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Abstract

DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently
by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated
NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible
expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this
process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB
repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The
majority of repair events resulted in no loss of sequence and small (1–20 bp) deletions occurred at a minority (25–45%) of
repair junctions. Approximately ,1.5% of the observed repair events contained larger deletions (.20 bp) and a similar
percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the
site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-
classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single
molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful
tool in the analysis of NHEJ.
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Introduction

DNA double strand breaks (DSBs) that occur frequently in

eukaryotes are potentially lethal to the cell as they lead to

mitotically unstable acentric chromosome fragments and the

consequent loss of essential genes [1]. In order to deal with these

dangerous cellular lesions several DNA repair pathways exist.

When a homologous template is available, DNA repair may occur

via homologous recombination (HR) [2]. During HR any sequence

information lost as a result of DNA damage or degradation at the

break site, is recovered by using the homologous chromosome or a

sister chromatid as template for repair [3]. DNA DSBs may also be

repaired without the use of a homologous template by using non-

homologous end joining (NHEJ) [1]. In plants this latter pathway

appears responsible for the majority of DSB repair [4]. Classical-

NHEJ involves the ku70/ku80 heterodimer which binds to DNA

ends [5] and recruits a number of other proteins including the

DNA ligase IV/XRCC4 complex which repairs the break [6].

The term alternative-NHEJ (alt-NHEJ) is generally used to

describe any NHEJ event which lacks one or more of the core

classical NHEJ proteins e.g. ku70, ku80, Lig4, XRCC4 [1]. Alt-

NHEJ, sometimes referred to as backup-NHEJ (B-NHEJ) [7] or

micro-homology-mediated end joining (MMEJ) [8], is not as well

characterised and may well include several distinct repair

pathways [1]. It has been suggested that alt-NHEJ is inhibited

by classical-NHEJ [9,10]. Recently, there has been increased

research into NHEJ in mammalian systems, as its importance with

regard to cancer treatment has become clear. NHEJ promotes

cancer cell survival [11] and inhibitors of NHEJ can be used to

increase the sensitivity of tumours to DNA damaging drugs [12] or

radiation treatment [13].

While NHEJ research is less advanced in plants there is

considerable interest in the process, as it is considered the major

pathway for transgene insertion by particle bombardment,

Agrobacterium and zinc-finger nuclease mediated transformation

[14,15,16] and also for the insertion of cytoplasmic organellar

DNA [17,18]. A better understanding of this pathway may lead to

development of more advanced transformation techniques and

manipulation of the pathway may enable efficient gene targeting

by HR in higher plants [19].

Despite the large body of work investigating NHEJ there are still

several shortcomings in the analysis of this form of DSB repair. A

number of these arise from the necessity for tissue culture selection

to generate clonal cell lines arising from cells that have undergone

individual repair events. The requirement for cell culture restricts

analysis to tissues or cell lines able to be cultured efficiently,

preventing investigation of NHEJ in some tissues of interest. In

addition, the selection and maintenance of multiple cell lines is not

only labour intensive and time-consuming, but it also hinders

analyses needed to uncover subtle variations in NHEJ repair, and

to observe rare classes of repair. These problems require the

development of a high-throughput pathway for the analysis of
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NHEJ repair events without the need for rounds of tissue culture,

selection and plant regeneration.

Over the past decade single molecule (sm) PCR has become a

powerful method for examining DNA sequences at the single cell

level. It has been used previously in wide ranging applications

[20,21,22] and is ideally suited to the analysis of somatic mutations

as it allows amplification of a target locus from unique template

DNAs [23]. Therefore this technique provides a tool with which to

investigate DSB repair, enabling rapid amplification and sequenc-

ing of individual repair junctions. We have used smPCR to

investigate NHEJ using a genetic system that allows induction of

DNA double-strand breaks at a specific nuclear location in planta,

followed by amplification of individual NHEJ repair junctions. We

validated the use of this system in both Arabidopsis and tobacco,

revealing similar patterns of NHEJ repair in both species and

finding insertions at repair sites in Arabidopsis in contrast to

previous studies [24]. In addition, we demonstrated that sequence

insertions at sites of DSB repair in tobacco involve a non-classical

NHEJ repair pathway.

In the course of this work we also evaluated the use of the dao1

dual selectable marker gene [25] in tobacco. While both positive

and negative selection worked well in seedling selection experi-

ments, we caution that only positive selection was found to be

reliable during tissue culture regeneration.

Results

The experimental system
The experimental system consists of a gene encoding the rare

cutting endonuclease I-SceI under the control of an ethanol

inducible promoter (Figure 1A) [26]. At a second locus two I-SceI

restriction sites flank a ,3 kb ‘spacer region’ (Figure 1B)

containing the dao1 dual selectable marker gene [25] that includes

three HincII sites.

