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Abstract Lamb wave time reversal method is a new and

tempting baseline-free damage detection technique for

structural health monitoring. With this method, certain types

of damage can be detected without baseline data. However,

the application of this method using piezoelectric wafer ac-

tive sensors (PWAS) is complicated by the existence of at

least two Lamb wave modes at any given frequency, and

by the dispersion nature of the Lamb wave modes existing

in thin-wall structures. The theory of PWAS-related Lamb

wave time reversal has not yet been fully studied.

This paper addresses this problem by developing a theo-

retical model for the analysis of PWAS-related Lamb wave

time reversal based on the exact solutions of the Rayleigh-

Lamb wave equation. The theoretical model is first used to

predict the existence of single-mode Lamb waves. Then the

time reversal behavior of single-mode and two-mode Lamb

waves is studied numerically. The advantages of single-

mode tuning in the application of time reversal damage de-

tection are highlighted. The validity of the proposed the-

oretical model is verified through experimental studies. In

addition, a similarity metric for judging time invariance of

Lamb wave time reversal is presented. It is shown that, un-

der certain condition, the use of PWAS-tuned single-mode

Lamb waves can greatly improve the effectiveness of the

time-reversal damage detection procedure.
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Introduction

Guided Waves for Structural Health Monitoring

Structural health monitoring (SHM) is an emerging research

area with multiple applications in the evaluation of the safety

and reliability of critical structures. A typical SHM system

for in-situ structural interrogation consists of a network of

piezoelectric wafer active sensors (PWAS) and a data col-

lection and interpretation unit. The PWAS in the system

are small surface-mounted transceivers capable of generat-

ing and detecting Lamb waves in thin-wall structures [1]. As

guided waves, Lamb waves can travel for long distance with

little amplitude loss and permit the inspection of large ar-

eas of thin-wall structures from a single location [2]. Some

examples of SHM with Lamb waves include crack detec-

tion in aluminum plates, delamination detection in compos-

ite plates, and corrosion detection in pipes [3–5].

Issues in Guided Wave for Structural Health Monitoring

Application of Lamb waves for SHM is complicated by the

existence of at least two modes at any given frequency, and

by the dispersion nature of the modes. When a guided wave

mode is dispersive, an initial excitation starting in the form

of a pulse of energy will spread out in space and easily get

overlapped with the reflection from the defects in the struc-

ture. This fact worsens the spatial resolution and makes ex-

perimental data hard to interpret, especially for long distance

testing. Some researchers have tried to compensate this dis-

persion numerically by taking into account the dispersion

characteristics of the guided wave modes. However, their

work needs accurate group velocity data for the structure,

involves extensive computation, and is not effective for real-

time SHM system [6, 7].
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Fig. 1 Two operation steps of time-reversal procedure using acoustic time-reversal mirror [11]

Furthermore, traditional guided wave SHM techniques

developed from nondestructive evaluation (NDE), such as

pitch-catch method, pulse-echo method, etc., depend on the

availability of a pristine structure baseline to assess the

structural health. The detection is performed through the ex-

amination of the guided wave amplitude, phase, dispersion,

and the time of the flight in comparison with the “pristine”

situation. These methods may be sensitive not only to small

changes in the material stiffness and thickness, but also to

the temperature changes. The baseline measured at one tem-

perature, may not be a valid baseline for the measurement

made at another temperature. Moreover, maintenance of the

baselines database needs extensive memory space. All these

aspects limit the application of guided waves for SHM.

These issues encountered and manifested in traditional

guided wave SHM methods, may be overcome by a new ap-

proach based on the time reversal principle for certain types

of applications [8].

Time Reversal Principle

The concept of time-reversal was initially introduced in the

physical science community [9]. Within the range of sonic

or ultrasonic frequencies where adiabatic processes dom-

inate, the acoustic pressure field is described by a scalar

p(�r, t) that, within a heterogeneous propagation medium of

density ρ(�r) and compressibility κ(�r), satisfies the equation

(Lr + Lt )p(�r, t) = 0,

Lr = �∇ ·

(

1

ρ(�r)
�∇

)

, Lt = −κ(�r)∂t t .
(1)

This equation is time-reversal invariant because Lt contains

only second-order derivatives with respect to time (self-

adjoint in time), and Lr satisfies spatial reciprocity since

interchanging the source and the receiver does not alter the

resulting fields.

In a non-dissipative medium, (1) guarantees that for every

burst of sound that diverges from a source, there exists a set

of waves that would precisely retrace the path of the sound

back to the source. This fact remains true even if the prop-

agation medium is inhomogeneous with variations of den-

sity and compressibility which reflect, scatter, and refract

the acoustic waves. If the source is point like, time reversal

allows focusing back onto the source whatever the medium

complexity [10].

