
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 24, 2022

Single mode step-index polymer optical fiber for humidity insensitive high temperature
fiber Bragg grating sensors

Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio ; Markos, Christos; Nielsen, Kristian; Rasmussen,
Henrik K.; Bang, Ole

Published in:
Optics Express

Link to article, DOI:
10.1364/OE.24.001253

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H. K., & Bang, O. (2016). Single
mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.
Optics Express, 24(2), 1253-1260. https://doi.org/10.1364/OE.24.001253

https://doi.org/10.1364/OE.24.001253
https://orbit.dtu.dk/en/publications/52996956-1fb6-4a59-9342-e1a9208cb094
https://doi.org/10.1364/OE.24.001253


Single mode step-index polymer optical fiber for 

humidity insensitive high temperature fiber 

Bragg grating sensors 

Getinet Woyessa,
1,*

Andrea Fasano,
2
 Alessio Stefani,

1,3
 Christos Markos,

1,4
 Kristian 

Nielsen, 
1
 Henrik K. Rasmussen,

2
 and Ole Bang

1
 

1DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, 

Denmark 
2DTU Mekanik, Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, 

Denmark 
3Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, NSW 2006, 

Australia. 
4CREOL, The College of Optics & Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, 

FL 32816, USA 
*gewoy@fotonik.dtu.dk

Abstract: We have fabricated the first single-mode step-index and 

humidity insensitive polymer optical fiber operating in the 850 nm 

wavelength ranges. The step-index preform is fabricated using injection 

molding, which is an efficient method for cost effective, flexible and fast 

preparation of the fiber preform. The fabricated single-mode step-index (SI) 

polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 

5013S-04 with a glass transition temperature of 134°C and a 150 µm 

cladding made from ZEONEX grade 480R with a glass transition 

temperature of 138°C. The key advantages of the proposed SIPOF are low 

water absorption, high operating temperature and chemical inertness to 

acids and bases and many polar solvents as compared to the conventional 

poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In 

addition, the fiber Bragg grating writing time is short compared to 

microstructured POFs. 

©2016 Optical Society of America 

OCIS codes: (060.2280) Fiber design and fabrication, (130.5460) Polymer waveguides, 

(060.2270) Fiber characterization, (060.3735) Fiber Bragg gratings, (060.2370) Fiber optics 

sensors. 
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1. Introduction

A lot of research has gone into developing low loss polymer optical fibers (POFs) [1,2]. 

Mostly, it has been the area of short range communication that has been driving the research, 

development and commercialization of POFs, which now have a consolidated place in this 

field [3]. Loss in POFs has nevertheless been far from reaching that of silica fibers, in 

particular when it comes to single-mode fibers. However, POFs unique properties, such as 
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their very low processing temperature, high flexibility in bending, high fracture toughness, 

ease of handling, and non-brittle nature compared to glass fibers have now moved the interest 

about POFs towards the sensing field, where loss is not so crucial [4–6]. Biocompatibility 

further makes POFs ideal candidates for bio-sensing applications [7–9] and properties, such 

as a high elastic strain limit and low Young’s modulus, makes it ideal for fiber Bragg grating 

based sensors [5,6], in particular in high strain and acceleration sensing applications [10–12]. 

Various types of POFs have been demonstrated so far, such as step-index [1,13,14], graded-

index [2,15,16] and microstructured [17] POFs. In the quest for low loss POFs, highly 

multimode step-index and graded-index fibers have been developed and are now available 

commercially and widely used in short-range communication. However, single-mode fibers 

are necessary for FBG sensors. In order to obtain single-mode guidance, several fabrication 

techniques have been proposed: from reducing the diameter of commercially available 

graded-index fibers by re-drawing [14] to exploiting the endlessly single-mode behavior of 

microstructured optical fibers [17]. Single-mode step-index POFs have been available 

commercially, but they were very lossy (500 dB/m @ 850nm) and multi-mode at 850 nm 

because they were targeted to operate at 1550 nm (MORPOF02, Paradigm Optics, see [18]). 

However, POFs have lowest loss at visible wavelengths and only microstructured POFs have 

so far been demonstrated to be single-mode in this regime. The re-drawn commercial fiber 

presented in [14] was targeted to have single mode guidance at 1300nm and 1550nm. 