To generate DNA DSBs, tissues of interest in a transgenic plant

hemizygous for both experimental transgene cassettes (Figure 1)

were sprayed with ethanol to induce I-SceI expression which then

introduced DSBs at the two restriction sites flanking the spacer

region. Following DSB induction the plants were left for several

days to allow DSB repair to take place, after which the tissue was

harvested and DNA prepared. Individual junctions that had been

repaired by NHEJ were then specifically amplified by single

molecule PCR using primers flanking the two I-SceI sites. As each

product was generated from a single template molecule, every

Figure 1. Overview of EtOH induced induction of DSBs. The T-DNA of vector pAlcR:ISceI (A) contains the left (LB) and right border (RB)
sequences; a hygromycin selectable marker gene (hyg); the AlcR gene constitutively expressed from the 35S promoter; and the I-SceI gene driven by
the alcA:35S promoter. In the presence of EtOH, AlcR binds to and transcriptionally activates the alcA:35S promoter, driving expression of I-SceI. The T-
DNA of vector pdao1 (B) contains left and right border sequences; a kanamycin selectable marker gene (neo); and a spacer region flanked by I-SceI
target sites. The spacer region also contains three HincII sites (H). (C) Upon I-SceI expression the I-SceI sites are cleaved leading to the excision of the
spacer region. DSB repair will then result in the joining of the cleaved sequences. This may result in direct joining of the I-SceI restriction sites,
deletion of sequence on either side of the DSB or insertion of sequence at the site of DSB repair. These three types of repair can be distinguished by
PCR using primers P1 (DSBF1) and P2 (DSBR1) that flank the site of DSB repair. Direct joining will result in an 834 bp product whilst deletion will result
in a smaller product and insertion in a larger product. In the absence of DSB induction or when DSBs are repaired by HR the spacer region will not be
excised resulting in a PCR product of 2.9 kb (B). Amplification of this product will be prevented by digesting template DNA with HincII.
doi:10.1371/journal.pone.0032255.g001

A Comparison of NHEJ in Tobacco and Arabidopsis
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amplicon represents a unique repair junction. Template molecules

which contain the spacer region may have been repaired through

homologous recombination using the sister chromatid as a

template or, alternatively, these molecules may come from cells

in which DSBs were not induced. These non-NHEJ template

molecules were digested by HincII restriction of the spacer region

such that they were not represented in the PCR products

(Figure 1B). Repair events that lack the spacer region i.e. those

events joining the two I-Sce-I sites to exclude the spacer

(Figure 1C), will have arisen through NHEJ, as no chromosomal

template molecule exists that is able to mediate such a repair via

homologous recombination. These NHEJ-derived template mol-

ecules are not digested and remain intact, unless a de novo insert

happens to contain HincII sites.

NHEJ repair junctions that result in no loss of sequence other

than the excision of the spacer region will reform one I-SceI site

from the two I-SceI half sites generated by the initial DSB

induction (Figure 1C). These junctions generate PCR products of

834 bp (Figure 1C). PCR products larger or smaller than this

result from NHEJ repair junctions involving insertions or deletions

respectively (Figure 1C).

Generation of experimental lines
To establish the experimental system, two binary Agrobacterium

transformation constructs, pdao1 and pAlcR:I-SceI, were gener-

ated. The pdao1 T-DNA contains neo for kanamycin selection and

the ‘spacer region’ containing a 35S promoter-driven dao1 gene

flanked by two I-SceI target sites (Figure 1B). The pAlcR:I-SceI T-

DNA contains hyg for hygromycin selection, AlcR driven by a 35S

promoter and I-SceI driven by the ethanol inducible aclA:35S

promoter [27] (Figure 1A). The pdao1 and pAlcR:ISceI constructs

were individually transformed into Arabidopsis and tobacco by

Agrobacterium transformation to generate D (pdao1) and A

(pAlcR:ISceI) lines for both species. For Arabidopsis the nuclear

location of the pdao1 T-DNA was determined by TAIL-PCR and

comparison with the current Arabidopsis whole genome assembly

(TAIR9).

Antibiotic resistant D and A line shoots (tobacco) or seedlings

(Arabidopsis) were assayed by PCR to confirm the presence of the

pdao1 and pAlcR:ISceI T-DNAs respectively. For PCR positive

lines, T1 progeny from self fertilised T0 plants were grown on the

appropriate antibiotic to determine segregation ratios in order to

identify lines with single locus T-DNA insertions.

Homozygous, single locus, D line plants were crossed to

homozygous, single locus, A line plants to generate doubly

hemizygous progeny, providing the starting genotype for DSB

induction. The doubly hemizygous lines were designated D4A2

(tobacco) and D19A26 (Arabidopsis).

dao1 enables dual selection in tobacco seedlings but not
in tissue culture

The dual selectable marker gene encoding a D-amino acid

oxidase (dao1) was included between flanking I-SceI sites to enable

selection of seedlings or single cells in tissue culture for both the

presence or absence of the spacer region. It was intended that this

would be used in a complementary approach to identify NHEJ

repair events. Effective use of dao1 has been demonstrated for both

positive and negative selection of Arabidopsis seedlings [25] but its

use in the selection of tobacco seedlings or in explant shoot

regeneration was not previously demonstrated. Experiments

showed that dao1 was effective for use both as a positive and a

negative selectable marker gene for selection of germinating

seedlings using concentrations of 10 mM D-alanine and 15–

30 mM D-valine respectively as the selective agents (Text S1;

Figures S1 and S2). In tissue culture, positive selection (D-alanine)

but not negative selection (D-valine) was able to clearly distinguish

between dao1 transgenic and wild-type explants. D-valine was

therefore unsuitable for negative dao1 selection in tobacco explant

regeneration (Text S1; Figures S3 and S4). As a result dao1 acts

only as the essential spacer DNA in the current experiments.

