i , and prove the result by verifying that the total cost of the first parts

of all jobs is no less than that of the compressions xk−1
1 , xk−1

2 , · · · , xk−1
tk−1

, and the cost of the

second parts of all jobs is no less than that of the new compressions in the k-th iteration

4xk
1

.= xk
1 − xk−1

1 ,4xk
2

.= xk
2 − xk−1

2 , · · · ,4xk
tk

.= xk
tk
− xk−1

tk
. First, x′i, i = 1, 2, · · · , tk−1 are

determined such that:

6

i) If x◦i ≥ xk−1
i , then x◦i ≥ x′i ≥ xk−1

i , if x◦i < xk−1
i , then x′i = x◦i .

ii) If the processing time of job Ji, i = 1, 2, · · · , tk−1 is p′i = pi−x′i, then the jobs J1, J2, · · · , Jtk−1

are all not tardy by the EDD rule, and

Σtk−1

i=1 x′i = Σtk−1

i=1 xk−1
i . (4)

Furthermore, let x′i = 0, i = tk−1 +1, · · · , tk. Thus, let the second part of x◦i be x′′i = x◦i −x′i, i =

1, 2, · · · , tk.
In fact, this construction can be performed as follows: Let zi = min{x◦i , xk−1

i }, i = 1, 2, · · · , tk−1

and T = Σtk−1

i=1 xk−1
i − Σtk−1

i=1 zi. Let v = min{i|Σi
j=1(x

◦
j − zj) > T, 1 ≤ i ≤ tk−1}. We then define

x′i, i = 1, 2, · · · , tk−1 as follows (note that x′i = 0 as above, i = tk−1 + 1, · · · , tk):

x′i =

x◦i , for 1 ≤ i ≤ v − 1,

zi + T − Σv−1
i=1 (x◦i − zi), for i = v,

zi, for v < i ≤ tk−1.

(5)

Obviously, x′i, i = 1, 2, · · ·, tk−1 satisfy i) and (4). Hence, we only need to prove that no jobs

in {J1, J2, · · · , Jtk−1
} with processing times p′i = pi − x′i are tardy. We show this result by

contradiction. Suppose that there is a tardy job. From the algorithm, we know that job

Jtk−1
is an on-time job after the k − 1-th iteration in the algorithm with processing times

pi − xk−1
i , i = 1, · · · , tk−1, thus

dtk−1
= Σtk−1

i=1 (pi − xk−1
i). (6)

Since Σtk−1

i=1 x′i = Σtk−1

i=1 xk−1
i , (6) implies dtk−1

= Σtk−1

i=1 (pi − x′i), and Jtk−1
is not tardy with the

processing times p′i, i = 1, · · · , tk−1. Thus, let Jtj , j ≤ k − 2 be the first tardy job according to

the order from Jtk−1
to J1 with processing times p′i, i = 1, · · · , tk−1. If tj < v, then from the

construction of x′i we conclude that Σtj
i=1(pi − x′i) = Σtj

i=1(pi − x◦i) ≤ dtj , which implies that Jtj

is not tardy, a contradiction. Thus, tj ≥ v.

From the algorithm, we know that job Jtj is an on-time job right after the j-th iteration with

the processing times pi − xj
i , i = 1, · · · , tj , thus dtj = Σtj

i=1(pi − xj
i). Hence, combining this with

(6), we have

dtk−1
− dtj = Σtk−1

i=1 (pi − xk−1
i)− Σtj

i=1(pi − xj
i)

= Σtk−1

i=tj+1pi − Σtj
i=1(x

k−1
i − xj

i)− Σtk−1

i=tj+1x
k−1
i

≤ Σtk−1

i=tj+1pi − Σtk−1

i=tj+1x
k−1
i (since j < k − 1 implies xk−1

i − xj
i ≥ 0)

≤ Σtk−1

i=tj+1pi − Σtk−1

i=tj+1zi (since zi = min{x◦i , xk−1
i } ≤ xk−1

i , i = 1, 2, · · · , tk−1)

= Σtk−1

i=tj+1pi − Σtk−1

i=tj+1x
′
i. (by (5)) (7)

7

Because of the assumption that job Jtj is tardy with the processing times p′i, i = 1, · · · , tk−1, we

have Σtj
i=1(pi− x′i) > dtj . Combining this with (7), we obtain Σtk

i=1(pi− x′i) > dtj + Σtk−1

i=tj+1(pi−
x′i) > dtk−1

. Thus Jtk−1
is tardy with the processing times p′i, i = 1, · · · , tk−1, a contradiction.

Therefore, we conclude that no jobs in {J1, J2, · · · , Jtk−1
} are tardy.