Despite microstructured POFs being a good way of getting single-mode operation in the 

visible, solid fibers are preferable because this eliminates problems with (1) loss and 

degradation due to impurities getting into the holes, (2) the difficult to avoid loss due to 

scattering at the hole walls, and (3) cleaving, splicing, and connectorizing a fiber with holes in 

it [19]. Furthermore, in FBG sensor fabrication the holes of a microstructured POF strongly 

increased the writing time and quality of the grating due to scattering at the many- air-

material interfaces [20,21]. 

Step-index and graded-index POFs that have been fabricated in the past are mostly 

PMMA or PS based [1,2,13,15,16] and therefore have low operating temperature and strong 

affinity for water, which makes them sensitive to humidity [22,23]. Thus, the strain and 

temperature response of FBG sensors based on these fibers will have a strong dependence on 

humidity. 

As for the realization of the all-solid preform and/or fiber, techniques, such as batch 

extrusion, continuous extrusion, interfacial-gel polymerization, chemical vapor deposition, 

and centrifugation have been used [13–16]. Using these methods, fabrication of single mode 

POFs is difficult because it is not easy to control dopant diffusion from core to cladding 

during the polymerization of monomers in the preform making process. Thus, it is not easy to 

maintain the refractive index profile of POFs to ensure single-mode operation. In addition, 

these techniques are complex and time consuming. As a result, at the moment it is not 

possible to commercially buy a single-mode POF. 

Here we demonstrate the first solid step-index POF, which is single-mode at 850 nm and 

which is humidity insensitive. The fiber is made of a TOPAS core and a ZEONEX cladding. 

Both materials are humidity insensitive and can operate at high temperature, because of their 

glass transition temperature exceeding 130°C. An injection molding technique has been used 

to fabricate the step index preform and heat drawing has been used for fiber fabrication. The 

fabricated fiber has a core size and a numerical aperture very close to that of a silica single 

mode fiber at the same wavelength, which is optimal for coupling. Moreover, since the main 

application for the fabricated fiber is FBG sensors, we also report the successful inscription 

and characterization of FBGs in the SIPOF. 
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2. TOPAS/ZEONEX step index POF fabrication

The SIPOF was fabricated in-house at DTU Fotonik. The preparation of the preform 

consisted of two steps: casting of the cladding material, ZEONEX, and injection molding of 

the core material, TOPAS. These two materials were chosen for the following reasons: 

� They have very close chemical, mechanical and optical properties: as TOPAS is a

cyclic olefin copolymer (COC) and ZEONEX is a cyclic-olefin polymer (COP). 

� The selected grades of these polymers have almost the same glass transition

temperature and very close refractive indices, with the refractive index of TOPAS 

5013S-04 being slightly higher than that of ZEONEX 480R. 

� These polymers are also a class of optical thermoplastics that are chemically inert to

acids and bases and many polar solvents, have a very low moisture uptake, low 

birefringence, and superior moldability [24–26]. 

� FBG writing has been successfully demonstrated in different grades of TOPAS fibers

and proved to be humidity insensitive, which makes them a potential candidate for 

humidity insensitive FBG sensors [27–29]. 

� TOPAS and ZEONEX have also good transparency at THz frequencies [30,31].

We started the preform fabrication by casting the cladding material, ZEONEX 480R 

produced by ZEON CORPORATION with a glass transition temperature of 138°C [25], from 

granulates into a solid rod. This method differs from chemical casting [32] as it does not 

involve any polymerization process. This polymer is suitable for engineering applications 

requiring mechanical stability at high temperature. After casting, the solid rod was machined 

to a uniform bulk preform of 60 mm diameter and 100 mm length. Then a single hole with a 

diameter of 4 mm was drilled at the center of the preform. In the second stage of the SI 

preform preparation TOPAS 5013S-04 was injected into the 4 mm hole. TOPAS 5013S-04 

granulate was purchased from TOPAS Advanced Polymers and it has a glass transition 

temperature of 134°C [26]. An Engel ES 80/25 HL-Victory injection molding machine was 

used for injecting TOPAS into the host ZEONEX preform. Different injection temperatures 

were preliminarily tested. The aim was to optimize the transparency of the molten polymer 

before injection. This was done by visually inspecting the clarity of TOPAS while exiting the 

injection nozzle. Despite that a decrease in the injection temperature was seen to improve the 

transparency of the molten TOPAS, it was not possible to lower the temperature too much 

since TOPAS became too stiff to be processed. The optimal injection temperature was found 

to be around 200°C. Thereafter TOPAS was injection molded into the central hole of the 

ZEONEX solid rod with a melt pressure at the nozzle being slightly lower than the machine 

limit, which is approximately 2000 bar. The SI preform was then first drawn to a 5 mm cane. 