Ethanol application leads to I-SceI expression and
induction of DSBs

Prior to screening, the efficiency of ethanol induction of I-SceI

was assessed. Leaf tissue was taken from the tobacco T0 A2 plant

immediately prior to, and three days after, induction with 0.7 M

ethanol. From these tissues RNA was prepared and cDNA

synthesised for use in RT-PCR. A very faint gel band was

observed for I-SceI mRNA prior to induction in leaf tissue

(Figure 2A) indicating minimal leaky transcription in the absence

of ethanol. After induction a strong band was observed (Figure 2A),

indicating a marked increase in transcript accumulation in the

presence of ethanol.

Standard PCR was used initially to confirm that I-SceI

expression resulted in the induction of DSBs and excision of the

spacer region by NHEJ repair. DNA was prepared from tobacco

leaf samples taken from experimental lines prior to and four days

after ethanol induction. The DSB repair locus was then amplified

using primers flanking the two I-SceI sites. A 2.9 kb band was

expected from template molecules that had not undergone spacer

excision or were repaired by HR (Figure 1B). An 834 bp band was

expected from template molecules arising from NHEJ repair of

DSBs without any associated insertion or deletion (Figure 1C).

A 2.9 kb band, resulting from amplification of the locus without

dao1 excision, was observed for all DNA templates (Figure 2B). In

addition a ,834 bp product, reflecting excision of the spacer

region, was amplified when using template DNA from I-SceI

induced tissue (Figure 2B). As both 2.9 kb and ,834 bp bands

were present, it is evident that some template molecules originated

from cells where DSBs were repaired by NHEJ and others were

from cells repaired by HR (or where DSBs were not induced).

Equivalent results indicated that DSB induction was efficient in

Arabidopsis (data not shown).

HincII digest allows preferential amplification of
junctions repaired by NHEJ

To favour amplification of repaired junctions arising specifically

from NHEJ of DSBs, template samples were predigested with

HincII which cuts three times within the spacer region but not in the

flanking sequences between the I-SceI sites and primer binding sites

(Figure 1B). Unavoidably digestion would also prevent amplification

of template molecules arising from DSB repair events involving

insertion of DNA containing HincII site(s). After HincII digestion

only ,834 bp products were amplified (Figure 2C).

Single molecule PCR
To amplify PCR products representing individual DSB repair

junctions smPCR was used. For smPCR the template DNA was

diluted until about two thirds of samples received no template

molecules at all. This ensured that ,80% of the reactions that did

generate a PCR product did so from a single template molecule

[28]. It was not possible to calculate the average template

molecules in a given weight of DNA, as HincII digestion reduced

the number of template molecules per unit weight DNA in a

manner dependent upon the unknown efficiency of excision of the

spacer region. Instead, a series of DNA concentrations were tested

to arrive at the desired empirical concentration.

A Comparison of NHEJ in Tobacco and Arabidopsis
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In tobacco, two independent doubly hemizygous plants

(D4A2#2I and D4A2#6I) were tested using an optimised DNA

concentration of 110–130 pg per reaction. This resulted in a

product being amplified in 33–38% of reactions. For both plants

this corresponds to one template molecule in ,275 pg of genomic

DNA, or one DSB repair by NHEJ in every 24 genomes. In

Arabidopsis, one plant (D19A26#1I) was tested and a DNA

concentration of 1 pg/reaction was chosen. This resulted in a

product being amplified in 27% of reactions, corresponding to one

template molecule in ,3.7 pg, or, one DSB repair by NHEJ in

every 9 genomes [29]. These results clearly indicate efficient

induction of DSBs and subsequent NHEJ repair.

Arabidopsis and tobacco have similar patterns of non-
homologous DNA repair

389 and 311 unique repair junctions were amplified in tobacco

and Arabidopsis respectively. The majority of PCR products were

,834 bp in length (Figure 2D): the size expected with simple

joining of the two I-SceI half sites (Figure 1C). For both species

,1.5% of PCR products were significantly smaller, corresponding

to large (.50 bp) deletions (one example is shown in Figure 2E)

and ,1.5% were significantly larger indicating net insertions (one

example is shown in Figure 2F). Deletions that resulted in the loss

of one or both primer binding sites would not have been observed

in this analysis such that a maximum symmetrical deletion size of

,750 bp could be amplified by PCR using these primers. As a

result, 1.3–1.5% is a minimum estimate of the proportion of repair

events that involve large deletions. In addition amplification of

junction sequences involving insertions would not be possible if the

insert was too large for PCR or if the insert contained a HincII

restriction site. 1.5% is therefore a conservative estimate of

proportion of repair events involving insertion. Occasionally, a

2.9 kb product was amplified from a template molecule containing

the spacer region which had not been digested by HincII (data not

shown) demonstrating that inserts of at least 2 kb could be

amplified effectively using this method.

For both plant species, all the insertion events recovered

together with 20 randomly chosen smPCR products were

sequenced. The smPCR products sequenced that were clearly

the result of reactions containing more than one template molecule

(,20%) were discarded. In tobacco and Arabidopsis respectively,

45% (9/20) and 75% (15/20) of repair junctions without insertion

resulted in no loss of sequence due to simple ligation of the two I-

SceI half sites (Figure 3A and 3C) excluding the spacer region.

