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Abstract: In this paper, we numerically investigate various hollow-core anti-resonant (HC-

AR) fibers towards low propagation and bend loss with effectively single-mode operation in 

the telecommunications window. We demonstrate how the propagation loss and higher-order 

mode modal contents are strongly influenced by the geometrical structure and the number of 

the anti-resonant cladding tubes. We found that 5-tube nested HC-AR fiber has a wider anti-

resonant band, lower loss, and larger higher-order mode extinction ratio than designs with 6 

or more anti-resonant tubes. A loss ratio between the higher-order modes and fundamental 

mode, as high as 12,000, is obtained in a 5-tube nested HC-AR fiber. To the best of our 

knowledge, this is the largest higher-order mode extinction ratio demonstrated in a hollow-

core fiber at 1.55 μm. In addition, we propose a modified 5-tube nested HC-AR fiber, with 

propagation loss below 1 dB/km from 1330 to 1660 nm. This fiber also has a small bend loss 

of ~15 dB/km for a bend radius of 1 cm. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Hollow-core fibers have been extensively studied and fabricated by several research groups 

around the globe over the past two decades due to their extraordinary ability of light guidance 

in an air-core [1–9]. A unique and striking feature of hollow-core fiber is that most of the 

light (>99.99%) can be guided in the central air-core with only a tiny fraction of light 

overlapping with the surrounding glass structure, hence increasing the optical damage 

threshold and reducing material absorption significantly [4–6,10,11]. These fibers have found 

numerous applications including high power delivery [12], ultra-short pulse delivery [13], 

pulse compression [14], mid-infrared (mid-IR) transmission [15], terahertz guidance [16], and 

gas-based nonlinear optics [17–25]. In general, based on the guidance mechanism, there are 

two types of hollow-core fibers which have been proposed. In the first type, hollow-core 

photonic bandgap (HC-PBG) fiber, light is guided inside the air-core via PBG effect [1]. In 

these fibers, the cladding does not support modes for certain ranges of optical wavelengths 

and propagation constants modes thus confining the light with low loss. The lowest 

experimental loss value of a HC-PBG fiber is 1.7 dB/km at 1.62 μm with a transmission band 

of 70 nm [26], which is limited by surface modes [27] and surface scattering loss (SSL) [28]. 

In addition to their limited transmission bandwidth, HC-PBG fibers exhibit rather large power 

overlap of the core modes with the glass cladding and high group-velocity dispersion 

(especially close to the band-gap edges) [29]. 

The other class of hollow-core fiber is typically referred to as “inhibited coupling” fibers. 

In these structures, light guidance is supported via inhibited coupling between the core guided 

modes and a continuum of cladding modes [30,31]. Recently, these fibers have sparked great 

interest owing to its remarkable transmission properties such as broad bandwidth, very low 

power overlap with the glass regions, low dispersion, and low loss levels. Kagome fiber, a 

design first demonstrated by Benabid et al. [3], is an example of inhibited coupling fibers. 

Numerical and experimental investigations suggested that the core contour plays a crucial role 
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on the fiber modal properties [32–34]. In this regard, an optimized Kagome fiber with a 

hypocycloid-shape has been already demonstrated with loss as low as 13.9 dB/km at 1.55 μm 

[35]. On the other hand, negative curvature hollow-core anti-resonant (HC-AR) fibers are 

another type of “inhibited coupling” fibers which have gained significant attention over the 

past few years due to their potential for achieving ultra-low loss [36–38]. Contrarily to HC-

PBGs, surface modes can easily be suppressed in HC-AR fibers [32] and, thus, SSL can be 

reduced by one order of magnitude [6,29]. In order to control the modal content and 

attenuation, several types of HC-AR fibers have been proposed, investigated, and fabricated, 

including HC-AR fibers with circular anti-resonant tubes [4,10,38–41], “ice-cream cone” 

shape anti-resonant tubes [41,42], elliptical anti-resonant tubes [43], nested anti-resonant 

tubes [5,6,11], as well as cladding tubes with even more complex shapes [44]. Recently, 

Debord et al. [38] demonstrated a single ring HC-AR fiber with 8 non-touching circular tubes 

with a propagation loss of 7.7 dB/km at 750 nm and a bend loss of 0.03 dB/turn at a bend 

radius of 15 cm. Although these are impressive numbers, such loss levels are still not 

sufficient to compete with the telecommunication standard [36]. Importantly, this particular 

8-capillary design does not provide effectively single-mode operation [38]. On the other hand, 

very recently Gao et al. [36,37] proposed and manufactured a conjoined HC-AR fiber with 

loss of 2 dB/km, low bend loss, and effectively single-mode performance. 

