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Single-mode tunable laser emission in the
single-exciton regime from colloidal nanocrystals
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Whispering-gallery-mode resonators have been extensively used in conjunction with different

materials for the development of a variety of photonic devices. Among the latter, hybrid

structures, consisting of dielectric microspheres and colloidal core/shell semiconductor

nanocrystals as gain media, have attracted interest for the development of microlasers and

studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton,

single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal

core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-

exciton emission by capitalizing on the band structure of the specific core/shell architecture

that strongly localizes holes in the core, and the two-dimensional quantum confinement of

electrons across the elongated shell. This creates a type-II conduction band alignment

driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombi-

nation processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low

thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for

various applications, including quantum information processing.
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R
esearch in developing lasers based on semiconductor
nanocrystals for applications, such as telecommunications,
optical interconnects and quantum information processing,

has experienced significant growth over the past decade. This
activity has resulted in the demonstration of a whole range of
sources, including ultra-short (B100 fs) pulse lasers with a few
kHz narrow linewidths1, operating with GHz-repetition rates2,
and ultra-low timing jitter as well as single-photon sources based
on photonic crystals3, micropillars4 and nanowires5. Although
epitaxial growth techniques that are compatible with comple-
mentary metal-oxide-semiconductor technology represent an
established approach to produce self-assembled nanocrystals
for photonic devices, the use of wet-chemistry methods has
emerged in recent years as a simpler and cost-effective fabrication
alternative. Attractive features of chemically synthesized nano-
crystals include the ease of control over their size, shape, com-
positional and surface chemical properties, and the wealth of
possibilities for their incorporation into micro- and nanocavities,
photonic crystals, feedback schemes and material matrices.

Among the different types of colloidal nanocrystals, core/shell
heterostructures, consisting of a quantum dot (core) embedded in
a nanoshell, predominantly with spherical and, more recently,
with linear6 branched7 and platelet8,9 geometries, have been
under vigorous research investigation for the development of
microlasers10–19, fundamental studies of light–matter interactions
and solid-state cavity quantum electrodynamic effects20,21,
where the end goal is to realize functions, such as entanglement
of distinguishable quantum systems and controlled coherent
coupling. The potential of these nanostructures in lasing
applications with respect to bare quantum dots relies on their
ability to reduce surface/interface defects and suppress non-
radiative Auger recombination effects, as it has been demonstrated
using different approaches, involving the use of shells with large
thickness or gradual composition, or engineering of the carrier
wavefunctions in the volume of the nanostructure22–25. This
provides prospects for realization of lasing in the single-exciton
regime, involving the recombination of a single electron–hole pair
(exciton). Optical gain in bare quantum dots instead relies on
multi-exciton states and experiences a fast decay resulting from
non-radiative Auger recombination triggered by quantum-con-
finement-enhanced Coulombic carrier–carrier interactions26,27.
Furthermore, in core/shell nanocrystals the encapsulating shell
protects the core from photodegradation, thereby ensuring
significantly higher photoluminescence (PL) quantum yields28,29.

An effective approach to circumvent the detrimental Auger
recombination effect and obtain single-exciton emission has been
recently demonstrated in a vertical cavity surface emitting lasing
configuration using core/shell, dot/dot CdSe/Zn0.5Cd0.5S nano-
crystals with type-I conduction band (CB) alignment18 as a gain
medium. The alloyed shell in these structures ensured a smooth
profile for the confinement (interfacial core/shell) potential,
which has been associated with lower Auger recombination rates,
resulting from the attenuation of high-frequency components in
the ground-state hole wavefunction30,31. The supressed Auger
rates allowed for low lasing thresholds for an ensemble averaged
number of excitons of /NS o1 (ref. 18).

Here we demonstrate for the first time single-mode, single-
exciton, tunable laser emission from an ensemble of colloidal
type-II CdSe/CdS core/shell nanorods on a silica microsphere.
Core/shell nanocrystals with type-II bandgap alignment at the
core/shell interface have been extensively studied over recent
years, as they represent another promising route for realizing
single-exciton lasers32–34. The CBs of the CdSe core and the CdS
shell in our nanorods are engineered such that the lowest energy
states for holes and electrons reside in the core and shell,
respectively. The Coulombic repulsive forces that developed along

the length of the shell upon optical excitation result in the
development of electric field within their volume, which induces a
Stark shift of the absorption wavelength with respect to the
emission one and allows for single-exciton lasing. One advantage
of the dot (core)/rod (shell) architecture adopted here, which
represents the simplest extension to the basic spherical core/shell
geometry6, is that it provides additional options for shape
engineering and, in turn, for manipulation of the carriers’
wavefunction distributions, and the optical and electronic
properties of the nanocrystals35–38. Furthermore, nanocrystals
with elongated geometries exhibit higher absorption coefficients
compared with their spherical counterparts, which allows them to
act in a way as antennas for optical excitation7.