The generation of such a converging wave has been

achieved by using the so called time-reversal mirrors (TRM).

Figure 1 illustrates the two operation steps of the time-

reversal mirror [11]. In the first step (left), a source f (t)

emits waves that propagate out and are distorted by in homo-

geneities in the medium. Each transducer in the mirror array

detects the wave arriving at its location and feeds the result-

ing signal gi(t) to a computer; in the second step (right),

each transducer plays back the reversed signal gi(−t) in

synchrony with the other transducers. In accordance with

the time invariance of (1), the original wave is re-created

traveling backward, thus retracing its passage back through

the medium, untangling its distortions and refocusing on the

original source point as f (−t). As we can see, after the time

reversal procedure, the source f (t) is reversed and recon-

structed as f (−t) and the wave is refocused onto its orig-

inal source point. These two time reversal properties have

been used in many applications based on bulk waves such as

underwater acoustics, telecommunications, room acoustics,

ultrasound medical imaging, and therapy [10].

Lamb Wave Time Reversal

Due to the complexity of the Lamb waves, time reversal of

Lamb waves is relatively new and has only been explored
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Fig. 2 Time reversal experiment for attached steel block detection: a a steel block (5.0 cm H × 4.5 cm W × 0.6 cm T) attached between PWAS

A and B; b normalized original input and reconstructed signals at PWAS A [8]

by a few researchers. Time reversal method has been tried

to transmit a dispersed Lamb wave over a particular dis-

tance and obtain a simple waveform with improved SNR

and space resolution for NDE applications [12]. Also, time

reversal method has been used to focus Lamb wave en-

ergy to detect flaws or damages in plates [13–16]. More re-

cently, Lamb wave time reversal method was introduced as

a baseline-free SHM technique [8, 17]. This technique uses

the reconstruction property of the time reversal procedure,

i.e., an original wave can be reconstructed at its source point

if its forward wave recorded at another point is time reversed

and emitted back to the source point. However, when dam-

age is presented in the structure between the source and re-

ceiver, the forward wave may be mode converted, scattered

or reflected by the damage, and the reconstruction procedure

may break down. Thus, the reconstructed wave can be com-

pared directly with its original already known source to tell

the presence of the damage in the structure without using

a baseline. In addition, the time reversal procedure recom-

presses a dispersive wave, improves the spatial resolution of

the testing, and makes the experimental data easier to inter-

pret.

Park et al. [17] conducted Lamb wave time reversal ex-

periment to detect damage on plate. As shown in Fig. 2,

damage was simulated by steel block attached between

two surface-bonded PWAS, A and B. Without the block

attached, the time-reversal reconstructed wave is close in

shape to the original wave. But when the block is attached,

the reconstructed wave differs from the original wave. Thus,

the presence of the damage was detected by comparing the

shapes of the reconstructed wave and the original input.

Although the Lamb wave time-reversal technique has

been attempted experimentally and shows its effectiveness

for detecting certain types of damage, the theory of Lamb

wave time reversal has not been fully studied. An approxi-

mation to Lamb wave time reversal based on Mindlin plate

wave theory was presented in Ref. [18]. It predicts time re-

versal of flexural wave, which is a good approximation of

A0 mode Lamb wave at low frequency range, but it is inca-

pable of analyzing the other widely used Lamb wave mode,

such as S0 mode, or the multi-mode Lamb waves, such as

S0 +A0 modes. More importantly, it is not accurate because

it does not include PWAS model into the theory.

This paper will first review previous work on PWAS

Lamb wave theory and mode tuning with PWAS transducers

on isotropic metallic plates [19]. Next, a theoretical model

for the analysis of Lamb wave time reversal using PWAS

transducers will be proposed. To validate the theory, time re-

versal of single mode (S0 mode or A0 mode) and two-mode

(S0 +A0 mode) Lamb waves will be studied numerically and

experimentally. Finally, time invariance of the Lamb wave

time reversal will be discussed.

Theory of PWAS Lamb Wave Time Reversal

Lamb Wave

Lamb waves, a.k.a. guided plate waves, are a type of ultra-

sonic waves that remain constrained between two parallel

free surfaces, such as the upper and lower surfaces of a plate

or shell. Lamb wave theory, which is fully documented in

several textbooks [20–22], assumes the 3-D wave equations

in the form of

∂2φ

∂x2
+

∂2φ

∂y2
+

ω2

c2
p

φ = 0,

∂2ψ

∂x2
+

∂2ψ

∂y2
+

ω2

c2
s

ψ = 0

(2)

where φ and ψ are potential functions, c2
p = (λ+2µ)/ρ and

c2
S = µ/ρ are the pressure (longitudinal) and shear (trans-

verse) wave speeds, λ and µ are the Lame constants, and ρ

is the mass density. The potentials are solved by imposing

strain-free boundary condition at the upper and lower faces

of the plate.