Now we return to the proof of the theorem. On the one hand, the compressions x′1, x
′
2, · · · , x′tk−1

make the jobs J1, J2, · · · , Jtk−1
not tardy; hence, from the induction assumption, we know that

Σtk−1

i=1 wix
′
i ≥ Σtk−1

i=1 wk−1
i xk−1

i . (8)

On the other hand, subtracting (4) from (3), we get Σtk
i=1x

′′
i ≥ Σtk

i=14xk
i = Ctk − dtk . Because

x′i satisfies i), we have

0 ≤ x′′i = x◦i − x′i ≤ ui − x′i ≤ ui − xk−1
i , i = 1, 2, · · ·, tk−1.

By definition, we know

0 ≤ x′′i = x◦i ≤ ui, i = tk−1 + 1, · · ·, tk.
Therefore, x′′i , i = 1, 2, · · · , tk, is a feasible solution to the following linear program:

min Σtk
i=1wiyi

s.t. Σtk
i=1yi ≥ Ctk − dtk ,

0 ≤ yi ≤ ui − xk−1
i , i = 1, 2, · · ·, tk−1,

0 ≤ yi ≤ ui, i = tk−1 + 1, · · ·tk.

(9)

From Lemma 2.4 and the algorithm, we conclude that 4xk
i , i = 1, 2, · · ·, tk is an optimal solution

to the above linear program (9). Thus, we obtain

Σtk
i=1wi4xk

i ≤ Σtk
i=1wix

′′
i . (10)

Adding (8) and (10), we get Σtk
i=1wix

k
i ≤ Σtk

i=1wix
◦
i . Thus, the solution produced by algorithm

A1 is an optimal solution to the problem P1.

We next study the time complexity of algorithm A1. It is clear that Step 1 takes O(n log n)

time. Steps 2-3 may iterate at most n times and each iteration takes O(n) time. Hence, algorithm

A1 runs in O(n2) in the worst case and is a strongly polynomial algorithm. 2

If all unit-compression costs are the same, i.e., wi = w, i = 1, · · · , n, it can be shown similarly

that the following simplified version of A1 yields an optimal solution in time O(n log n).

8

Algorithm A′1:

1. Renumber the jobs in the EDD order such that d1 ≤ d2 ≤ · · · ≤ dn.

2. Compute r such that Σr
i=1pi − dr = max{Σj

i=1pi − dj |j = 1, 2, · · · , n}.

3. Let s = min{j|Σj
i=1ui > Σr

i=1pi − dr, 1 ≤ j ≤ n}. Then, for 1 ≤ i ≤ s− 1, let xi = ui; for

i = s, let xi = Σr
i=1pi − dr − Σs−1

i=1ui; and for s + 1 ≤ i ≤ n, let xi = 0.

4. Output x1, x2, · · · , xn and Σn
i=1wixi, stop.

3 Polynomial solvability of the problem P2

To solve the problem P2, we assume that all wixi, i = 1, 2, · · ·, n are integers, thus the objective

value max{wixi, i = 1, 2, · · ·, n} is also an integer. This assumption should not be a serious

limitation [2], since the amount of allocation can always be expressed in the smallest unit of

resource for all practical purposes, which makes the costs integers. Let max{wiui, i = 1, 2, · ·
·, n} = W .

It is well-known that Moore’s algorithm can solve the problem 1||nT in O(n2) time [7]. In

the following we present an optimal algorithm for P2 by combining Moore’s algorithm with the

bisection method.

Definition 3.1 Consider an instance of the problem 1||nT with the processing times {p′i | i =

1, 2, · · · , n}. If its optimal objective value is nT ≤ k, then we say that {p′i | i = 1, 2, · · · , n} is a

feasible solution to the problem P2. The problem P2 is called feasible if it has at least one feasible

solution.

In the remainder of this section, we use pt to denote the set consisting of processing times

pi −min{t/wi, ui}, i = 1, 2, · · ·, n, where pi is the initial processing time of job Ji. Specifically,

p0 = {p′i = pi | i = 1, 2, · · ·, n} and pW = {p′i = pi − ui | i = 1, 2, · · ·, n}. The following result is

trivial.

Lemma 3.2 (1) Let {p′i | i = 1, 2, · · ·, n} be a feasible solution to the problem P2. If p′′i ≤
p′i, i = 1, 2, · · ·, n, then {p′′i | i = 1, 2, · · ·, n} is a feasible solution to the problem P2, too. (2) The

problem P2 has a feasible solution if and only if pW is a feasible solution.