Results
Hybrid lasers with whispering-gallery-mode microresonators.
The colloidal CdSe/CdS nanorods were synthesized by the seeded-
growth approach29. They could produce PL quantum yields as
high as 65%29, and had an effective refractive index of nnc¼ 2.5 at
l¼ 610 nm, a wavelength that corresponds to their ensemble PL
peak. Their structure was asymmetric, consisting of a spherical,
optically active CdSe core with a diameter of 4.0±0.7 nm
embedded in one end of the elongated (28±2 nm) CdS shell.
Because of its large absorption cross-section, the latter acts as a
sensitizer by efficiently absorbing pump light and conferring the
photoexcitation to the CdSe core. As the valence band (VB) offset
between the two materials is 0.78 eV39, holes experience a three-
dimensional confinement within the core. On the other hand, the
offset of their CBs depends on the aspect ratio of the nanorods and
their growth conditions, ranging from � 0.3 to 0.3 eV (refs 39–41).

The microspheres were produced by CO2 laser thermal
processing of fibre tapers (see Methods) to which they remained
attached after the completion of the fabrication process. They had
diameters from 8 to 40 mm, measured Q-factors in excess of 108

and were coated with a thin layer of nanorods by immersion in a
toluene solution of the latter. The density of the nanorods
attached on the microsphere surface was controlled by varying
their concentration in the solution, the immersion time and the
withdrawal speed of the microspheres from the solution.

A schematic of the experimental setup and an image of a
typical microsphere used in our work are shown in Figs 1 and 2a,
respectively. The spheres were pumped at wavelengths B400 nm
with a tuneable frequency-doubled Ti:sapphire amplifier, opera-
ting at 250 KHz and emitting 180-fs-short pulses with a linewidth
of 5 nm. The pump light was evanescently coupled to the
microsphere resonators using tapered optical fibres with adiabatic
transitions, drawn from single-mode fibres at 405 nm (see
Methods). This method ensures efficient incoupling and out-
coupling of the pump and laser beam, respectively, as well as
selectivity in the excitation of the modes42,43.

To measure their optical power and record their spectra, the
laser signals were collected by the same taper used for pumping.
In cases when the laser output characteristics of the hybrid source
were studied, a probe fibre tip44 (Fig. 2b) with a diameter of
B50 nm, a size that ensured sufficient resolution was employed
for in-situ monitoring of the laser spectra (see Methods for
fabrication details). To enhance pump efficiency and prevent
excitation of whispering-gallery modes (WGMs) with high radial
index, n, phase-matching of the propagation coefficients between
the propagating fundamental mode in the taper and a funda-
mental WGM in the microsphere (that is, matching of the spatial
period of the optical waves in both the taper and microsphere
resonator, and hence constructive interference) was established
by suitably choosing the size of taper diameter (typically from
1 to 2 mm) with respect to that of the sphere42. Establishing phase
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matching of the fundamental taper mode to a given WGM also
improved the coupling ‘ideality’ defined as the ratio of power
coupled to a desired mode divided by the power coupled or lost to
all modes43. Because of the large absorption by the nanorods at
the pump wavelength and, hence, the large round-trip loss in the
microsphere resonator, any mode other than the fundamental
that may have been excited by the fraction the pump power that
was not transferred to fundamental WGMs would be eliminated.

Figure 3a shows the laser spectrum for the single WGM
operation at 628.32 nm of a microsphere with a diameter of
9.2 mm, along with the inhomogeneously broadened fluorescence
spectrum from an ensemble of nanocrystals and the PL emission
spectrum from the hybrid microsphere. The latter exhibits a
modulation by a number of peaks with the characteristic WGM
distribution. The laser spectrum was obtained by resonantly
pumping a fundamental WG pump mode with mj j ¼ l, with m
and l being the azimuthal and polar numbers, respectively, above
an absorbed pump power of 100mW. Such modes, with low n
numbers, have very small volumes and are confined to the
equatorial ring of the sphere (defined as the area parallel to the
taper fibre axis perpendicular to the stem) close to its surface45.
They were identified by a dip observed in the transmission
through the taper when the pumping wavelength was tuned. The
laser line corresponds to the single-exciton transition and its full-
width at half-maximum (FWHM) value of Dl¼ 0.06 nm suggests
a Q-factor value of l/DlB104 for the hybrid cavity. This lower
value, with respect to the uncoated sphere, is attributed to the
surface roughness introduced by the gain medium and the
associated scattering loss at the boundaries with the silica
microsphere and the surrounding air. Losses from the presence
of the fibre may also have contributed to the deterioration of the
Q-factor, as experiments were conducted near the overcoupled
regime. Parameters that are crucial for achieving single-mode
laser emission from the hybrid microsphere are the bandwidth of
the pump pulse at B400 nm, the microsphere size, and the
establishment of phase-matching pumping conditions. Micro-
spheres with sufficiently small size have a free-spectral range
(FSR) that is comparable to or larger than the bandwidth of the
pulse, which allows for spatially selective excitation of a single
mode. Phase matching of this mode with the pump taper mode
ensures maximum optical pump power transfer. In this case, the
optical power transferred to other non-phase-matched modes is
significantly smaller and insufficient to produce lasing because of
large absorption of the pump wavelength by the microsphere and
the associated high losses in the resonator.