Lamb wave in plate can be modeled in rectangular [23]

or cylindrical coordinates [24]. In the first case, Lamb wave

is assumed to be straight crested, while in the second case,
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Lamb wave is assumed to be circular crested. In both cases,

by applying the stress-free boundary conditions at the upper

and lower surfaces, Rayleigh–Lamb wave equation can be

obtained:

tanβd

tanαd
= −

[

4ξ2αβ

(ξ2 − β2)2

]±1

(3)

where, d is the half thickness of the plate, c is the phase

velocity, and ξ is the wave number, and α2 = ω2/c2
p − ξ2,

β2 = ω2/c2
s − ξ2, ξ2 = ω2/c2. The plus sign corresponds

to symmetric (S) motion and the minus to anti-symmetric

(A) motion. Equations (3) accepts a number of eigenval-

ues, ξS
0 , ξS

1 , ξS
2 , . . . and ξA

0 , ξA
1 , ξA

2 , . . . , respectively. To each

eigenvalue corresponds a Lamb wave mode shape. The sym-

metric modes are designated S0, S1, S2, . . . , while the anti-

symmetric are designated A0,A1,A2, . . . .

Since the coefficients α and β in (3) depend on the an-

gular frequency ω, the eigenvalues ξS
i and ξA

i are functions

of the excitation frequency. The corresponding wave speeds

(phase velocity), given by ci = ω/ξi , will also be functions

of the excitation frequency. The change of wave speed with

frequency produces wave dispersion of a wave packet. At a

given frequency thickness product f d , each solution of the

Rayleigh–Lamb equation generates a corresponding Lamb

wave speed and a corresponding Lamb wave mode. Also,

there exists a threshold frequency value determined by the

material of the plate and the plate thickness, below which,

only S0 and A0 modes exist. At low frequencies, the S0

Lamb wave mode can be approximated by an axial plate

wave; and the A0 Lamb wave mode can be approximated

by a flexural plate wave.

PWAS Transducer

In recently years, several investigators have explored the

generation and detection of structural wave with piezoelec-

tric wafer active sensors (PWAS) transducers. Most of the

methods used in conventional guided-wave NDE, such as

pitch-catch, pulse echo, and phase arrays, have also been

demonstrated experimentally with PWAS [1, 2, 5]. These

successful experiments have positioned PWAS as an en-

abling technology for the development and implementation

of active SHM methods. PWAS operate on the piezoelectric

principle: an alternating voltage applied to the PWAS ter-

minals produces an oscillatory expansion and contraction of

the piezoelectric wafer which is intimately coupled with the

structure. Vice versa, an oscillatory expansion and contrac-

tion of the PWAS material produces an alternating voltage

at the PWAS terminals. In Lamb wave applications, PWAS

couple their in-plane motion, excited through the piezoelec-

tric effect, with the in-plane strain produced by the Lamb

waves on the structural surface. Thus PWAS can be both ex-

citers and detectors of elastic Lamb waves traveling in the

structure.

Tone-Burst Excitation Signal

Lamb waves are dispersive. After traveling a long dis-

tance, packets of waves containing different frequencies will

spread out and become distorted, making the analysis diffi-

cult. Using input signals of limited bandwidth can reduce

the problem of dispersion, but will not eliminate it entirely.

Hanning windowed tone burst [5], Gaussian pulse [18], and

Morlet mother wavelet (Gaussian windowed tone burst) [17]

have been used by various researchers. In our study, the

excitation is a smoothed tone burst obtained by filtering a

pure tone burst of frequency f through a Hanning window

(Fig. 3a, b). The Hanning window is described by the equa-

tion

h(t) = 0.5 · [1 − cos(2πt/TH )], t ∈ [0,TH ]. (4)

The number of counts (NB ) in the tone bursts matches the

length of the Hanning window:

TH = NB/f. (5)

The smoothed tone burst is governed by the equation:

x(t) = h(t) · sin(2πf t), t ∈ [0,TH ]. (6)