Figure 2. PCR analysis of DSB induction and repair. (A) RT-PCR (+) demonstrates increased I-SceI mRNA accumulation after induction with
0.7 M ethanol in tobacco leaf tissue. Low levels of I-SceI mRNA accumulate in non-induced leaf tissue. No reverse transcriptase (2) and no template (-
ve) controls are shown. Template control RT-PCRs used RPL25 mRNA primers. (B) The DSB region was PCR amplified from 4 tobacco D4A2 plants
using primers DSBF1 and DSBR1 which flank the two I-SceI sites. Only the full length 2.9 kb band is amplified from template DNA extracted prior to
DSB induction (NI). An additional ,834 bp band is amplified from template DNA extracted after DSB induction (I). 834 bp is the expected size of the
DSB region after excision of the spacer region. (C) After HincII digestion of induced template DNA only the 834 bp band is amplified. No amplification
is observed from those molecules which have not undergone dao1 excision. Individual repair junctions were amplified by smPCR (D–F). The majority
of products amplified were ,834 bp in size. Some repair events resulted in deletions leading to products ,834 bp (E) while others resulted in
insertion leading to products .834 bp (F). Examples shown are amplified from D4A2#6I template DNA.
doi:10.1371/journal.pone.0032255.g002

A Comparison of NHEJ in Tobacco and Arabidopsis
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Figure 3. Sequence of double strand break repair events. The sequence surrounding the junction sites is shown for 20 randomly chosen
repair products (tobacco, A; Arabidopsis, C), and the repair products that harboured insertions (tobacco, B; Arabidopsis, D). The original sequence
generated by I-SceI cleavage is shown at the top of A–D (the sequence of both strands is shown). Bases from the I-SceI site upstream of dao1 are
shown in red, bases from the I-SceI site downstream of dao1 are shown in green. Inserted bases are shown in blue. In some instances microhomology
was observed between the terminal bases of the fragments being joined (bold italics). Columns to the right of A–D indicate the total length of
deletion (2), insertion (+) and microhomology (MH, not including I-SceI site overlap), nt signifies not testable, F indicates the insertion of filler DNA.
Numbers in brackets indicate length of deletion or microhomology observed at the junction either upstream (L) or downstream (R) of the insertion. In
tobacco the median deletion size was considerably larger in DSB repair events involving insertion than in repair events not involving insertion (E). The
box-and-whisker plot shows the median (red line), the first and third quartiles, and the upper and lower limits of the length of deletions (two-tailed
Mann-Whitney U test).
doi:10.1371/journal.pone.0032255.g003

A Comparison of NHEJ in Tobacco and Arabidopsis
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Comparable experiments in mammals showed a similar percent-

age (40%) of I-SceI site reformation [30]. Two junctions in

tobacco were joined by inexact ligation of the two 4 bp I-SceI half

site overhangs, resulting in the addition of an extra nucleotide.

The remaining junctions, 45% (9/20) for tobacco and 25% (5/20)

for Arabidopsis had small (1–45 bp) deletions (Figure 3A and 3C). In

some instances micro-homology was observed between the

terminal bases of the fragments being joined (Figure 3A and 3C)

although there was no indication that the amount of micro-

homology observed was greater than that expected by chance.

In both tobacco and Arabidopsis the average deletion size

(,14 bp and ,9 bp respectively) was much smaller than the

average insertion size (,95 bp and ,274 bp respectively).

However, as deletions occurred far more frequently than

insertions, there was no net loss or gain of sequence at sites of

DSB repair in either species.

Sequences inserted at sites of DSB repair are nuclear in
origin

The six insertions in tobacco ranged from 127–677 bp in length

(Figure 3B; Table 1) and in all cases insertion was accompanied by

deletion of the starting sequence (Figure 3B). Part of insertion

NTI1 shared 97% identity with the Arabidopsis isoleucine tRNA

gene suggesting that it may be SINE-derived sequence [31]. All

other inserts showed partial identity to uncharacterised EST clones

from tobacco or other Solanaceous species (Table 1), indicating

that all insertions were probably of nuclear origin. The four

insertions in Arabidopsis ranged from 80 to 534 bp in length

(Figure 3D; Table 2). Insertion ATI1 originated from an intergenic

region on chromosome 1. The DSB locus in line D19 is located on

chromosome 5 indicating that insertion ATI1 did not originate

from an adjacent or remote syntenic region. Insertion ATI2 was

accompanied by a large deletion upstream of the left hand I-SceI

site (Figure 3D). The insert was derived from part of this deleted

region but was inserted in the opposite polarity. ATI3 also

originated from DNA found upstream of the left hand I-SceI

recognition sequence (233 to 2352). This sequence was inserted

in the same orientation as the original sequence, effectively

generating a tandem duplication. Insertion ATI4 was derived from

the region excised between the two I-SceI sites. This 498 bp

section of the spacer region did not contain any HincII sites,

enabling this junction to be amplified by smPCR. This observation

implies that similar insertions of segments of the spacer region may

have occurred but were missed in this screen through HincII

digestion.