Algorithm A2:

9

1. Invoke Moore’s algorithm to solve the instance of 1||nT with actual processing times p0.

If nT ≤ k, then the current solution is optimal with the objective value MCC = 0, stop;

otherwise, go to 2.

2. Invoke Moore’s algorithm to solve the instance of 1||nT with actual processing times pW .

If nT > k, then output that the problem P2 has no feasible solution, stop; Otherwise, let

t = W and t′ = 0.

3. If t−t′ = 1, then output that the solution pt is optimal with the objective value MCC = t,

stop; otherwise set l = d(t + t′)/2e, and invoke Moore’s algorithm to solve the instance of

1||nT with actual processing times pl. If nT ≤ k, then set t = l and go back to 3; otherwise,

set t′ = l and go to 3.

Theorem 3.3 If the problem P2 is feasible, then the solution obtained by algorithm A2 is an

optimal solution, and the time complexity of algorithm A2 is O(n2 log W).

Proof. If the algorithm stops at Step 2, then pW is not a feasible solution, and hence by

Lemma 3.2(2), the problem is infeasible.

We now consider the case that the problem P2 is feasible. If the algorithm stops at Step 1,

then a solution p0 is obtained with the objective value 0, which is trivially an optimal solution.

Hence, we suppose in the following that the optimal objective value is not 0. Then we can claim

that pW is a feasible solution, whereas p0 is not. So, by the bisection procedure, algorithm A2

can get t and t′ such that t − t′ = 1, pt is feasible, but pt′ = pt−1 is not. Thus algorithm A2

outputs a feasible solution pt with the objective value MCC = t when it stops.

Let {p′i | i = 1, 2, · · ·, n} be any feasible solution of the problem P2 with the objective value

MCC ′ = max{(pi − p′i)wi | i = 1, 2, · · · , n}. We now prove by contradiction that MCC = t ≤
MCC ′ and hence pt must be the optimal solution. Suppose MCC > MCC ′. As there is no

integer between t− 1 and t, MCC > MCC ′ implies that t− 1 ≥ MCC ′. So, by Lemma 3.3(1),

pt−1 is also feasible, However t′ = t − 1, and we know that pt′ is not feasible, a contradiction.

Thus, MCC > MCC ′ is not true and pt is an optimal solution to the problem P2.

Because Step 3 may repeat for at most log W times and the time complexity of Moore’s

algorithm is O(n2), we conclude that the time complexity of algorithm A2 is O(n2 log W). 2

10

4 NP-hardness of the problems P3 and P4

Cheng, Chen and Li [2] proved that the problem P0 : 1 | contr, nT ≤ k | TCC is NP-hard. Now

we discuss the problem P3 where the possible compressions of each job are some discrete values.

Theorem 4.1 The problem P3 is NP−hard even if all the jobs have the same due-date, all

li = 2, and all the unit-compression costs are the same.

Proof. Since all the unit-compression costs are the same, the objective value of the problem P3

is equivalent to the total compression.

We show the result by reducing the Partition problem [6] to this problem. Given an instance

I of the Partition problem with a set of positive integers {h1, h2 · ··, hn} and 2B = Σn
i=1hi, we

construct an instance II of the problem P4 as follows: Associated with each hi, i = 1, · · · , n, is

job Ji with

pi = hi, p′i = pi − xi ∈ {hi, 0}, di = B, i = 1, 2, · · ·, n.

In addition, we construct n more jobs Jn+1, · · ·, J2n with

pi = 2B, p′i = pi − xi ∈ {2B, 0}, di = B, i = n + 1, n + 2, · · ·, 2n.

Define k = n and threshold UB = B. We prove that instance I has a solution if and only if

instance II has a solution with nT ≤ k and the objective is no greater than UB.

If I has a solution, then there exist two subsets H1 and H2 of H such that H1 ∪ H2 = H,

H1 ∩H2 = ∅ and
∑

hi∈H1
hi =

∑
hi∈H2

hi = B. Construct a solution for instance II as follows:

Let the compression of Ji, i ∈ H1, be xi = hi for each i ∈ H1, and xi = 0 for all other jobs.

Then the first n jobs can be completed early or on-time while the last n jobs are tardy. Hence,

the number of tardy jobs is k = n, and the total compression is exactly B.

Next, suppose II has a solution such that nT ≤ k = n and the objective value (i.e., the

total compression) is no greater than UB. If a job Ji, n + 1 ≤ i ≤ 2n, is compressed, then the

total compression is at least 2B > UB, a contradiction. Thus, none of the last n jobs can be

compressed, and all of them are tardy. That is to say, the first n jobs must be completed early

or on time. If the total compression of the jobs J1, J2, · · ·, Jn is less than B, then their total

actual processing time is more than 2B − B = B, hence there exists at least a tardy job, a

contradiction. Since UB = B, the total compression of the jobs J1, J2, · · ·, Jn is exactly B. It

follows that there exists a subset H ⊆ {1, 2, · · ·, n} such that Σi∈Hai = B. 2

We have shown that 1|contr, nT = 0|TCC is strongly polynomial time solvable. However,

the discrete controllable case becomes NP -hard.

11

Theorem 4.2 The problem P4 is NP−hard even if all the jobs have the same due-date, all

li = 2, and all the unit-compression costs are the same.

Proof. Similarly, all the unit-compression costs being the same, the objective value of the

problem P4 is equivalent to the total compression.

We again show the result by reducing the Partition problem to this problem. Given an

instance I of the Partition problem with a set of positive integers {h1, h2···, hn} and 2B = Σn
i=1hi,

we construct an instance II of the problem P3 as follows: Associated with each hi, i = 1, · · · , n,

is job Ji with

pi = 2hi, p′i = pi − xi ∈ {2hi, 3hi/2}, di = 7B/2, i = 1, 2, · · ·, n.

Define the threshold UB = B/2. It can easily be shown that instance I has a solution if and

only if instance II has a solution with nT = 0 and the objective value is no greater than UB. 2

Next we present a pseudo-polynomial time algorithm that solves the general case of the

problem P3 optimally. Note that if the problem P3 is feasible (i.e., the number of tardy jobs is

no greater than k), there must exist an optimal solution such that the early and on-time jobs

are scheduled in the EDD order, and the tardy jobs are scheduled in any order following all

the early and on-time jobs. Furthermore, the tardy jobs are not compressed since we are to

minimize the compression cost. Hence, we assume that d1 ≤ d2 ≤ · · · ≤ dn.

Algorithm A3:

1. Let f(i, t, q) be the minimum total cost of a partial solution containing the first i jobs,

J1, J2, · · ·, Ji, given that the completion time of the early and on-time jobs in this partial

solution is exactly t, and the number of tardy jobs is exactly q (1 ≤ i ≤ n, 0 ≤ t ≤ dn, 0 ≤
q ≤ k).

2. Recursive relations: For i = 2, 3, · · · , n, t = 0, 1, · · · , dn and q = 0, 1, · · · , k:

f(i, t, q) =

min{f(i− 1, t, q − 1),min{f(i− 1, t− aij , q) + wij , i = 1, 2, · · ·, li}},
if t ≤ di−1,

min{f(i− 1, t− aij , q) + wij , i = 1, 2, · · ·, li},
if di−1 < t ≤ di,

∞,

if t > di.

xi =

{
pi − aij , if f(i, t, q) = f(i− 1, t− aij , q) + wij ,

0, otherwise.

12

3. Initial values: For t = 0, 1, · · ·, dn:

f(1, t, 0) =

{
w1j , if d1 ≥ t = a1j ,

∞, otherwise,

f(1, t, 1) = 0, t = 0, 1, · · ·, dn.

x1 =

{
p1 − aij , if f(1, t, 0) = w1j ,

0, otherwise.

4. An optimal solution can be obtained by computing

min{f(n, t, 0), f(n, t, 1) · ··, f(n, t, k)|t = 0, · · ·, dn}.

Remark 4.3 Let l = maxi=1,2,···,n li, the time complexity of algorithm A2 is O(nlkdn + n log n)

since we try all possible values of i (i = 1, · · · , n), all possible values of t (t = 0, 1, · · · , dn), and

all possible values of q (q = 0, 1, · · · , k), and the computation of f(i, t, q) needs O(l) time for

each possible state (i, t, q). In addition, sorting jobs in non-decreasing order of due-date takes

O(n log n) time. Therefore, algorithm A3 is pseudo-polynomial time, implying that the problem

P3 is only NP-hard in the ordinary sense.

Remark 4.4 Algorithm A3 can also be used to solve P4 by keeping q = k = 0. Hence, the time

complexity of the algorithm becomes O(nldn +n log n), and P4 is NP -hard in the ordinary sense.

5 Strongly polynomial solvability of the problem P5

The main idea of the algorithm for P5 is similar to that for P2. However, we can construct

a strongly polynomial time algorithm by making minor modifications. Before we present the

algorithm, let w0 = 0, and re-arrange the compression costs of all the jobs in non-increasing order

of their values. Then we express their different values as follows: 0 = w0 < w1 < w2 < · · · < wL.