Figure 3b shows the laser output characteristics as a function of
absorbed pump power for the single WGM operation of the
microsphere, indicating a lasing threshold of 67.5 mW and a
maximum output power of 5.5 mW for 155 mW of absorbed
power, which corresponds to a slope efficiency of Z¼ 6.4%. The
evolution of the emission line for different absorbed pump
powers around the lasing threshold of the hybrid source is
displayed in Fig. 3c, exhibiting a progressive spectral narrowing
of the linewidth with increasing pump power from B1.3 nm
(FWHM) just below threshold at 66 mW, to 0.06 nm at absorbed
pump powers near and in excess of 119 mW. Furthermore, a
significant increase in the emission peak intensity above threshold
can be observed, which follows a linear behaviour as shown in
Fig. 3b.

Microspheres with larger diameters produced a multi-mode
laser emission due to the smaller FSR, DlFSR, in between the
modes with adjacent l indices. Figure 3d shows a laser-emission
spectrum obtained from a microsphere with a diameter of
29.4 mm by pumping at the equatorial zone. The lasing modes in
the spectrum appear at wavelengths separated by a distance of
2.4 nm, which is very close to the value of DlFSR¼ 2.375 of the
hybrid microsphere derived from the equation46

DlFSR ¼
l2

L

2 � p � RH � n2

� �
tan� 1 ns=nncð Þ2� 1

� �1=2

ns=nncð Þ2� 1
� �1=2

 !
ð1Þ

where lL¼ 628.32 nm is the emission wavelength of the first
mode, ns¼ 1.47 is the refractive index of the silica microsphere,
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Figure 1 | Experimental setup for demonstration of lasing in CdSe/CdS

colloidal nanorods. Self-assembled nanorods on silica microspheres were

excited by bringing the evanescent field of the fibre taper in the proximity of

the microsphere, thereby establishing an overlap of the fundamental optical

mode of the taper with the WGMs. The position of the taper relative to the

microsphere was controlled by high-resolution, three-axis nano-positioning

stages, allowing for tuning of the phase-matching conditions and

optimization of coupling. The tip could be brought into contact with the

sphere and then moved on the surface along a meridian to the desired

plane. Emission spectra were recorded with an optical spectrum analyser.

The absorbed pump power was measured as the difference of the power

launched into the taper and that transmitted after the taper. To obtain the

power of the laser signal that was evanescently coupled from the

microsphere into taper, unabsorbed pump light transmitted through the

latter was removed from the laser emission light with a suitable filter.

Figure 2 | Microsphere template and optical fibre tip images. Optical

microscope images of (a) a silica microsphere with a diameter of B30 mm,

used as a template for the CdSe/CdS quantum rods and (b) an optical fibre

tip with a diameter of 50 nm and a 2-mm-long taper transition used to

collect signals from the CdSe/CdS nanocrystal/silica microsphere hybrid

resonators. Scale bars, (a) 30mm; (b) 125mm.
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whereas RH¼ 14.7 mm is the radius of the hybrid sphere, which
was assumed to be equal to that of the silica template.