In both Arabidopsis and tobacco, short stretches of filler DNA (1–

36 bp) were inserted at some junctions (Figure S5). Filler DNA was

usually derived from a short stretch, or multiple stretches, of

nearby sequence that probably primed ligation (Figure S5). Filler

DNA has been associated previously with the insertion of T-DNA

[32] and organelle DNA [18] suggesting that both integrate during

repair of nuclear DSBs.

Insertion at sites of DSB repair in tobacco is associated
with genomic deletion and increased micro-homology at
the sequence junctions

In tobacco, the median size of deletion was found to be

significantly larger in DSB repair events involving insertion than in

those that did not (Figure 3E, p = 0.003, two-tailed Mann-Whitney

U test). DSB repair events that resulted in direct ligation of the two

I-SceI half sites where excluded from this analysis as the two I-SceI

half sites have complementary 4 bp single stranded overlaps that

may promote joining without deletion. In addition, only those

DSB repair events harbouring insertions .1 bp were included.

Investigation of the presence of micro-homology at repair

junctions involving insertion was possible for six junctions. At

these, the bases flanking the insert sequence in its original context

could be inferred from the EST sequence to which the insert

matched. For the other junctions, BLAST searches only identified

accessions with limited identity to the insert sequence, preventing

unequivocal assessment of micro-homology. This is a limitation of

analyses such as this where the sequence from which the insert

originates is unknown. Five of the six junctions that could be

assessed showed micro-homology (2–7 bp, Figure 3B). The

remaining junction showed a 1 bp insertion of filler DNA

(Figure 3B, Figure S5). Overall the level of micro-homology

observed in insertion repair events was greater than that expected

by chance (p = 0.048, n = 6, two-tailed Mann-Whitney U test).

The presence of large deletions and micro-homology at repair

junctions is indicative of insertion via MMEJ or SDSA.

Discussion

DSBs have a number of different causes including reactions with

oxygen free radicals generated during aerobic respiration, ionizing

radiation and faulty action of nuclear enzymes [1]. To deal with

these cellular lesions a highly flexible pathway of NHEJ repair has

evolved, which enables efficient joining of the many types of

damaged DNA ends generated by DSBs. In addition to the

mechanistic flexibility of some of the proteins involved [33], NHEJ

exhibits multiple levels of redundancy enabling it to function even

when some components are lacking [7,34]. Whether these

alternative forms of repair constitute distinct pathways, or are

essentially the same flexible pathway with one or more enzymes

being substituted, is still unclear [1,10].

We developed a genetic system that allows induction of DSBs at

a known nuclear locus through ethanol inducible expression of the

Table 1. Origin of tobacco insertions.

Insertion Length Origin Accession

NTI1 .138 isoleucine tRNA gene partial match to AC009755 (97%, e = 2610218)

NTI2 379 unknown nuclear partial match to AM843263 (78%, e = 6610257)

NTI3 430 unknown nuclear partial match to EB695504 (97%, e = 2610238)

NTI4 127 unknown nuclear complete match to FS392274 (99%, e = 2610256)

NTI5 613 unknown nuclear partial match to BP133287 (92%, e = 3610218)

NTI6 677 unknown nuclear partial match to FN014067 (90%, e = 2610296) and partial match to AM847760 (80%,
e = 6610253)

doi:10.1371/journal.pone.0032255.t001

A Comparison of NHEJ in Tobacco and Arabidopsis
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rare cutting endonuclease I-SceI. This approach allowed individ-

ual NHEJ repair junctions to be efficiently amplified by smPCR.

Using this system we observed a total of ,700 unique NHEJ

junctions in Arabidopsis and tobacco, facilitating comparison of

NHEJ repair in these two plant species.

In general, Arabidopsis and tobacco were found to have very

similar patterns of NHEJ repair. In both species, the vast majority

of repair events resulted in relatively conservative repair with

either no loss of sequence (At, 75%; Nt, 55%) or small deletions (At,

25%; Nt, 45%) at the repair junction. In a small percentage of

junctions, repair was less conservative and involved large deletions

or insertions. Although the average insertion size was greater than

the average deletion size, the greater frequency of deletions meant

that there was no net loss or gain of sequence at sites of DSB

repair. Overall this picture is similar to that observed in

mammalian NHEJ [30], highlighting the high degree of

conservation in this important pathway.

Our findings provide a similar general picture of NHEJ in the

two species which contrasts markedly with previous comparisons

that uncovered large differences between specific types of NHEJ

repair in Arabidopsis and tobacco. Kirik et al. [24] investigated

NHEJ repair events associated with deletions and observed

insertions at a high proportion of repair junctions in tobacco,

whereas deletions were larger and insertions were entirely absent

in Arabidopsis. It is clear from our more extensive results, however,

that insertion during NHEJ repair occurs at a similarly low

frequency in both tobacco and Arabidopsis.

These apparently contradictory findings are best explained by

our observation that insertion events in tobacco are associated

with high levels of micro-homology and large deletions. The

earlier study, by only observing NHEJ events associated with

deletion (which was necessary to eliminate the activity of a

negative selectable marker gene) may have been strongly biased

toward observation of insertion events in tobacco.

The presence of micro-homology and increased deletion size

during insertion in tobacco indicates that insertion is not mediated by

the classical NHEJ repair pathway. There are (at least) two alternative

mechanisms that could explain these observations. One possibility is

that these sequences are not inserted per se but rather copied into the

break site by synthesis dependent strand annealing (SDSA) [35,36].