The scope of the window is to concentrate most of the

input energy around the carrier frequency as indicated by

its magnitude spectrum (Fig. 3c). When exciting the Lamb

wave at points on the dispersion curves where the group ve-

locity is either stationary or almost stationary with respect

to frequency, such windowed tone burst would greatly re-

duce the wave dispersion. However: (1) It is impossible to

Fig. 3 300 kHz Hanning windowed tone burst Lamb wave excitation:

a f = 300 kHz pure tone burst superposed with a Hanning window;

b Hanning windowed tone burst; c magnitude spectrum of Hanning

windowed tone burst



J Nondestruct Eval (2007) 26: 123–134 127

concentrate the energy of a finite duration input signal at a

single frequency (uncertainty principle); and (2) the signal

bandwidth is inversely proportional to the signal time dura-

tion. Hence, for a tone burst excitation with a certain num-

ber of counts, the higher the frequency, the shorter the time

duration, and the wider the main lobe bandwidth (spectral

spreading). Thus, to maintain the concentration of the tone

burst input energy, the tone burst number of counts should

be increased as the carrier frequency increases.

Lamb Wave Mode Tuning with PWAS Transducers

Lamb wave mode tuning with PWAS transducers allows

the excitation of single-mode Lamb waves under certain

frequency-wavelength conditions. Consider the surface-

mounted PWAS shown in Fig. 4. Assuming ideal bonding

between the PWAS and the structure, the shear stress dis-

tribution in the shear layer follows the shear lag equations

in the radial direction. The shear stress in the bonding layer

takes the form [19]

τa(x)|y=d = aτ0[δ(x − a) − δ(x + a)]. (7)

The PWAS is excited electrically with a time-harmonic

voltage V e−iωt . As a result, the PWAS expands and con-

tracts, and a time harmonic interfacial shear stress,

τa(x)e−iωt , develops between the PWAS and the structure.

Fig. 4 Modeling of layer interaction between the PWAS and the struc-

ture [19]

The excitation can be split into symmetric and antisymmet-

ric components (Fig. 5).

The wave equation (2) in terms of potential functions was

solved [19] by applying the Fourier transform and the sym-

metric and antisymmetric boundary conditions as presented

in Fig. 5. The closed-form strain wave solution for ideal

bonding was obtained in the form

εx(x, t)|y=d = −i
aτ0

µ

∑

ξS

(sin ξSa)
Ns(ξS)

D′
S(ξS)

e−i(ξSx−ωt)

− i
aτ0

µ

∑

ξA

(sin ξAa)
NA(ξA)

D′
A(ξA)

e−i(ξAx−ωt).

(8)

Similarly, the displacement wave solution becomes:

ux(x, t)|y=d =
aτ0

µ

∑

ξS

sin ξSa

ξS

Ns(ξS)

D′
S(ξS)

e−i(ξSx−ωt)

+
aτ0

µ

∑

ξA

sin ξAa

ξA

NA(ξA)

D′
A(ξA)

e−i(ξAx−ωt) (9)

where,

DS = (ξ2 − β2)2 cosαd sinβd + 4ξ2αβ sinαd cosβd,

NS = ξβ(ξ2 + β2) cosαd cosβd,

DA = (ξ2 − β2)2 sinαd cosβd + 4ξ2αχ cosαd sinβd,

NA = ξβ(ξ2 + β2) sinαd sinβd.

Equations (8) and (9) contain the sin ξa function. Thus,

mode tuning is possible through the maxima and minima

of the sin ξa function. Maxima of sin ξa occur when ξa =

(2n − 1)π/2. Since ξ = 2π/λ, maxima will occur when the

PWAS length la = 2a equals on odd multiple of the half

wavelength λ/2. This is wavelength tuning. In the same

time, minima of sin ξa will occur when ξa = nπ , i.e., when

Fig. 5 Load on a plate due to the PWAS actuation. a Symmetric; b Antisymmetric [19]
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the PWAS wavelength is a multiple of the wavelength. Since

each Lamb wave mode has a different wave speed and wave-

length, such matching between the PWAS length and the

wavelength multiples and submultiples will happen at dif-

ferent frequencies for different Lamb modes.

Since a PWAS transducer can act as both transmitter and

receiver, basic reciprocity principles imply that the tuning

technique developed here for transmitting PWAS would also

apply for receiving PWAS.

Modeling of PWAS Lamb Wave Time Reversal

PWAS-related time reversal of Lamb waves can be modeled

by the following two-step process:

(1) Apply tone burst excitation Vtb at PWAS #1 and record

the forward wave Vf d at PWAS #2.

(2) Emit the time-reversed wave Vtr from PWAS #2 back

to PWAS #1. The wave picked up by PWAS #1 is the

reconstructed wave Vrc.