Then the 5 mm cane was sleeved and drawn to a fiber of 150 ± 3 μm diameter. The 

corresponding core diameter of the fiber is 4.8 μm. The end facet of the fabricated SIPOF is 

shown as inset in Fig. 1 (a). 

3. TOPAS/ZEONEX single mode step index POF characterization

3.1 Refractive index profile and loss measurement 

The refractive index contrast was measured at Azpect Photonics by interferometric optical 

phase measurement techniques with an accuracy of ± 0.0001. Figure 1(a) shows the measured 

refractive index contrast of this SIPOF. The core has a refractive index, which is 0.00591 

larger than that of the cladding. With this refractive index difference and a core size of 4.8 

µm, the numerical aperture of the fiber is 0.13 and the normalized frequency is 2.38 at 850 

nm. The measured core/cladding eccentricity is less than 0.6 µm and the nominal mode field 

diameter of this fiber is 5.3 ± 0.3 µm. The geometrical and optical parameters of the fiber are 
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closely matching those of silica single mode fibers operating in 850 nm region [33,34], 

allowing for easy coupling and low coupling loss between these fibers. 

The transmission loss of the fabricated SIPOF was measured using the cut-back method. 

One end of the SIPOF was connectorized with a single mode silica patch cable, which was 

connected to a supercontinuum source (SuperK Extreme, NKT Photonics). The other end of 

the fiber was butt-coupled to an optical spectrum analyzer (OSA, Ando AQ6315A) via a 

standard silica single mode fiber to record the SIPOF transmission spectrum. The end facet of 

the fiber was cleaved with a custom-made cleaver at a temperature of 76°C for both the blade 

and the fiber [35]. The fiber was cut-back from 5 m to 30 cm; recording the transmission 

spectrum of over 40 different fiber cuts in order to eliminate any uncertainties arising from 

power fluctuations, cleave quality and so on. The measured loss profile of the TOPAS SIPOF 

is shown in Fig. 1 (b). The minimum loss was found to be 4.197 dB/m at 862 nm. The fiber 

attenuation at 850 nm is 4.55 dB/m. 

Fig. 1. (a) Measured refractive index contrast of SIPOF at 850 nm. Inset: microscope image of 

the end facet of the SIPOF. (b) Measured transmission loss of the SIPOF. 

3.2 Fiber Bragg grating inscription and characterization 

In order to explore the potential of this fiber for sensing, fiber Bragg gratings were inscribed 

in the fabricated SIPOF. The technique we used for inscribing the grating was the phase mask 

technique and the configuration setup used is the same as described in reference [36]. The 

phase mask used for inscribing the grating in the SIPOF has a 572.4 nm uniform period, 

making it suitable for writing FBGs in polymers fibers in the 850 nm region using a He-Cd 

325 nm laser. The laser power used for inscription was only 6 mW and the writing time was 4 

minutes as shown in Fig. 2(b). Despite the low power of 6 mW the writing time was shorter 

than the shortest writing time of 7 minutes reported for PMMA microstructured POF using 30 

mW [36] and it is much shorter than the writing time of 338 minutes reported in TOPAS 

microstructured POF [28], all using a CW He-Cd laser. It is here worth mentioning that a 

writing time of 30 seconds was achieved using a pulsed excimer laser [37]. The typical 

reflection spectrum of a 2 mm long grating inscribed in the single mode SIPOF is shown in 

Fig. 2(a). The Bragg wavelength is located at 869.53 nm with a reflection strength of 30 dB 

and a full width half maximum (FWHM) of 0.29 nm. Before characterizing it for humidity, 

temperature and strain, the SIPOF was annealed for 24 hours at 110°C. Figure 2(a) shows the 

reflection spectrum of the FBG before and after annealing. 
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Fig. 2. (a) Bragg reflection of the SIPOFBG before and after annealing both normalized to the 

power of non-annealed grating. (b) Growth dynamic of the peak intensity of the 2 mm 

SIPOFBG during writing. 