In this model, 39 ends generated by the DSB invade a nearby double

stranded DNA molecule and short regions of micro-homology prime

synthesis along this template. Template jumping to other nearby

sequences may then occur resulting in the synthesis of chimeric

insertion sequences. Finally, newly generated complementarity is

used to bridge the gap to other side of the DSB. The second possibility

is that free-floating DNA fragments close to (or recruited to) the DSB

site are inserted, with the insert and DSB ends being joined by small

regions of micro homology (MMEJ) [37] or by synthesis dependent

MMEJ [38]. Almost all sequence outcomes may be explained equally

well by both possible pathways making it essentially impossible to

distinguish between the two based on the junction sequence alone.

The observation that many insertions are derived from sequences

close to the site of the DSB, suggests the SDSA model [39]. It is also

clear, however, that many insertions (such as T-DNA insertions and

the insertion of organelle DNA) are derived from free floating

fragments in the nucleus. In these cases it is likely that the DNA ends

are treated similarly to those of a chromosomal DSB and enter the

DSB repair pathway leading to insertion.

Increased micro-homology and deletion size are also associated

with insertion during NHEJ in mammals [10]. Given the wide

conservation of this phenomenon, it is surprising that previous

analysis has not found deletions during DSB repair to be associated

with insertions in Arabidopsis [24]. One possibility is that decreased

stability of free DNA ends in Arabidopsis [40] may result in larger and

more frequent deletions during NHEJ repair. If deletions occur

frequently at all NHEJ junctions then they would not be differentially

associated with insertion events. We observed no difference, however,

between the number of deletions in Arabidopsis and tobacco. As we

were only able to detect deletion events of up to 750 bp, it is possible

that larger deletions, which are known to occur in Arabidopsis during

NHEJ [24], were missed, concealing a higher frequency of deletion.

Indeed, 750 bp is the maximum and deletions between the primers

must be symmetrical. As soon as one primer site is deleted, it is no

longer possible to amplify the target.

Interestingly, there is recent evidence that chromatin state can

affect the pathway of DSB repair, with ku-dependent NHEJ

occurring preferentially in euchromatin and ATM mediated DSB

repair occurring in heterochromatic regions [41]. ATM is both

recruited by [42] and essential for [43] normal DSB repair by the

MRN complex which, as well as having a central role in HR [2], is

involved in MMEJ repair [44,45]. Given our finding that DNA

insertion during repair of DSBs may be mediated by MMEJ, it is

possible that insertion events may occur preferentially in

heterochromatic regions. This is a possible explanation for the

observation that insertions of mobile elements and organelle DNA

tend to occur at heterochromatic pericentromeres [46,47]. Such a

bias would minimise the chance of insertion events disrupting

genes while maintaining genome stability and avoiding the loss of

potentially useful genetic information. Contradictory to this

hypothesis, ATM has been found to suppress MMEJ in

mammalian cells [48] but this suppression occurred in plasmid

re-circularisation assays and is unlikely to be representative of DSB

repair in heterochromatin as efficient nuclear repair is dependent

upon distinct histone epigenetic marks [49,50].

Conclusion
This study has shown smPCR in this transgenic system to be an

efficient method for screening large numbers of DSB repair events

and has the potential to be used in wide ranging investigations of

DSB repair. Analysis of ,700 DSB repair events were analysed

and, in contrast to previously published evidence suggesting

differences in DSB repair between Arabidopsis and tobacco, the two

species displayed similar DSB repair profiles in our experiments.

The majority of repair events were essentially conservative

resulting in no, or little, loss of sequence at the junction. A small

percentage of repair events resulted in larger deletions or insertion.

In tobacco, insertions were associated with larger deletions and

micro-homology indicative of insertion via MMEJ or SDSA.

Materials and Methods

Plant growth and nucleic acid isolation
Nicotiana tabacum and Arabidopsis thaliana (Col-0) plants were

grown either in soil (in pots) or in tissue culture jars containing

Table 2. Origin of Arabidopsis insertions.

Insertion Length Origin

ATI1 154 chromosome 1 (12,474,035…12,474,189)

ATI2 80 DSB left flanking region (239…2133)1

ATI3 328 DSB left flanking region (2352…233)1

ATI4 534 spacer region (+5…+502)1

1co-ordinates given are relative to the left hand I-SceI cleavage site.
doi:10.1371/journal.pone.0032255.t002
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0.56MS salt medium [51] and 0.8% agar (0.56MS agar). Soil

grown plants were grown in a controlled environment chamber

with a 14 hr light/10 hr dark and 25uC day/18uC night growth

regime. In vitro grown plants were grown in a controlled

temperature room with a 16 hr light/8 hr dark cycle at 25uC.