Here we systematically study different HC-AR fiber structures with the objective to 

identify bend insensitive designs with propagation loss <1 dB/km and single-mode operation 

at telecommunication wavelengths. In order to get full information on modal contents of the 

fibers, we investigate the propagation losses of the fundamental mode (FM) and higher-order 

modes (HOMs) as a function of the cladding parameters. Our numerical investigations predict 

that a proper selection of the number of the cladding anti-resonant tubes and the cladding 

geometry is crucial for minimizing propagation loss and for effectively single-mode 

operation. 

 

Fig. 1. Geometries considered in the calculations. (a) Typical nested HC-AR fiber; (b) 

modified nested HC-AR fiber with 1 supporting rod; (c) HC-AR fiber with a straight glass bar 

at the center of the cladding tubes; and (d) conjoined HC-AR. All fibers have the same core 

diameter Dc = 30.5 μm, a uniform silica wall thickness t = 1120 nm, and the same gap 

separation g = 6.50 μm. The diameter of the inner nested tubes d is defined by d = D/2 for 

fibers shown in (a) and (b), respectively. The areas of the D-shaped tubes are S1  730 μm2 and 

S2 730 μm2 for the fiber in (c) and S1 = 270 μm2and S2 = 335 μm2 for the fiber in (d), 

respectively. 
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2. Fiber geometry 

Figure 1 shows 6-tube HC-AR fibers with different cladding designs analyzed and compared 

in our numerical investigations. The fiber parameters considered in our calculations are 

similar to those reported in [36,37]. The HC-AR fibers have a core diameter of 30.5 μm (Dc), 

a silica wall thickness of t = 1120 nm, and a gap separation g = 6.50 μm. The core diameter is 

defined as the maximum diameter of a circle that can be inscribed inside the core. It is 

important to mention that the wall thickness was chosen to give a third AR transmission band 

centered at around 1.55 μm. A typical nested HC-AR fiber [5,6,11] with 6 circular anti-

resonant tubes of diameter D and inner tubes of equal thickness of diameter d is presented in 

Fig. 1(a). Figure 1(b) depicts a modified form of nested HC-AR fiber in which a supporting 

solid silica rod joins the inner and outer anti-resonant cladding tubes. Figure 1(c) shows an 

HC-AR fiber with a straight glass bar at the center of the cladding tubes. Finally, a conjoined 

HC-AR fiber is presented in Fig. 1(d) [36,37]. The outer tubes are separated by a gap 

distance, g forming a node-free core boundary [6]. The node-free configuration provides 

better loss properties and flatter transmission spectra compared to closed core boundary 

structures [6]. In all of our numerical investigations, we used a small penetration of t/2 of (i) 

all cladding tubes into the outer jacket tube and (ii) smaller nested tubes into the outer tubes, 

in order to achieve our simulations closer to the real case according to [39]. 

3. Numerical results 

To perform the numerical calculations, we used a finite-element method COMSOL mode 

solver. In order to accurately model the leakage loss of the fiber, we used perfectly-matched 

layers (PML) outside the fiber domain, and both mesh size and PML parameters were 

optimized according to prior studies [6,11,43,45]. We found that mesh sizes in the thin silica 

walls are critical in order to achieve accurate results. Extremely fine mesh sizes of λ/4 and λ/6 

in air and in the silica walls were used [6]. The choice of such mesh sizes give excellent 

agreement with the experimental results [6,46]. To ensure convergence of the numerical 

results, the code was tested by reproducing the results of [5,6]. 

3.1 HC-AR fibers with six anti-resonant tubes 

We first consider the HC-AR fibers with six anti-resonant tubes. The calculated loss spectra 

and near-field profiles of the fundamental modes for the four fiber designs are presented in 

Fig. 2. In these calculations, the power overlap with the silica struts was used to estimate the 

effective material loss. Material loss was then added to the leakage loss and SSL in order to 

obtain the total propagation loss. The SSL arises from imperfections of the fiber which result 

in light scattering from the air-glass interfaces. However, HC-AR fibers exhibit low SSL as 

compared to HC-PBG because the field intensities at the air-glass interfaces are relatively low 

[6]. The SSL was calculated accordingly to the method reported in [6]. The solid red line 

shows the propagation loss of a regular nested HC-AR fiber with a loss level of ~0.95 dB/km 

at 1.55 μm. As a comparison, we also calculated the loss of a typical HC-AR fiber without 

nested tubes (not shown here) obtaining a total propagation loss of ~130 dB/km at 1.55 μm. 