Laser emission by single-exciton and bi-exciton transitions.
The modality of the laser emission can also be tuned by varying
the coupling conditions and the optical pump power. Hence,
evanescent coupling of the pump beam into the resonator away
from its equatorial zone results in a multi-mode laser emission as
shown in Fig. 4a, where, apart from the laser line at 628.32 nm, a
second laser line emerges at lower wavelengths near 592.6 nm.
Non-equatorial pumping effectively invalidates the afore-
mentioned conditions for single modality, as it leads to the
excitation of a number of modes with different radial and azi-
muthal numbers, thereby inducing multi-mode lasing. This
multi-mode behaviour becomes evident by moving the tapered
fibre by a distance of approximately half the width of the tapered
fibre (that is of the order of 0.5 mm) away from the equator.
Figure 4b shows the output characteristics of the two laser lines,
revealing pump power thresholds of 68.5 and 123.3 mW for the
low-energy and high-energy transitions, respectively. The data
points were obtained by using suitable wavelength cut-off filters
to isolate the laser emission of each transition. The dependency of
the optical power of the two lines on absorbed pump power in the
pre-lasing (linear) regime is displayed in a log–log plot in Fig. 4c.
The slope efficiencies of ZE1 and 2 derived suggest a linear and a
quadratic dependence for the transitions in the low- and high-
energy spectral area, which are typical of single- and bi-excitonic
gain mechanisms, respectively. Furthermore, the threshold of the
laser emission at 592.6 nm is approximately twice as high as that
at 628.32 nm, thereby providing an additional proof of their
bi-excitonic and single-excitonic nature of the corresponding
transition, respectively.

As an additional verification of the assignment of the laser lines
in Fig. 4a to the single-exciton and bi-exciton CdSe transitions,
we calculated their energies. To this end, we derived the
wavefunctions ce (electron) and ch (hole) from the Schrödinger
equations by using an iterative process involving the effective
mass approximation method, and taking into account the
Coulomb interaction (see Methods). Effective mass approxi-
mation has emerged over the years as a reliable approach for
reproducing the energy spectra of confined excitons in semi-
conducting nanocrystals, by successfully addressing the problem
of choosing the actual electrical potential felt by each carrier in
the corresponding Schrödinger equations47,48. In this process, we
first sequentially varied the CB offset and the nanorod diameter
following the Hartree self-consistent potential approach49 so as to
match the single-exciton emission wavelength with that of the
experimental line at 628.32 nm. In this process, the nanorod
length was maintained fixed at a value of 28 nm, as this parameter
has insignificant impact on the confinement effect within the
limits of the deviation (±2 nm) from this value associated with
the nanocrystal synthesis process. As a result, we obtained very
good agreement by assuming an offset value of � 0.09 eV and a
diameter of 4.34 nm; the energy eigenvalues derived for the
electron and the hole with respect to the bottom of the
conduction and VBs of CdSe were 0.14876 eV and 0.14349 eV,
respectively, thereby suggesting single-exciton lasing at 628.6 nm.
Figure 5a displays a schematic of the nanorod along with a band
alignment diagram at the heterointerface between its core and
shell, indicating the values adopted for the core diameter and the
CB offset in our calculations. The calculated wavefunctions
are displayed in Fig. 5b, showing spatial separation between the
hole and the electron charge densities with the holes remaining
confined to the CdSe core and the electrons being delocalized in
one dimension over the entire nanostructure. Such carrier
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Figure 3 | Fluorescence and laser emission characteristics. (a) Single-mode, single-exciton laser (black line) and WGM fluorescence (blue line) emission

spectra obtained from a 9.2-mm-diameter hybrid sphere by pumping an equatorial ring region. In the background, the fluorescence produced by the

ensemble of CdSe/CdS nanorods attached to the sphere is also presented (red line). (b) Output power as a function of absorbed pump power for

the single-mode, single-exciton laser operation of a 9.2-mm-large hybrid microsphere. (c) Evolution of the laser-emission spectral line for different

absorbed pump powers near the lasing threshold. (d) Laser emission spectrum obtained from a microsphere with a diameter of 29.4mm by pumping at its

equatorial zone. The distance between the modes (B2.4 nm) corresponds to the FSR of the sphere.
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distributions are typical of type-II core/shell nanocrystals, and
result in very small overlaps ce j chh i2 of their wavefunctions.
Next, we calculated the wavefunction distributions and emission
wavelength for the bi-exciton, by adopting the same values for the
offset and the nanorod size used for our calculations in the single-
exciton regime. Figure 5c shows the calculated wavefunctions,
wherein one exciton there is a zero charge density, whereas in the
other same-sign charges are spatially well separated. The
calculated energy eigenvalues for the pairs of electrons and holes
are (0.15162 and 0.15363 eV) and (0.19835 and 0.19835 eV),
respectively. These values, which are unique within the size limits
of the nanocrystals used in our experiment yield bi-exciton laser

emission at 593.3 nm, which is very close to the spectral line
observed at 592.6 nm.