For Arabidopsis, presumed double hemizygous progeny, resulting

from crosses between homozygous A and D line plants were

initially grown on 0.56MS agar medium with 50 mg L21

kanamycin and 15 mg L21 hygromycin to confirm the presence

of both T-DNAs, before transferring plants to soil. DNA was

extracted using a DNeasy Plant Mini Kit (Qiagen, Hilden,

Germany) according to manufacturer’s instructions, or by phenol/

chloroform extraction [52]. RNA was extracted using an RNeasy

Plant Mini Kit (Qiagen) according to manufacturer’s instructions

Plasmid construction and plant transformation
pAlcR:ISceI. The AlcR expression cassette containing the 35S

promoter, AlcR ORF, and nos terminator was isolated as a NcoI/

HindIII fragment from pbinSRN [26]. This cassette was blunt ended

using the Klenow fragment of DNA pol I and cloned into SmaI cut

pGreen0179 to generate pG.AlcR. The I-SceI coding region was

excised from pCISceI [53] and inserted between the alcA:35S

promoter and nos terminator in Alc-pUC (kindly provided by Dr V.

Radchuk), using BamHI. Primers AlcF_NcoI (TTCCATGGGA-

TAGTTCCGACCTAGGATGG) and AlcR_NcoI (TTCCATGG-

GGCGATTAAGTTGGGTAACG) were then used to amplify the

I-SceI expression cassette and the product was ligated into pG.AlcR

using NcoI to generate pAlcR:ISceI.

pdao1. The 35S terminator from pPRVIIIA::neoSTLS2 [54]

and 35S promoter from p35S (kindly provided by Dr S. Delaney)

were cloned into pGreen0029 [55] using HindIII/BamHI and

NotI/XbaI respectively. The dao1 coding sequence was amplified

from pVC_RLM_1qcz (kindly provided by Dr. A. Renz, BASF

Plant Science) using primers dao1F (GAGAAAGGAAGGGAA-

GAAAGC) and dao1R_XbaI (ACTCTAGACCTACAACTT-

CGACTCCCG), the PCR product was then digested with XbaI

and cloned into the pGreen0029 vector containing the 35S

promoter and terminator, thus generating pG.dao1. A multiple

cloning site containing two I-SceI restriction sites flanking HindIII

and NotI sites was generated by annealing two complementary

oligonucleotides I-SceIMCS1 (CTAGGGATAACAGGGTAA-

TAAGCTTGCGGCCGCTAGGGATAACAGGGTAATC) and

I-SceIMCS2 (TCGAGATTACCCTGTTATCCCTAGCGGC-

CGCAAGCTTATTACCCTGTTATCCCTAGAGCT). This

double stranded MCS had 4 bp overhangs at each end allowing

ligation into SacI and XhoI cut pGreen0029, generating

pG.MCS. The dao1 expression cassette was excised from

pG.dao1 with HindIII and NotI and cloned into HindIII/NotI

digested pG.MCS to generate pdao1.

Transformation was performed using the pGreen system of

binary transformation vectors [55]. Transgenic tobacco lines were

generated using a standard leaf disc method [56]. Transgenic

Arabidopsis lines were generated using the simplified floral-dip

method [57] with a rapid selection protocol [58]. Putative D line

and A line transformants were confirmed by PCR using primer

pairs dao1F2/dao1R2 (GGCAAACCGTCCTCGTCAAG/TG-

ACCTCCTTCTCCTTCGCC) and AlcRF1/AlcRR1 (CGTC-

GTTCTTATTCACTCGTTTGC/TTGGAGGATGGGAAAT-

GCGTTAG) respectively.

Evaluation of dao1 selection
To evaluate the use of dao1 as a selectable marker gene, both

wild type and dao1 transgenic seedlings were grown on 0.56MS

agar medium containing various concentrations of D-alanine

(positive selection) or D-valine (negative selection). In addition, leaf

explants from both wild type and dao1 transgenic plants were

grown on regeneration medium containing various concentrations

of D-alanine and D-valine. For full methods see Text S1.

Experimental induction of DSBs
For RT–PCR DNA was removed from RNA samples using a

TURBO DNA-free kit (Ambion, Austin, TX). Reverse transcrip-

tion was performed using an Advantage RT-for-PCR kit

(Clontech, Mountain View, CA) with an oligo(dT) primer in

accordance with the manufacturer’s instructions. Samples were

also prepared without RT. For amplification of I-SceI, primers I-

SceIF1 (ACAAACTGGCTAACCTGTTCATCGT), and I-

SceIR1 (TTCGGAGGAGATAGTGTTCGGCA) were used.

RPL25 mRNA was amplified using primers L25F (AAAATCT-

GACCCCAAGGCAC) and L25R (GCTTTCTTCGTCCCAT-

CAGG). For tobacco I-SceI expression was induced in the leaves of

one month old D4A2 plants grown in tissue culture jars. Leaves

were sprayed with 1–2 mL of 0.7 M ethanol and the jar lids

replaced. For Arabidopsis one month old plants selected on petri

dishes and then grown in soil were sprayed with 1–2 mL of 0.7 M

ethanol and covered with a plastic bag to maintain the presence of

ethanol vapour. The plants were then left for 4 days to allow time

for I-SceI expression, the generation of DSBs and their subsequent

repair. After 4 days leaf tissue was sampled.