The solid blue line is the propagation loss of the modified nested HC-AR fiber with one 

supporting rod. In this case the propagation loss is ~2 dB/km at 1.55 μm. The solid green line 

corresponds to the D-shaped HC-AR fiber with ~2.5 dB/km loss at 1.55 μm. Finally, the solid 

black line depicts the loss spectrum of the conjoined HC-AR fiber with a loss value of ~2 

dB/km at 1.55 μm. In general, the regular nested HC-AR fiber has slightly lower loss and 

smoother transmission spectra than the other cladding structures. The modified nested fiber 

displays a very similar loss curve (blue). On the other hand, a series of loss peaks appear in 

the conjoined HC-AR fiber and D-shaped HC-AR fibers. This is due to the fact that they have 

two glass nodes close to the core boundary giving rise to additional Fano resonances [36]. 
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Fig. 2. Calculated propagation loss spectra of different 6-tube HC-AR fibers. All structures 

have the same core diameter, Dc = 30.5 µm and uniform silica strut thickness, t = 1120 nm. 

The color of the frame corresponds to the color of the line in the plot. The gray broken line 

indicates SSL. 

 

Fig. 3. Calculated propagation loss spectra of 6-tube nested HC-AR fiber with different 

numbers of solid silica rods and different smaller tube diameters (d). All structures have the 

same core diameter Dc = 30.5 µm and a uniform silica strut thickness t = 1120 nm. The color 

of the frame corresponds to the color of the line in the plot. The solid lines and broken lines 

show the loss spectra for d = 10.37 μm and 13 μm, respectively. 

 

Fig. 4. Calculated propagation loss spectra of 6-tube nested HC-AR fiber with 1 solid 

supporting rod and different smaller tube diameters (d). All structures have the same core 

diameter Dc = 30.5 µm and a uniform silica strut thickness t = 1120 nm. 
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In another set of simulations, we investigated the dependence of the loss on the number of 

supporting rods in our modified nested HC-AR fiber. These studies were conducted for fibers 

with one, three, and five supporting rods and two inner tube dimensions (d = 10.37 μm and d 

= 13 μm). These results are presented in Fig. 3. As demonstrated in this figure, regardless of 

the inner tube diameter, increasing the number of supporting rods degrades the transmission 

characteristics of the fibers. Additionally, fibers with three and five rods display more 

pronounced loss peaks. To make sure that the loss of the modified nested fiber is not sensitive 

to the dimension of the inner tube, we scanned the size of the inner anti-resonant tube from 

(10.37 μm to 14 μm). As it can be seen from Fig. 4, the loss spectrum slightly changes in the 

shorter wavelength regime as d changes, however the loss effect is more pronounced in the 

longer wavelength regime. From a fiber manufacturing perspective, this observation is 

important as it relaxes some fabrication constraints for such fibers. 

3.2 HC-AR fibers with five anti-resonant tubes 

Next, we extend our investigations to HC-AR fibers with five anti-resonant cladding tubes. It 

is worth mentioning that most of the previous HC-AR fiber studies have considered fibers 

with 6 or more anti-resonant cladding tubes [4–6,38,45]. Only recently, a few numerical 

works have presented 5-tube fiber designs [36]. Figure 5 displays the calculated loss spectra 

for the nested, modified nested and conjoined 5-tube fiber geometries. In this figure, the green 

solid line corresponds to the nested HC-AR fiber with a minimum loss value ~0.5 dB/km. 