In this process, perfect reversibility of the electric-acoustic

transduction process is assumed. In practice, this is achieved

by using identical PWAS transducers as both transmitters

and receivers. Simulation procedure incorporating forward

and inverse Fourier transforms is illustrated in Fig. 6, where

subscripts tb, fd, tr and rc signify tone burst, forward, time

reversed and reconstructed waves, respectively. The rela-

tionship between the tone burst excitation Vtb and the recon-

structed wave Vrc can be expressed using the Fourier trans-

form as

Vrc(t) = IFFT{Vtr(ω) · G(ω)}

= IFFT{Vtb(−ω) · |G(ω)|2} (10)

where IFFT{} denotes inverse Fourier transform. G(ω)

is the frequency-dependent structure transfer function that

affects the wave propagation through the medium. Time-

reversal property of Fourier transform, i.e., reversing a sig-

nal in time also reverses its Fourier transform, was used in

the deduction.

For Lamb waves with only two modes (A0 and S0) ex-

cited, the structure transfer function G(ω) can be written

using the strain wave equation (8) as

G(ω) = S(ω)e−iξSx + A(ω)e−iξAx (11)

where

S(ω) = −i
aτ0

µ
sin(ξSa)NS(ξS)/D′

S(ξS),

A(ω) = −i
aτ0

µ
sin(ξAa)NA(ξA)/D′

A(ξA).

Thus,

|G(ω)|2 = |S(ω)|2 + |A(ω)|2 + S(ω)A∗(ω)e−i(ξS−ξA)x

+ S∗(ω)A(ω)ei(ξS−ξA)x (12)

where ∗ denotes the complex conjugate. Substitution of (12)

into (10), generates the reconstructed wave Vrc. We note

that the first two terms, |S(ω)|2 and |A(ω)|2, of (12) will

work together and generate only one wave packet in the re-

constructed wave Vrc. Whereas the third and fourth terms

in (12) will each generate extra wave packets in the recon-

structed wave Vrc. These extra wave packets will be placed

ahead and behind the main packet in a symmetrical fashion.

The actual locations of these two extra wave packets can

be predicted using Fourier transform property of right/left

shift in time. A plot of the reconstructed wave for two-

mode Lamb wave time reversal procedure using a 3.5-count

210 kHz tone burst is given in Fig. 7. The three wave pack-

ets are clearly observed in the reconstructed wave, as ex-

pected. Hence, for time reversal of a Lamb wave with two

modes (S0 mode and A0 mode), the reconstructed wave Vrc

contains three wave packets. Although the input signal is not

Fig. 6 Lamb wave

time-reversal procedure block

diagram
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time-invariant in this case, the main wave packet in the re-

constructed wave may still resemble its original tone burst

excitation if |S(ω)|2 + |A(ω)|2 remains constant over the

tone burst spectral span. This theoretical deduction explains

the experimental observations reported by Ref. [8] as dis-

cussed earlier.

This situation could be alleviated if a single mode-Lamb

wave could be excited. Assume that we use the Lamb wave

mode-tuning technique of section “Lamb Wave Mode Tun-

ing with PWAS Transducers” to excite a single-mode Lamb

wave containing only the A0 mode. In this case, G(ω) func-

tion becomes

G(ω) = A(ω)e−iξSx . (13)

Substitute (13) into (10) and obtain

Vrc(t) = IFFT{Vtb(−ω) · |A(ω)|2}. (14)

Equation (14) indicates that the reconstructed wave

Vrc(−t) has the same phase spectrum as the time-reversed

tone burst Vtb(−t), while its magnitude spectrum is equal

to that of Vtb(−t) modulated by a frequency-dependent co-

efficient |A(ω)|2. In particular, for narrow-band excitation,

|A(ω)|2 can be assumed to be a constant. Thus, (14) became

Vrc(t) = Const · IFFT{Vtb(−ω)} = Const · Vtb(−t). (15)

Equation (15) implies that the reconstructed wave Vrc re-

sembles the time-reversed tone burst excitation Vtb . If the

Fig. 7 Reconstructed wave using 3.5-count 210 kHz tone burst exci-

tation in simulation of two-mode Lamb wave time reversal

tone burst excitation is symmetric, i.e., Vtb(t) = Vtb(−t),

the reconstructed wave Vrc is identical in shape to its orig-

inal tone burst. Therefore, we have proven that A0 mode

Lamb wave is time reversible when using narrow-band ex-

citation. Similarly, S0 mode Lamb wave is time reversible

when using narrow-band excitation.

Experimental Validation of PWAS Lamb Wave Time

Reversal Theory

Experimental Setup

Figure 8 shows the setup of the PWAS Lamb wave time re-

versal experiments performed in this study. It consists of

a HP33120 function generator, a Tektronix 5430B oscillo-

scope and a PC (Fig. 8a). Two specimens were used: one is a

1524 mm × 1524 mm × 1 mm aluminum plate bonded with

two round 7 mm diameter PWAS, 400 mm apart (Fig. 8b);

the other one is a 1060 mm × 300 mm × 3 mm aluminum

plate bond with two 7 mm square PWAS, 300 mm apart

(Fig. 8c). Both of them are covered with modeling clay

around their four edges to eliminate boundary reflections.