To evaluate the potential of the gain medium to produce
optical gain by single-exciton states without any involvement of
multi-excitons, we have derived the gain threshold /NthS
expressed in terms of the average number of excitons per
nanocrystal33:

Nthh i ¼ 2

3� exp �D2
xx=G

2
� � ð2Þ

where Dxx¼ 119 meV represents the spacing between the single-
and bi-exciton line at 626.32 nm and at 592.6 nm, respectively,
and G is the emission linewidth of a single nanocrystal at room
temperature.

For the latter, we have adopted an upper value of G¼ 65 meV,
which was recorded for the emission of a single CdSe/CdS core/
shell tetrapod-shaped nanocrystal with an arm-length of 30 nm50

at room temperature. From equation (2), we obtain a value of
/NthS¼ 0.675, which is well below the theoretical value of
/NthS¼ 1 for bi-exciton gain in homogeneously broadened
type-I nanocrystals and very near to that of ideal type-II
nanocrystals (/NS¼ 2/3)33. The latter are associated with
considerably larger Dxx values with respect to the transition
linewidth, thereby allowing for the elimination of absorption
losses and, hence, for optical gain from single-exciton states.

Wavelength-tuneable laser emission. Tuning the emission from
spherical microcavities has been realized either by modulating the
pump power, thereby exploiting the thermo-optical effect of the
active material51, or by using external heating sources52, or with
the application of pressure or strain53. Although the tuning
ranges achieved with the strain method can even approach the
frequency separation between adjacent resonance peaks of the
WGMs53, thereby exceeding those obtained by temperature
variation, the latter has the attraction of enhanced accuracy of
control over the emission wavelength. In this work, the lasing
wavelength, lL, was tuned by heating the 9.2-mm large hybrid
microsphere with 3.5-mm pulses of 200 fs duration and 80 MHz
repetition rate from a tunable femtosecond laser, which were
directed onto the microsphere by a microscope objective. The
optical power of the infrared laser beam was raised in successive
steps, and for each step the wavelength of the pump laser was
modulated so as to excite resonant WGMs that were gradually
shifted in wavelength due to the temperature elevation.
Throughout these experiments, the evanescently coupled power
was maintained constant at 100mW. The laser spectrum was
recorded for each pump power setting, indicating a maximum
wavelength red shift of 2.1 nm within the available power range of
60 mW (Fig. 6a), which corresponds to B30% of the FSR at lL.

As at l¼ 3.5 mm the nanorods are transparent, the observed
shift is expected to result from a temperature-induced increase in
the size of the absorbing silica microsphere; other contributions
originate from changes of the thermo-optic coefficient (dnnc/
dT¼ 1� 10� 4 K� 1), bandgap energy (DEg) and the nanorods
size due to a temperature rise induced by heat conduction from
the microsphere. The effect of these factors on the tuning range of
the lasing wavelength DlL can be described by:

DlL ¼ lL � DT � ancþ asþ
dnnc=dT

nnc

� �� 	
þDlbg ð3Þ

where DT is the temperature rise in the hybrid microsphere,
as¼ 5.5� 10� 7 K� 1 and anc¼ 4.5� 10� 6 K� 1 are the thermal
expansion coefficients of silica and the nanorods, respectively,
and Dlbg represents the wavelength shift resulting from DEg. For
anc and dnnc/dT, we adopted the values of the bulk CdS crystal.
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To investigate the consistency of the experimentally obtained
tuning range, we estimated DT and Dlbg, and subsequently
calculated DlL from equation (3). To derive an analytical
expression for DT, we assumed that the impact of the thin
nanorod layer on the temperature of the laser-heated silica
sphere is negligible, meaning that they both have effectively the
same temperature (see Methods). The microcavity can be
therefore considered as a solid consisting of a single material
(silica), which is heated by a focused laser beam in the
surrounding air. As the latter is transparent at the illumination
wavelength, it is expected to reduce the temperature of the hybrid
microsphere. Following an approach used to address a similar
problem54 based on solving the heat equation, we derived by
adopting appropriate boundary conditions (see Methods) for DT
the expression:

DT ¼ Po � Pabs � 1�Rfrð Þ � Pg

2 �
ffiffiffi
p
p
� Rs � ks

� �
� 1þ ka

ks

� �� 1

ð4Þ

where ka¼ 2.6� 10� 2 mW m� 1 K� 1 and ks¼ 1.38�
10� 3 mW m� 1 K� 1 are the thermal conductivities of the air
and silica, respectively, Po is the illumination laser power and
1þ ka=ksð Þ� 1is the heat transferred from the sphere to the air.