To study the humidity response, the fiber was first connectorized with a silica patch cable, 

which is single mode in the 850 nm region, and then placed in an environmental chamber 

(CLIMACELL, MMM group), which has a precision better than 0.3°C and 1% RH for 

relative humidity levels of 10-90%. Figure 3 illustrates the setup, in which a supercontinuum 

source (NKT Photonics A/S) has been used as a light source and a spectrometer (CCS175 - 

Compact Spectrometer, Thorlabs) has been used to continuously track the FBG peak during 

the humidity test. The humidity measurement has been done at 25°C. The relative humidity 

(RH) was first increased from 10% to 90% in steps of 10%. The chamber was programmed to 

increase the RH by 10% gradually within 30mins and then to keep the environmental 

conditions stable for another 30mins. Hence the total time allowed before increasing the 

relative humidity by 10% again was one hour. At the end of the ramp, the fiber was left inside 

the chamber for 24 hours at 90% RH to further investigate its humidity response. The total 

wavelength shift throughout the whole investigation was 40.85 pm, of which 35.13 pm was 

the change resulting from the increase from 10 to 90% and the 5.72 pm was the shift observed 

during the constant 90% RH period (occurred in the first 5 of the 24 hours). For the remaining 

19hours no significant change in the Bragg wavelengths was measured. The humidity 

sensitivity when the RH was increased from 10 to 90% RH is 0.45 ± 0.22 pm/%RH, which is 

78 times smaller than the sensitivity given by a step index PMMA POFBG [23]. 

Fig. 3. Setup used for humidity and temperature measurement. 

The temperature response of the SI POFBG was characterized with the same setup as the 

one used for humidity sensitivity measurements. The chamber was programmed to increase 

the temperature from 20°C to 105°C (the maximum operating temperature of the chamber) 
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and then to decrease down to 20°C, with a step of 5°C gradually within 5 minutes and 

stabilization time of 10 minutes at fixed 50% RH. Figure 4(b) shows the temperature response 

in the range 20°C to 105°C at 50% RH. The temperature sensitivity of this fiber is 17.57 ± 0.1 

pm/°C for increasing temperature and 17.3 ± 0.02 pm/°C for decreasing temperature. 

Fig. 4. (a) Humidity response of single-mode SIPOFBG at 25°C. (b) Temperature response 

single-mode SIPOFBG at 50% RH. 

The strain response of the SI POFBG was studied by mechanically elongating the grating 

and monitoring its reflection spectrum. One end of the fiber was first connectorized with a 

single mode silica patch cable. Two centimeters away from the grating the fiber was clamped 

and glued to two micro-translation stages. One of the stages was used to apply axial strain 

manually to the grating. Every time strain was applied to the grating, 10 minutes were given 

for the grating to get stable before recording the reflection spectrum. The fiber was 

longitudinally strained up to 3% with steps of 0.25%. As shown in Fig. 5, the grating shows a 

linear response with an R-square value of 0.999 with no hysteresis. A linear fit of the results 

gives a strain sensitivity of 0.76 ± 0.02 pm/με, for both loading and unloading cases. This 

value matches the sensitivities of 0.71 pm/µε reported for PMMA 3-ring mPOF FBGs at 850 

nm [18] and 827 nm [38]. 

Fig. 5. Strain response of single-mode SIPOFBG. 

4. Conclusion

In this work, we have fabricated for the first time a step-index single mode and humidity 

insensitive polymer optical fiber using injection molding technique. This technique provided 

a fast and flexible method of preparing step index preforms. The fabricated step index 

polymer optical fiber has a core made from TOPAS 5013S-04 with a glass transition 

temperature of 134°C and a cladding from ZEONEX 480R with a glass transition temperature 

of 138°C. The core and the cladding diameters of this fiber are 4.8 µm and 150µm, 
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respectively, which is compatible with a standard single mode silica fiber in the 850 nm 

region. The step index fiber has a minimum attenuation of 4.197 dB/m at 862 nm, which we 

anticipate can be further reduced by improving the preform production process. A fiber Bragg 

grating has also been inscribed in the proposed fiber in 4 minutes with as little as 6mW power 

from a CW He-Cd laser. We believe that FBGs inscribed in this step index fiber are 

particularly suitable for sensing applications that require high operating temperature and very 

low moisture absorption. 
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