PWAS Mode Tuning on Specimens

PWAS mode tuning experiment was conducted first to iden-

tify the frequency points where single mode Lamb wave can

be tuned into. A Hanning-windowed tone burst swept from

10 kHz to 700 kHz in steps of 20 kHz was applied to one

of the PWAS, while the response of the other PWAS at each

frequency was recorded and the amplitudes of the symmet-

ric and the anti-symmetric modes were recorded.

Figures 9 and 10 show the PWAS mode tuning results on

the 1 mm plate with 7 mm round PWAS and on the 3 mm

plate with 7 mm square PWAS, respectively. It is noted that

the normalize strain curves predicted by (8) and the corre-

sponding voltage measured follow the general pattern of a

sine function, which hits zeros when the half length of the

Fig. 8 Time-reversal

experimental setup and

specimens: a time reversal

experimental setup; b 1524 mm

× 1524 mm × 1 mm 2024-T3

aluminum plate bonded with

two round 7 mm PWAS,

400 mm apart; c 1060 mm ×
300 mm × 3 mm 2024-T3

aluminum plate bond with two

7 mm square PWAS, 300 mm

apart



130 J Nondestruct Eval (2007) 26: 123–134

Fig. 9 Lamb wave response of

a 1 mm 2024-T3 aluminum

plate under 7 mm round PWAS

excitation: a normalized strain

response predicted by (8);

b experimental data

Fig. 10 Lamb wave response of

a 3 mm 2024-T3 aluminum

plate under 7 mm square PWAS

excitation: a normalized strain

response predicted by (8);

b experimental data

PWAS match an odd multiple of one of the wavenumbers of

the Lamb waves.

For both specimens, the A0 mode Lamb wave was dom-

inant at low frequencies. Then, S0 and A0 mode reached

similar strength around 210 kHz. Finally, S0 was dominant

at 300 kHz and 350 kHz for the 1 mm and 3 mm plates,

respectively.

PWAS Lamb Wave Time Reversal Results

Our experiments were aimed at exploring if the use of

single-mode Lamb waves could improve the time-reversal

method as predicted by the theory. To this purpose, we ex-

amined experimentally the application of the time reversal

method at various frequencies and compared the measured

results with the theoretical predictions.

The time-reversal experiments were conducted in two

steps automated by using a LabVIEW program:

(1) Forward wave generation: the function generator out-

puts tone burst to the PWAS transmitter to excite Lamb

wave in the plate, and the PWAS receiver was connected

to the oscilloscope to record the forward wave in the

plate.

(2) Time reversal and tone burst reconstruction: the signal

from the receiver PWAS was time reversed, downloaded

to the function generator volatile memory, and emitted

back to the transmitter PWAS to recompress the dis-

persed tone burst.

Theoretical predictions of the three Lamb wave modes

time reversal were conducted by following the procedure

presented in Fig. 6, where the G(ω) function is given by (8).

Notice that an additional step was performed to time reverse

the reconstructed wave for display purpose. Also, since we

were only interested in the shape change of the reconstructed

wave as compared to its original tone burst excitation, both

the experimental and numerical results were first normalized

and compared.

During the experiment, we noticed that single-mode S0

Lamb waves were observed to be time-reversed nicely in

the 3 mm plate using square PWAS, while A0 waves were

observed to be time-reversed nicely in the 1 mm plate us-

ing round PWAS. To illustrate this, we will discuss in de-

tail, time-reversal results of A0 mode (36 kHz, Fig. 9b) on

1 mm plate, S0 mode (350 kHz, Fig. 10b), and S0 +A0 mode

(210 kHz, Fig. 10b) on 3 mm plate.

Time Reversal of A0 Mode Lamb Wave

Figure 11 shows the numerical and experimental results for

the time-reversal of an A0 single-mode Lamb wave. The ex-

citation was a 3-count tone burst with its carrier frequency

at 36 kHz (Fig. 11a). Since A0 is dominant at this frequency,

the forward wave captured after propagating 400 mm con-

sists mainly of the A0 mode wave packet, while the S0 mode

wave packet is suppressed (Fig. 11b). (Note: the initial wave

packet showing in the experimental forward wave is due to

the E/M coupling and should be ignored.) The forward wave

was time reversed and emitted back (Fig. 11c). Thus, the dis-

persed A0 wave packet was recompressed (Fig. 11d). The

reconstructed experimental wave resembles well the time-

reversed original tone burst.
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Fig. 11 Numerical and