The term Pabs¼ 0.65 represents the optical power fraction
absorbed by the silica, with Rfr being the Fresnel reflection at
the air/nanorods and nanorods/silica interfaces given by:

Rfr ¼
nnc� na

nncþ na

� �2

þ nnc� ns

nncþ ns

� �2

ð5Þ

with na¼ 1 being the refractive index of the air. In calculating DT
in equation (4), one has to consider that due to the Gaussian
beam profile and the spherical shape of the microcavity, parts of
the beam impinging on the sphere at angles that deviate
considerably from the normal experience high reflections and,
therefore, have a negligible contribution to DT. As a satisfactory
approximation, we assumed that only the optical power included
within the FWHM of the beam, that is 50% of the total power,
contributes effectively to the temperature elevation. To account
for this effect, we introduced the term Pg¼ 0.5 in equation (4),
which then yields for the maximum available infrared-laser power
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of 60 mW a value of DT¼ 32.7 K. Returning to equation (3), we
calculated Dlbg from the expression

Dlbg ¼
� l2

bg

1; 239:6
� DEg ð6Þ

where the wavelength that corresponds to the bandgap energy lbg

is set equal to lL. For the calculated temperature increase of
DT¼ 32.7 K, DEg can be derived from

Eg Tð Þ ¼ Eg 0ð Þ� a � T2

bþT
ð7Þ

with b¼ 216 K, a¼ 1.8� 10� 4 eV/K and Eg(0)¼ 2.13 eV being
correspondingly the Debye temperature, a temperature constant
and the bandgap at 0 K.

Figure 6b shows the calculated effect of each of the four
individual parameters and their combined impact on Dl together
with the experimentally obtained wavelength shifts. The latter are
smaller than the calculated ones, arguably because of a weaker
absorption of the heating beam from the microsphere than that
assumed and/or an imperfect alignment of the infrared-laser
beam with respect to the microsphere, meaning that in reality the
DT induced was about 28 K, as it can be derived from
equation (4). It is worth noting that for DT¼ 32.7 K, the increase
in the nanorod size would not exceed 0.01 nm, which precludes
any contribution to the laser wavelength shift from a change of
the quantum confinement energy.

Discussion
We have demonstrated single-mode laser emission on the single-
exciton recombination transition in core/shell nanorods with a
type-II band offset. The simplicity of the wet-chemical synthesis
of the nanorods in combination with the high Q-factors of the
spherical silica resonators and the efficiency of the fibre-coupling
approach for optical pumping make such hybrid systems
excellent candidates for studies of the lasing properties of novel
gain media and cavity quantum electrodynamic effects. In
addition to the single-excitonic nature of the laser emission,
other laser-operating characteristics, such as its single-mode
emission, which is associated with low levels of noise, and the
ultra-low lasing thresholds that were obtained (thanks to the
larger dipole oscillation strength of the antenna-designed
nanocrystals), are appealing for quantum information processing.
Furthermore, the ability to tune the emission wavelength of these
WGM microlasers in the visible spectral range is interesting for
applications related to biosensing. Considering the inherent
potential of colloidal nanocrystals for hybrid integration onto a
wide range of platforms and optical resonators, one could
envisage the use of optically or even electrically pumped single-
exciton lasers based on specialist nanocrystal designs for
integrated photonic, lab-on-a-chip and optical interconnect
applications. Advances in the development of colloidal nano-
crystalline gain media like the recent demonstration of nearly
temperature-insensitive threshold for amplified spontaneous
emission from CdSe/CdS quantum core/shell (dot/rod) struc-
tures55 can pave the way for the realization of such miniature
integrated sources.

Methods
Fabrication of silica fibre-optical devices. Coupling of pump light to the circum-
ference of microsphere resonators can be realized either with free-space optics or
by evanescent wave coupling with the use of channel waveguides in integrated
optics configurations, prisms, side-polished fibre couplers and tapered fibres45. We
adopted the latter method for our experiments and used tapers fabricated by the
flame-brushing technique56, which involves heating of a section of the fibre with a
‘O’-shaped resistive microheater operated at a temperature of B1,400 �C. The
microheater was scanned along the fibre section, while at the same time the two
fibre ends were pulled in opposite directions by a pair of computer-controlled

translation stages of submicron precision. This method can produce taper
transitions of well-defined length and shape, and extremely uniform waists, with
submicron diameters by controlling the heating and stretching speed. The tapers
used had adiabatic transitions to preserve the low propagation loss inherent to the
fundamental fibre mode.

The microspheres were produced by thermal processing of a fibre taper (stem)
by a CO2 laser beam. Tapers enabled fabrication of microspheres with diameters
considerably smaller than the fibre outer diameter, and were drawn from standard
telecom silica fibres (outer diameter¼ 125 mm) following the process described in
the previous paragraph. The uniform waist-tapered region formed was cut in its
centre and then one of the taper ends was heated by the CO2 laser beam to a
temperature in excess of 1,000 �C, causing it to reflow and mould into a spherical-
shaped structure due to surface tension. Thanks to the high viscosity of the silica
glass, the reflowed structure was highly spherical and extremely uniform, with
intrinsically very low surface roughness and, hence, very low scattering loss. After
the fabrication process had been completed, they remained attached to their stems,
which did not affect the optical modes near the equatorial plane that were excited
to produce laser emission.

The fibre tips were manufactured using a commercial micropipette puller, in
which the heating source was a CO2 laser, and the pulling process was controlled
by a microprocessor. The device enabled fabrication of tips with tapered transition
lengths between 1 and 2 mm, and a diameter as small as 40 nm, from fibres with an
outer diameter of 125 mm. The taper angle of the tip was designed to be small
enough to adiabatically convert the fundamental mode in the fibre core into a
fundamental mode guided by the cladding/air interface allowing for transmissions
larger than 98%.

Calculation of laser energies for the single-exciton and bi-exciton transitions.
In the single-exciton case, the carrier wavefunctions were calculated from the
Schrödinger equations:

� �h2

2m�e
r2 þ qe fh þVcbð Þ

� 	
ce ¼ Eece ð8Þ

� �h2

2m�h
r2 þ qh fe þVvbð Þ

� 	
ch ¼ Ehch ð9Þ

where : is the reduced Plank constant, m�e and m�h are the effective masses of the
electron and hole, respectively, which are material dependent (m�e ¼ 0:13�me and
m�h ¼ 0:45�me for the CdSe core, and m�e ¼ 0:2�me and m�e ¼ 0:7�me

57,58 for
the CdS shell), qe, Ee, qh and Eh are the charges and energy eigenvalues of the
electrons and the holes, whereas Vcb and Vvb are the potentials of the CB and VB,
respectively. Finally, in equations (8) and (9), fe, and fh represent the electric
potentials of the electron and hole, respectively, which account for the Coulombic
electron–hole interaction and were calculated from the Poisson equations:

r2fe ¼ �
re

ee0
ð10Þ

r2fh ¼ �
rh

ee0
ð11Þ

here, re and rh stand for the electron and hole distributions in the nanorod,
respectively, whereas e and eo represent the relative permittivity and the vacuum
permittivity, respectively, given by:

re ¼ qe
c2

e

ce j ceh i ð12Þ

rh ¼ qh
c2

h

ch j chh i ð13Þ

we note that contributions of the CB and VB to the hole and electron wave-
functions, ch and ce, respectively, were neglected, as CdSe and CdS are wide
bandgap semiconductors. The wavefunctions were solved iteratively using a finite
element method with sequential variation of the nanorod diameter and the energy
offset of the CBs, as well as optimization of fe, and fh following the Hartree self-
consistent potential approach, to match the single-exciton emission line. For the
single exciton, we started by setting in the Schrodinger equation (8) the initial
potential to zero on the basis of which ce was calculated and introduced into the
Poisson equation (10). From the latter, the potential generated by the electron was
computed and the value derived was introduced into the Schrodinger equation (9)
to calculate the ch. The resulting wavefunction was in turn introduced into the
Poisson equation (11) to obtain the potential generated by the hole. The derived
potential was introduced into the Schrodinger equation (8), which was solved to
obtain a new expression for ce. This procedure was continued until further
iterations left unaltered the carriers’ wavefunctions and potentials. In this case, self-
consistency was achieved and the derived values were taken as the actual
wavefunctions and potentials, respectively. We stress that although the zero
potential chosen to initiate the calculation process may give the impression that the
electron–hole interaction was not taken into account, the final carrier potentials
were indeed introduced in the calculation through the iteration process followed,
providing optimal description of the specific quantum system.
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The Schrödinger equations used for the bi-exciton are essentially similar to
those described above, with the only difference being that the electric potentials
generated by all the carriers (that is, the two electrons fe1 and fe2, and the two
holes fh1 and fh2) were considered:

� �h2

2m�e
r2 þ qe fe2þfh1 þfh2 þVcbð Þ

� 	
ce1 ¼ Ee1ce1 ð14Þ

� �h2

2m�h
r2 þ qh fe1þfe2 þfh2 þVvbð Þ

� 	
ch1 ¼ Eh1ch1 ð15Þ

� �h2

2m�e
r2 þ qe fe1þfh1 þfh2 þVcbð Þ

� 	
ce2 ¼ Ee2ce2 ð16Þ

� �h2

2m�h
r2 þ qh fe1þfe2 þfh1 þVvbð Þ

� 	
ch2 ¼ Eh2ch2 ð17Þ

The electric potentials in the above equations were derived by the Poisson
equations:

r2fe1 ¼ �
re1

ee0
ð18Þ

r2fh1 ¼ �
rh1

ee0
ð19Þ

r2fe2 ¼ �
re2

ee0
ð20Þ

r2fh2 ¼ �
rh2

ee0
ð21Þ

with re1, re2 and rh1, rh2 being the electron and hole distributions in the nanorod,
respectively, that can be derived from:

re1 ¼ qe
c2

e1

ce1 j ce1h i ð22Þ

rh1 ¼ qh
c2

h1

ch1 j ch1h i ð23Þ

re2 ¼ qe
c2

e2

ce2 j ce2h i ð24Þ

rh2 ¼ qh
c2

h2

ch2 j ch2h i ð25Þ

To solve the system of equations (14–17), we followed a similar iteration
process with one implemented for the calculation of the single-exciton laser
emission. Hence, we assumed zero potentials for the two holes and the second
electron to calculate the wavefunction ce1 from the Schrodinger equation (14).
The resulting wavefunction was then introduced in equation (22) to obtain the
distribution re1, which was in turn introduced in the corresponding Poisson
equation (18) to derive the potential fe1. This process was repeated for the other
carriers and iterated for each of them until the potentials and wavefunctions
produced remained unchanged with further iteration. We emphasize that first the
core size and CB offset values used in the bi-exciton-related calculations were the
ones utilized to reproduce the laser single-exciton laser emission and, second, the
calculations yielded a unique value for the bi-exciton lasing wavelength. The
calculations were carried out using the Matlab and Comsol software packages with
the latter providing the finite element method to solve the Schrodinger and Poisson
equations.

Calculation of the temperature rise in the hybrid microsphere. An analytical
expression for the laser-induced temperature of the hybrid microsphere, which also
accounts for the reduction caused by the ambient medium (air), was derived for a
fixed, Gaussian-shaped laser beam that was exclusively absorbed by the solid sphere
and not by the ambient medium54. For this purpose, we solved the heat equation:

1
D
� @T
@t
�r2T ¼ IðrÞ � A ð26Þ

where D is the thermal diffusivity and I¼ Io � (1�R) � exp(� r2/w2) is the intensity
of the irradiating Gaussian infrared beam with a radius w. The following boundary
conditions were applied:

(a) The balance of energy fluxes at the interface R¼RH:

k � @T
@z
=R¼RH

¼ k � @Ts

@z
=R¼RH

� I rð Þ ð27Þ

(b) The continuity of temperature at the interface R¼RH:

DTaðRH; tÞ ¼ DTsðRH; tÞ ð28Þ
with Ta and Ts being the temperature in the ambient medium and the
miscrosphere, respectively.

(c) The temperature rise at infinity shall vanish:

Taðr !1; tÞ ¼ Tsðr !1; tÞ ¼ Tð1Þ ð29Þ
In the following, we demonstrate the validity of our assumption that the impact

of the thin layer of nanocrystals on the temperature of the laser-heated silica sphere
is negligible and that both media have effectively the same temperature. For this
purpose, we consider the heat transported from the sphere given by:

J � 4 � p � w2 � h
� �

�ks � rT ð30Þ
where, h¼ 4 nm is the coating thickness and ks¼ 1.38� 10� 3 mW m� 1 K� 1 is
the thermal conductivity of silica. The infrared laser beam radius can be
approximated as being equal to the microsphere radius, w¼RH¼ 4.6 mm. From
equation (30), it can be then derived that the relative change in the surface
temperature caused by the nanorod coating is:

DT� � 1þ 2 � h � kn

w � ks

� �� 1

ð31Þ

where kn¼ 2� 10� 2 mW m� 1 K� 1 is the thermal conductivity of the nanorods,
for which we assumed to be equal to the corresponding value of the bulk CdS
crystal. As kn is an order of magnitude higher than ks, it becomes clear that the
reduction of the temperature of the microsphere due to the heat transport to the
nanocrystal layer is insignificant.

Finally, with regard to the term 1þka=ksð Þ� 1 in equation (4), which represents
the heat transported from the sphere to the air, the ratio ka/ks was derived by
considering that the heat originating from the hybrid sphere is shared with the air,
implying that the fluxes from the sphere (Js) and the air (Ja) should satisfy the
equation:

Ja
Js
¼ ka � I=ka þ ksð Þ

ks � I=ka þksð Þ ¼
ka
ks

ð32Þ

where I is the intensity of the infrared light.
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