Red and blue lines are for the modified HC-AR fibers with one and two supporting rods 

showing minimum propagation losses of 0.5 dB/km and ~0.65 dB/km, respectively. As 

demonstrated in this figure, comparable loss spectra are obtained for the nested and modified 

nested fibers. Moreover, these 5-tube fibers have lower loss values and wider transmission 

bands than their 6-tube equivalents with same core diameters shown in Fig. 2. As it can be 

seen from Fig. 5, the calculated minimum loss of the conjoined HC-AR fiber (black) is ~2 

dB/km. The larger loss in this fiber is not unexpected as between the anti-resonant walls there 

are larger air-regions, which can support modes with equal or slightly larger effective mode 

index than the core mode. This results in a higher loss for the fundamental like mode [6]. The 

loss can be improved by adding extra anti-resonant bars which in turn reduce the dimensions 

of the air-regions [36]. Moreover, in this fiber, large Fano-induced loss oscillation are 

apparent across the transmission band. 

3.3 Higher order mode extinction ratio 

In order to better understand the modal contents of HC-AR fibers, we show contour plots of 

the FM and HOMs propagation loss as a function of normalized tube diameter (D/Dc) and 

normalized nested tube diameter (d/D) for a 5-tube nested fiber in Fig. 6. From these maps it 

is possible to identify design regions for low loss and effectively single-mode operation. It is 

evident from Fig. 6(b) that the FM loss remains <1 dB/km in the range of 0.7< D/Dc <1.15 

and 0.5< d/D<0.7. For a normalized tube diameter, D/Dc<0.68, the FM mode loss 

progressively increases with decreasing values of d/D. Figure. 6(c) shows the loss of HOMs 

(lowest loss among the LP11 and LP21 modes). The HOM loss can be made as high as 6000 

dB/km for D/Dc  1.129 and d/D  0.675 while maintaining the FM loss below 0.5 dB/km. 

This large loss value of HOMs is due to the strong coupling between HOMs and cladding 

modes [6,43,45]. Our results indicate that HOMs can be strongly suppressed by properly 

engineering the anti-resonant cladding structure. In addition, Fig. 6(d) shows the calculated 

higher-order mode extinction ratio (HOMER), which is defined as the ratio between the 

propagation loss of the HOM with the lowest loss and the propagation loss of FM [6,43]. For 

D/Dc  1.129 and d/D 0.675, the HOMER is >12000. To the best of our knowledge, this is 

the highest reported HOMER value in any HC-AR fiber. 
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Fig. 5. Calculated propagation loss spectra of different 5-tube HC-AR fibers. All fibers have 

the same core diameter Dc = 30.5 µm and a uniform silica strut thickness t = 1120 nm. The 

color of the frame corresponds to the color of the line in the plot. 

 

Fig. 6. (a) Geometry of a nested HC-AR fiber with five anti-resonant tubes. Calculated total 

propagation loss of (b) LP01-like FM and (c) HOMs. (d) HOMER as a function of d/D with 

different values of D/Dc. (e) Mode field profile of LP01, LP11, and LP21 at D/Dc  1.05 and 

d/D 0.68. The light leakage into the cladding for HOMs are indicated by arrows. HOM loss 

in (c) is defined as the lowest loss among the four LP modes (LP11
a, LP11

b, LP21
a, and LP21

b). 

All simulations are performed at 1.55 μm. The fiber has a fixed core diameter Dc = 30.5 µm 

and a uniform silica strut thickness t = 1120 nm. 

To further understand the underlying coupling mechanism between HOMs and cladding 

modes, we performed simulations with fixed core diameter Dc and fixed tube diameter D, 

while we vary the inner tube diameter d. Figure 7 shows the effective mode index, 

propagation loss of the first five core-guided modes (LP01, LP11
a, LP11

b, LP21
a, and LP21

b), and 

HOMER as a function of d/D from 0.25 to 0.65. From this figure, it is evident that for all 

modes, the effective mode indices remain almost constant as d/D changes. In other words, the 

propagation constants do not change because of the fixed core size. 
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Fig. 7. Effect of changing the inner tube diameter d while the core diameter Dc = 30.5 μm, the 

strut thickness t = 1120 nm, and the tube diameter D = 31.62 μm remain constant. The 

simulations are performed at 1.55 μm. Mode field profiles of the first core guided modes are 

shown at the right hand side for D/Dc  1.03 and d/D  0.45. The color of the frame 

corresponds to the color of line of the plot. 