PCR
TAIL-PCR was undertaken as described [59] using degenerate

primer AD2 [59] and pdao1 T-DNA specific primers dao1T1 (T-

CTTCCGCTTCCTCGCTCACTGACTCG), dao1T2 (CTCA-

CTCAAAGGCGGTAATACGGTTATCCA) and dao1T3 (CC-

ACAGAATCAGGGGATAACGCAGGAAAG). Standard PCR

was performed using taq polymerase (ROCHE, Basel, Switzer-

land), using suggested PCR conditions. DSB PCR products were

amplified with LongAmp taq DNA polymerase (New England

Biolabs, Ipswich, MA) using suggested PCR conditions, primers

DSBF1 (GATAGTGACCTTAGGCGACTTTTGAACG) and

DSBR1 (TCCCCTGATTCTGTGGATAACCGT), an anneal-

ing temperature of 59uC and 40 ng template DNA. Non-induced,

induced/undigested and induced/digested DNA was used as

template. For digested template, 2 mg genomic DNA was digested

overnight at 37uC using 20 u HincII (New England Biolabs) in a

20 mL reaction and purified using a PCR purification kit

(QIAGEN) according to manufacturer’s instructions.

Single molecule PCR was performed using LongAmp taq DNA

polymerase and HincII digested DNA as template. Reactions were

2 mL in volume and contained 0.3 mM dNTPs, 0.4 mM primers

(DSBF1 DSBR1), 0.2 u LongAmp taq DNA polymerase, 16
LongAmp buffer and 110–130 pg template DNA for tobacco or

1 pg template DNA for Arabidopsis. Reactions were overlayed with

mineral oil to prevent evaporation. Cycle conditions were as

follows: Initial denaturation 95uC 309 then 45 cycles of 95uC 209;

59uC 209; and 65uC 40 followed by a final extension at 65uC for

100. After PCR, 18 mL of H2O was added to each reaction to give

a total volume of 20 mL. 5 mL was analysed by standard agarose

gel electrophoresis and the remainder used in subsequent

sequencing.

Statistical and sequence analysis
Statistical analysis of deletion size and use of micro-homology

(two-tailed Mann-Whitney U test) was performed using Prism 5

(GraphPad Software). Junction sequences were analysed using

Geneious (verion 5.3, Drummond AJ et al. 2010 [http://www.

geneious.com/]). BLAST analysis was performed on several

A Comparison of NHEJ in Tobacco and Arabidopsis

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32255



databases, including NCBI’s non-redundant nucleotide collection

(nr/nt) and non-human non- mouse ESTs (est_others).

Supporting Information

Figure S1 D-alanine and D-valine are suitable for
positive and negative selection of dao1 respectively in
tobacco. Seedlings of transgenic lines containing dao1 and wild-

type (wt) seedlings were grown on various concentrations of D-

alanine (A) and D-valine (B) or media containing neither amino

acid (A–B). D-alanine was most effective at a concentration of

10 mM leading to a strong reduction in the growth of wt seedlings

while not affecting the growth of transgenic seedlings (A). D-valine

was most effective at a concentration of 30 mM leading to a

marked reduction in the growth of transgenic seedlings while not

affecting the growth of wt seedlings. 50 mM D-valine was toxic to

both transgenic and wt seedlings and wt seedlings grown at this

concentration were unable to be distinguished from transgenic

seedlings. Error bars for both A and B show SD.

(TIF)

Figure S2 dao1 transgenic and wild-type seedlings were
easily distinguishable by sight when grown on both
10 mM D-alanine and 30 mM D-valine. dao1 transgenic

seedlings grown on 10 mM D-alanine showed strong growth

(A,C), wild-type (wt) seedlings grown on the same medium

bleached soon after germination (B,D). dao1 transgenic seedlings

grown on 30 mM D-valine had reduced growth (E,G) although

seedlings did not bleach, cotyledons failed to fully expand and

there was no growth of the first true leaf, wt seedlings grown on the

same medium showed strong growth (F,H). Scale bars for A, B, E

and F = 5 mm, scale bars for C, D, G and H = 2 mm.

(TIF)

Figure S3 10 mM D-alanine is suitable for positive
selection of tobacco leaf tissue explants but 30 mM D-
valine is not suitable for negative selection. Leaf explants

taken from wild-type plants (wt) were killed when grown on

regeneration medium containing 10 mM D-alanine (A). Resistant

shoots were generated from dao1 positive leaf explants grown on

same media (B). Leaf explants from both wt and dao1 positive

plants were killed when grown on regeneration medium

containing 10 mM D-valine (E–F). Scale bar = 10 mm.

(TIF)

Figure S4 D-valine is not suitable for negative selection
of tobacco leaf tissue explants. At concentrations of both

15 mM and 5 mM D-valine both dao1 positive and wild-type (wt)

explants failed to generate resistant shoots (A–D). At a concen-

tration of 2 mM D-valine both dao1 positive and wt explants (white

boxed area) generated shoots (E). Scale bar = 10 mm.

(TIF)

Figure S5 Filler DNA at repair junctions was derived
from short stretches of flanking sequence. Filler DNA

(pink) was observed at three sites of DSB repair, each involving an

insertion (NTI1, ATI3 and ATI4). The filler DNA found between

the insert sequence (blue) and the original DSB locus sequence

(black) was derived from short stretches of DNA flanking the

junction (underlined, bold). The homology at the filler DNA donor

sites (bold) often extends into sequence flanking the filler DNA

suggesting that several base pairs of micro-homology were used to

prime the synthesis of the filler DNA promoting joining of the

loose DNA ends. Numbers in brackets indicate bases missing from

the diagram.

(TIF)

Text S1 Full methods and supporting material.
(DOC)
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