experimental waves in A0 Lamb

wave time reversal procedure:

a 3-count 36 kHz original tone

burst; b forward wave after

propagating 400 mm; c time

reversed forward wave;

d reconstructed wave

Fig. 12 Numerical and

experimental waves in S0 Lamb

wave time reversal procedure:

a 3.5-count 350 kHz original

tone burst; b forward wave after

propagating 300 mm; c time

reversed forward wave;

d reconstructed wave

Time Reversal of S0 Mode Lamb Wave

In this experiment, a 3.5-count symmetric tone burst with

its carrier frequency at 350 kHz (Fig. 12a) was used to ex-

cite a S0 single-mode Lamb wave. As shown in Fig. 10, S0

mode is maximized around 350 kHz, while A0 mode is mini-

mized. However, the 3.5-count 350 kHz tone burst excitation

has a certain spectral spreading; hence, the A0 mode Lamb

wave is also excited slightly as observed in the forward wave

recorded after propagating 300 mm (Fig. 12b). The forward

wave was time reversed and emitted back (Fig. 12c). The

reconstructed waves are shown in Fig. 12d. Although there

are some residual waves, the main wave packet in the recon-

structed wave resembles well the original tone burst.

Time Reversal of S0 + A0 Mode Lamb Wave

A 3.5-count symmetric tone burst was tune to 210 kHz to ex-

cite both S0 mode and A0 mode Lamb waves (Fig. 13a, b).

As predicted by the theory of section “Modeling of PWAS

Lamb Wave Time Reversal”, three wave packets were ob-

tained in the reconstructed wave. The first and the third wave

packets are symmetrically placed about the main packet.

The second wave packet is the main packet, which resem-

bles the original tone burst excitation.

This last experiment indicates that, when the single-mode

condition cannot be created, the application of the time-

reversal method is accompanied by unavoidable artifacts,

i.e., the apparition of additional wave packets ahead and be-
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Fig. 13 Numerical and

experimental waves in

two-mode Lamb wave time

reversal procedure: a 3.5-count

210 kHz original tone burst;

b forward wave after

propagating 300 mm; c time

reversed forward wave;

d reconstructed waves

Fig. 14 Superposed original

tone burst and reconstructed

tone burst after time reversal

procedure: a 36 kHz, A0 mode;

b 350 kHz, S0 mode

(normalized scale)

hind the main reconstructed packet as previously reported

in [8, 17]. These artifacts can pose difficulties in the practical

implementation of the time-reversal method as a damage-

detection technique.

Experimental Validation of the PWAS Lamb-Wave Time

Reversal Theory

The experimental results measured in the three cases pre-

sented above were also compared with the theoretical pre-

diction. To this purpose, Fig. 11, Fig. 12, and Fig. 13 also

contain the normalized signals predicted by the theory of

section “Modeling of PWAS Lamb Wave Time Reversal”.

As it can be seen in Fig. 11, Fig. 12 and Fig. 13, the nu-

merical and experimental signals in the time reversal proce-

dure are very close to each other indicating that the PWAS

Lamb wave time reversal theory predicts well the experi-

ments.

Time Invariance of Lamb Wave Time Reversal

For single mode Lamb wave time reversal, the input tone

burst can be reconstructed as shown in Fig. 11 and Fig. 12.

If the shape of the reconstructed wave is identical to its orig-

inal tone burst, the procedure is time invariant. Figure 14

shows the superposed original tone burst and reconstructed

tone burst obtained from A0 mode and S0 mode Lamb wave

time reversal experiment presented in section “PWAS Lamb

Wave Time Reversal Results”. We notice that, there are

small differences between the reconstructed and the origi-

nal tone burst signals.

For the two-mode (S0 + A0) Lamb wave time reversal

shown in Fig. 13, the reconstructed Lamb wave contains

three wave packets; the time invariant procedure no longer

seems to hold. However, the original tone burst is still recon-

structed as the middle wave packet in the complete recon-

structed wave. Figure 15 shows the superposed original and

reconstructed tone bursts in the two-mode Lamb wave time

reversal procedure. There is still some difference between

the reconstructed and the original tone burst excitations.

The difference decreases with the increase of the count

number of the tone burst excitation, that is, the decrease of

the tone burst bandwidth. This can be easily understood by

considering the frequency domain G(ω) function discussed

in section “Modeling of PWAS Lamb Wave Time Reversal”.