Interestingly, the FM loss remains ~1dB/km over a wide range of d/D values, whereas the 

HOMs loss strongly depends on d/D. The largest HOMER is obtained for d/D  0.45, where 

strong coupling between the HOMs and cladding modes can occur. As a comparison, similar 

calculations are carried out for a 6-tube HC-AR fiber, see Fig. 8. Here, the loss of the FM 

mode can also be <1 dB/km within a narrower range of d/D and D/Dc as compared to that of 

the 5-tube fiber (Fig. 6). This is expected because in the 6-tube fiber, both the distance 

between the core and outer tube and the separation between the nested and the outer tubes are 

smaller compared to 5-tube structures. The maximum HOMs loss is obtained when D/Dc is 

large. However, this requires a small separation between the outer anti-resonant tubes forming 

core boundary -a requirement that might lead to challenges in the fabrication process. A 

HOMER maximum of ~200 is obtained, a value far lower than in 5-tube HC-AR fiber. 

Finally, we also investigate the loss and HOMER properties of a modified HC-AR fiber as 

a function of D/Dc and d/D. The results are illustrated in Fig. 9. The FM loss remains < 1 

dB/km over a wide range of D/Dc with a minimum loss of ~0.3 dB/km. Importantly, we 

observe that the FM loss does not change over a wide range of d/D and D/Dc values. In other 

words, the results indicate that both the outer and nested anti-resonant tubes do not need to be 

inflated much in order to keep loss levels of the FM below 1 dB/km. We believe that this is 

advantageous in terms of fabrication. However, the HOMER in this modified nested fiber can 

only be made slightly higher than 25, because the coupling effect between the HOMs and 

cladding modes are relatively weak. 

3.4 Effect of tube number on propagation loss 

In this section we study the effect of the number of anti-resonant tubes on the propagation 

loss for regular and modified nested HC-AR fiber. We first directly compare regular nested 

HC-AR fibers with five, six and seven tubes, see Fig. 10. These results clearly indicate that 

the 5- tube HC-AR fiber shows improved loss performance (lower loss and broader 
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transmission window) compared to 6 and 7-tube fibers. Figure 10(a) illustrates that the total 

loss for the 5-tube structure is ~0.5 dB/km at 1.55 μm and the minimum loss is 0.45 dB/km at 

1.49 μm. Similarly, for our modified nested HC-AR fiber with one supporting rod, the 5-tube 

fiber presents the lowest loss and widest low loss band (Fig. 10(b)). The lower loss and 

broader transmission window of this fiber is due to its larger distance between the core 

surround and the outer tube compared to the 6 and 7-tube fibers. 

 

Fig. 8. (a) Geometry of a nested HC-AR fiber with six anti-resonant tubes. Calculated total 

propagation loss of (b) LP01-like FM and (c) HOMs. (d) HOMER as a function of d/D for 

different values of D/Dc. (e) Mode field profiles of LP01, LP11, and LP21 at D/Dc  0.77 and d/D 

 0.4. The light leakage into the cladding for HOMs is indicated by arrows. HOM loss in (c) is 

defined as the lowest loss among the four LP modes (LP11
a, LP11

b, LP21
a, and LP21

b). All 

simulations are performed at 1.55 μm. The fiber has a fixed core diameter Dc = 30.5 µm and a 

uniform silica wall thickness t = 1120 nm. 

 

Fig. 9. (a) Geometry of a nested HC-AR fiber with five anti-resonant tubes and one supporting 

solid rod. Calculated total propagation loss of (b) LP01-like fundamental mode (FM) and (c) 

higher-order modes (HOMs). (d) HOMER as a function of d/D with different values of D/Dc. 

(e) Mode field profiles of LP01, LP11, and LP21 at D/Dc  0.75 and d/D  0.5. The light leakage 

into the cladding for HOMs is indicated by arrows. HOM loss in (c) is defined as the lowest 

loss among the four LP modes (LP11
a, LP11

b, LP21
a, and LP21

b). The simulations are performed 

at 1.55 μm. 
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Fig. 10. Calculated loss spectra of regular (a) and modified (b) nested HC-AR fibers with five, 

six, and seven tubes. All fibers have the same core diameter Dc = 30.5 µm, a uniform silica 

strut thickness t = 1120 nm, and same gap distance g. The color of the frame corresponds to 

the color of line of the plot. 

We also investigated that choosing HC-AR fiber with less than five tubes increases FM 

losses. For example, four tube designs with the same core diameter, silica wall thickness, and 

tube separation exhibit high propagation losses of ~4.5 dB/km at 1.55 μm. Naturally, the size 

of the air-regions inside the tubes increases with a decrease in the number of tubes. Very large 

air-regions in few-tube designs can result in modes with equal or even higher refractive index 

than the core boundary leading to high FM losses [6] as well as high bend losses. 

3.5 Bend loss 

In this section, we discuss the bend loss of different 5-tube HC-AR fibers. The bend loss was 

calculated following the approach in [6]: nb = n(x,y)e(x/R
b

), where Rb is the bend radius, x is the 

bend direction, n(x, y) is the refractive index profile of the straight fiber and nb is the 

equivalent refractive index after bending. Figure 11 depicts the calculated bend loss vs. bend 

radius. For the regular nested HC-AR fiber (green curve), the bend loss remains below 1 

dB/km for bend radii larger than 5 cm. The sharp peak observed at around 2 cm bend radius is 

due to an anti-crossing between the core and cladding modes, as indicated by the calculated 

mode field profile on the right hand side. The bend loss of the conjoined HC-AR fiber (black 

curve) is approximately 10 times higher compared to the other fiber designs. This is due to 

the larger air-regions in the cladding structure which, in turn, facilitate coupling between the 

core and cladding modes. On the other hand, the modified nested capillary fibers with one 

and two supporting rods (red and blue curve, respectively) show better bend loss 

performance. Moreover, the modified nested fiber with 1 supporting rod has the lowest bend 

loss among all the studied structures. In this fiber, the bend loss is < 1 dB/km for Rb > 3 cm. 
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Fig. 11. Calculated bend loss vs. bend radius at 1.55 μm. All fibers have the same core 

diameter Dc = 30.5 µm and the same gap distance g. The silica strut thickness is t = 1120 nm. 

Fundamental mode field profiles for a bend radius of 2 cm are shown on the right. The colors 

of the frames on the right correspond to the line colors in the plot on the left. 

Fig. 12. Calculated wavelength dependent bend loss for a 5 cm bend radius. All fibers have the 

same core diameter Dc = 30.5 µm, silica strut thickness t = 1120 nm, and gap distance, g. The 

calculated fundamental mode field profile is shown on the right column. The colors of the 

frames on the right correspond to the line colors in the plot on the left. 

Figure 12 shows the wavelength dependent bend loss for the 5-tube HC-AR fibers 

calculated for 5 cm bend radius. Here, the modified HC-AR fiber with 1 supporting rod has 

again the lowest loss over the full transmission band and remains below 1 dB/km from ~1.38 

μm to 1.62 μm. Among the studied design, the conjoined HC-AR fiber exhibits the highest 

loss (20 dB/km at 1.55 μm). 

4. Conclusion

In summary, we have investigated various HC-AR fibers and identified designs for low 

propagation loss <1 dB/km, low bend loss, and effectively single-mode operation in the 

telecommunication window. In order to get full information about the modal contents of the 

fibers, we analyzed and optimized the loss and single-mode properties by carefully varying 

the normalized tube diameter (D/Dc) and the normalized nested tube diameter (d/D). We 

demonstrate that details of the cladding structure and the number of anti-resonant cladding 

tubes significantly affects the propagation loss and single-mode operation. We presented new 

5-tube nested HC-AR fiber designs with wider transmission bandwidth and lower propagation
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loss than equivalent 6 (or more) anti-resonant cladding tubes. We found that strong 

suppression of HOMs is achieved for 5-tube fibers. In particular, the 5-tube nested HC-AR 

fiber has a HOMER ~12000 whereas 6-tube fibers have a maximum HOMER of ~200. 

Moreover, we presented a modified nested capillary HC-AR fiber design with supporting rods 

between the outer and inner anti-resonant cladding tubes. We found that the propagation loss 

can be as low as 0.35 dB/km at 1540 nm while remaining below 1 dB/km for a large 

wavelength range from 1330 to 1660 nm. Significantly, we observed that in the 5-tube HC-

AR fiber designs the FM loss remains below 1 dB/km over a much wider range of cladding 

parameters compared to the 6-tube HC-AR fiber. In other words, the loss does not change 

much with nested tube parameter variations which provides some fabrication flexibility. We 

believe that this will reduce the fabrication difficulties and lead to a fiber design that can be 

more easily realized. Finally, these 5-tube HC-AR fibers show low bend loss even under tight 

bend conditions and can be coiled to a few cm bend radius. 
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