Definition 5.1 For a given positive number S, define ji = max{j|wij ≤ S, j = 1, 2, · · · , li} for

every i = 1, · · · , n, and let pS = {p′i = aiji |i = 1, 2, · · ·, n}. Specifically, pw0 = {p′i = ai1 = pi|i =

1, 2, · · ·, n} and pwL = {p′i = ai1 = pi|i = 1, 2, · · ·, n}.

Algorithm A4:

1. Invoke Moore’s algorithm to compute the objective value of the instance of 1||nT with

actual processing times pw0 . If the objective value nT ≤ k, then output MCC = 0, stop;

otherwise, go to 2.

13

2. Invoke Moore’s algorithm to compute the objective value of the instance of 1||nT with

actual processing times pwL . If the objective value nT > k, then output that the problem

P5 has no a feasible solution, stop; otherwise, let t = L and t′ = 0.

3. If t− t′ = 1, then output that the solution pwt is optimal with objective value MCC = wt,

stop; otherwise set l = d(t+ t′)/2e, and invoke Moore’s algorithm to compute the instance

of 1||nT with actual processing times pwl . If nT ≤ k, then set t = l and go back to 3;

otherwise, set t′ = l and go back to 3.

Theorem 5.2 If the problem P5 has feasible solutions, then the solution obtained by algorithm

A4 is an optimal solution, and the time complexity of algorithm A4 is O(n2 log(nl)), where

l = maxi=1,2,···,n li.

Proof. With an argument analogous to the proof of Theorem 3.3, we can show that the solution

produced by algorithm A4 is optimal. Since the compression costs of all the jobs have at most

L ≤ nl different values, Step 3 iterates at most L times. Therefore, we conclude that the time

complexity of algorithm A4 is O(n2 log(nl)). 2

6 Conclusions

In this paper we considered single-machine scheduling with continuously and discretely control-

lable processing times. The goal is to construct the trade-off curve between the number of tardy

jobs and the total or maximum compression cost. We found that the levels of difficulty between

the sum objective (i.e., total compression cost) and bottleneck objective cases, and between the

continuous and discrete models, are quiet different. For the sum objective case, the problems

1|contr, nT ≤ k|TCC, 1|disc contr, nT ≤ k|TCC and 1|disc contr, nT = 0|TCC are NP-hard,

but for the bottleneck case, both the problems 1|contr, nT ≤ k|MCC and 1|disc contr, nT ≤
k|MCC are polynomial solvable. For the continuous model, the problem 1|contr, nT = 0|TCC

is strongly polynomial solvable, but for the discrete model, even the special case of the problem

1|disc contr, nT = 0|TCC is NP-hard.

References

[1] Z.-L. Chen, Q. Lu, G.C. Tang, Single machine scheduling with discretely controllable pro-

cessing times, Operations Research Letters, 21(1997), 69-76.

14

[2] T.C.E. Cheng, Z.-L. Chen, C.-L. Li, Single-machine scheduling with trade-off between num-

ber of tardy jobs and resource allocation, Operations Research Letters, 19(1996), 237-242.

[3] P. De, E.J. Dunne, J.B. Ghosh, C.E. Wells, The discrete time-cost trade-off problem revis-

ited, European Journal of Operational Research, 81(1995), 225-238.

[4] P. De, E.J. Dunne, J.B. Ghosh, C.E. Wells, Complexity of the discrete time-cost trade-off

problem for project networks, Operations Research, 45(1997), 302-306.

[5] R.L. Daniels and R.K. Sarin, Single machine scheduling with controllable processing times

and number of jobs tardy, Operations Research, 37(1989), 981-984.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

hardness, Freeman, San Francisco, CA, 1978.

[7] J.M. Moore, An n job, one-machine sequencing algorithm for minimizing the number of

late jobs, Management Science, 15(1968), 102-109.

[8] S. Martello, P. Toth, Knapsack Problems: Algorithm and Computer Implementations, John

Wiley & Sons, Chichester, 1990.

[9] E. Nowicki, S. Zdrzalka, A survey of results for sequencing problems with controllable

processing times, Discrete Applied Mathematics, 25(1990), 271-287.

[10] M. Skutella, Approximation algorithms for the discrete time-cost trade-off problem, Math-

ematics of Operations Research, 23(1998), 909-929.

[11] R.G. Vickson, Choosing the job sequence and processing times to minimize total processing

plus flow cost on a single machine, Operations Research, 28(1980), 1155-1167.

[12] R.G. Vickson, Two single machine sequencing problems involving controllable job processing

times, IIE Transactions, 12(1980), 258-262.

[13] L.N. Van Wassenhove, K.R. Baker, A bicriterion approach to time/cost trade-offs in se-

quencing, European Journal of Operational Research, 11(1982), 48-54.

15