The G(ω) function approximates a constant as the frequency

span becomes narrower and approaches a single frequency

condition. To quantify the difference, root mean square de-

viation method was employed and the similarity was calcu-
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Table 1 Similarity between reconstructed and original tone bursts

Freq (kHz) 36 210 350

Mode A0 S0 + A0 S0

Count num. 3 4 5 6 3.5 4.5 5.5 6.5 3.5 4.5 5.5 6.5

Similarity, % 80.3 84.7 87.5 88.5 86.9 89.0 89.8 90.5 54.0 66.4 73.7 86.3

Fig. 15 Superposed original tone burst and reconstructed tone burst

after time reversal procedure: 210 kHz, S0 + A0 mode (normalized

scale)

lated as

Similarity(i, j) = 1 − RMSD

= 1 −

√

∑

N

[Ai − Aj ]2/
∑

N

(Aj )2 (16)

where N is the number of points in the plot, and i, j de-

note the two plots under comparison. This method compares

the amplitude of two sets of data and assigns a scalar value

based on the formula (16). The similarity value ranges from

0 to 1 as the two sets of data vary from “not related” to “iden-

tical”.

Table 1 and Fig. 16 show the similarity values calculated

for the reconstructed and original tone bursts in A0 mode,

S0 mode, and S0 + A0 mode time-reversal procedures. The

similarity increases with the increase of the tone burst count

number. For A0 mode, the similarity increases from 80.3%

to 88.5% when the tone burst count number is increased

from 3 to 6. For S0 + A0 mode and S0 mode, the similarity

increases when the tone burst count number increases from

3.5 to 6.5 counts. Comparison of the similarity between the

S0 + A0 mode and S0 mode reveals that the S0 + A0 mode

always possesses higher similarity than the S0 mode for a

certain count number. This is due to the fact that S0 + A0

mode in the experiment is excited at lower frequency and

possesses narrower frequency span than the S0 mode. Thus,

to better reconstruct the input of a certain mode Lamb wave

via time reversal process, a tone burst with lower carrier fre-

quency and more count number is always preferred.

Fig. 16 Similarity between reconstructed and original tone bursts

Conclusion

As a baseline free SHM technique, Lamb wave time re-

versal method has experimentally demonstrated its ability

to instantaneously detect certain types of damages in thin-

wall structure without using pristine baseline data [8, 17].

However, unlike the time reversal using bulk waves, time re-

versal of Lamb waves is complicated by the dispersion and

multimode characteristics of the Lamb waves. The theory

of Lamb wave time reversal has not been previously fully

studied. This paper, for the first time, attempts to present a

comprehensive theoretical treatment of the Lamb wave time

reversal theory based on the understanding of the excitation

of Lamb waves using PWAS transducers. It has been found

that Lamb wave is fully time reversible only under certain

circumstances, i.e., when single-mode Lamb waves are ex-

cited through PWAS tuning. The conclusions of our study

are:

(a) Single-mode Lamb wave, i.e., S0 mode or A0 mode,

is rigorously time reversible when using narrow-band

tone burst excitation. Time reversibility of the single-

mode Lamb wave increases as the bandwidth of the

tone burst excitation becomes narrower. In practice, the

single mode Lamb wave can be obtained by using the

PWAS Lamb wave frequency tuning technique [19].

(b) The time reversal of two-mode (S0 + A0) Lamb wave

results in three wave packets in the reconstructed wave.

The three wave packets consist of a main packet flanked

symmetrically by two artifact packets. The main packet

corresponds to the one emitted back to the original point
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and resembles the original tone burst excitation. The

other two packets are the unwanted artifact packets. In

other words, time reversal invariance is not rigorous for

Lamb wave with more than one mode.

(c) Two sets of laboratory experiments were conducted in

order to verify the predictions by the theoretical model.

Plates with 1 mm and 3 mm thickness were used. The

results indicate that the model predicts well the experi-

mental results and show that:

A0 mode Lamb waves can be easily reconstructed

in thin plate (such as 1 mm thickness specimen) with

PWAS transducer, while S0 can be easily reconstructed

in thicker plate (such as 3 mm thickness specimen) with

PWAS transducer.

(d) We also developed a quantitative method of judging

performance of the PWAS Lamb wave time rever-

sal method based on the similarity metric. The metric

was successfully applied to both the single-mode and

the multi-mode Lamb waves signals considered in our

study.

With the PWAS Lamb waves tuning technique, the

single-mode Lamb wave time reversal method can easily

identify damages in thin-wall structures without prior in-

formation. Pristine specimens were utilized in this research

only to demonstrate the time reversal method. Our future

work will be further understanding the interaction between

the plate and PWAS transducers to help improve the Lamb

wave time reversal model and extending the work to com-

posite material. In addition, we will continue the time rever-

sal process on specimens with crack damages.
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