Quiver: modeling consensus accuracy

David H. Alexander Pacific Biosciences

August 23, 2013

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Seeking a model for consensus accuracy

How do characteristics of chemistry influence consensus accuracy?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Merge rate
- Branch rate
- Miscall rate

Predictions for C2, XL, P4, and dyeball chemistries

Previous approaches

Most obvious approach is binomial sampling model,

mathgoeshere

- This approach makes wrong assumptions about PacBio
 - Suggests very high consensus accuracy
 - For PacBio, aligning the reads is the challenge, not tabulating bases in columns (miscall rate ~0.5%, indel rate ~12-15%)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Homopolymer errors are the problem

Our approach: focus on homopolymers

Figure : E. coli K12 homopolymer length distribution

・ロト・日本・モト・モト・ ヨー のへぐ

Simple model for homopolymer errors

$$Y = X + B - M;$$

 $B \sim Bin(X, \beta);$
 $M \sim Bin(X - 1, \mu);$
 $B \perp M$

Y: observed HP length X: true HP length B: branches M: merges β : branching rate μ : merging rate

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Parameters estimated from EDNA

Che	Chemistry		Merge	Dark
C2		0.061	0.067	0.026
P4C	P4C2		0.057	0.023
Dye	Dyeball.9566.Std		0.154	0.048
Dyeball.Final		0.035	0.120	0.038

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

For now, averaging across channels, SNRs

Model (with C2 parameters) seems realistic

Figure : Monte-Carlo simulated observed HP length distribution

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Predicted HP accuracy by length, coverage (C2 params)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Distribution of homopolymer errors by length (C2 params)

(Based on distribution of HP lengths in *E. coli* K12)

Overall consensus accuracy prediction for E. coli K12

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで