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Abstract

Replication of DNA is carried out by the replisome, a multiprotein com-

plex responsible for the unwinding of parental DNA and the synthesis

of DNA on each of the two DNA strands. The impressive speed and

processivity with which the replisome duplicates DNA are a result of

a set of tightly regulated interactions between the replication proteins.

The transient nature of these protein interactions makes it challenging

to study the dynamics of the replisome by ensemble-averaging tech-

niques. This review describes single-molecule methods that allow the

study of individual replication proteins and their functioning within

the replisome. The ability to mechanically manipulate individual DNA

molecules and record the dynamic behavior of the replisome while it

duplicates DNA has led to an improved understanding of the molecular

mechanisms underlying DNA replication.
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INTRODUCTION

The replisome is the molecular machinery re-

sponsible for the replication of parental DNA

into two identical daughter molecules. In all

three domains of life, replisomes operate ac-

cording to a set of highly conserved princi-

ples (Figure 1) (4, 5, 40, 80). First, parental

double-stranded DNA (dsDNA) is unwound

by a helicase into two DNA strands (87, 88).

Two DNA polymerases, complexed with pro-

cessivity factors, subsequently synthesize DNA

on each of the two single-stranded templates

(11, 51, 89). Because DNA polymerases add

nucleotides to a primer only in the 5′ to 3′

direction and the two single-stranded DNA

(ssDNA) templates are of opposite polarity, one

of the DNA polymerases, the leading-strand

polymerase, synthesizes DNA in a continu-

ous fashion while following the helicase. The

second polymerase, the lagging-strand poly-

merase, synthesizes short stretches of DNA in

the opposite direction. The discontinuous syn-

thesis of DNA on the lagging strand is primed

by short RNA primers produced by a DNA

primase (30) and gives rise to a succession of

Okazaki fragments that are later ligated into

one continuous strand. Single-stranded DNA

binding proteins (SSBs) remove any secondary

structure that may inhibit synthesis and pro-

tect the stretches of transiently exposed ssDNA

from nucleolytic attacks (96). SSBs also play a

key role in mediating interactions between the

various components of the replisome (40, 96,

109).

The speed and accuracy of the replisome il-

lustrate the efficient coordination of its compo-

nents. For Escherichia coli, the replication fork

moves at a rate approaching 1000 nucleotides

per second (16) and makes less than one mis-

take per 109 nucleotide incorporations (26).

Once every few seconds, the primase synthe-

sizes a short primer that is rapidly transferred

to the DNA polymerase and extended into an

Okazaki fragment (124). Various specific inter-

actions between the proteins at the replication

fork give the replisome its efficiency by greatly

increasing the activity of the individual compo-

nents. In particular, the lagging-strand DNA

polymerase remains associated with the repli-

some, allowing it to be recycled for every new

Okazaki fragment (15, 22, 54, 99). This ar-

rangement is facilitated by a looping-back of

the lagging strand to the replication machin-

ery (2). The loop grows and collapses with each

cycle of Okazaki fragment synthesis.

The various enzymatic events involved in

Okazaki fragment synthesis must occur with

such organization that lagging-strand synthe-

sis remains in step with the continuous pro-

duction of DNA on the leading strand. This

organization requires a precisely timed series

of enzymatic events that control the synthe-

sis of a primer, the recycling of the lagging-

strand DNA polymerase, and the production

of an Okazaki fragment. To understand the

mechanisms controlling the coordination of

the different proteins at the replication fork,

there is a need to directly probe the dy-

namics of fully functional replisomes during

the replication reaction. The recent devel-

opment of single-molecule tools has allowed

such studies and has already led to remark-

able contributions to our understanding of the
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Figure 1

Schematic representations of the replisomes of the T7 bacteriophage (panel a) and Escherichia coli (panel b). The parental DNA is
unwound by a helicase (gp4 or DnaB for the T7 or E. coli system, respectively), and nucleotides are synthesized on the single-stranded
DNA (ssDNA) product strands by the DNA polymerases. In the T7 replisome, the DNA polymerases are directly associated with the
helicase, whereas in the E. coli system, the DNA polymerases are tethered to the helicase by the γ clamp-loader complex. The γ

complex also serves to load the β processivity clamps onto the DNA. The T4 replication machinery (not shown here) displays
similarities to both the T7 and E. coli systems: It contains a dimeric DNA polymerase complex that is directly anchored to the helicase,
and it utilizes a clamp loader to assemble processivity clamps onto the DNA. (Panels a and b reproduced with permission from
References 39 and 104, respectively. OF, Okazaki fragment.

replication machinery. The ability to record

molecular movies of enzymes at the single-

molecule level, and thus remove averaging over

large numbers of molecules participating in the

reaction, has provided unique insights into their

dynamics and reaction mechanisms (10, 20, 33,

50, 73, 75, 107, 120, 127).

The robustness of DNA as a substrate and

the development of techniques to manipulate

individual DNA molecules (reviewed in Ref-

erence 13) have led to an important role for

single-molecule biophysics in understanding

how nucleic acid enzymes work (27, 35, 41, 92,

94). This review aims to describe recent contri-

butions made by single-molecule studies to our

understanding of the functioning of the protein

complexes involved in replication. First, single-

molecule studies on the individual components

of the replication machinery are discussed. Sec-

ond, a description of the progress made to-

ward obtaining a single-molecule view of the

entire replisome is provided. This review con-

cludes with a discussion of how single-molecule

tools can contribute to addressing the impor-

tant outstanding problems in the field and what

technical barriers need to be overcome to an-

swer these questions.

SYNTHESIZING DNA:
THE DNA POLYMERASE

DNA polymerases catalyze the synthesis of a

new DNA strand and, with few exceptions, use

a single-stranded nucleic acid as a template for

this reaction (11, 51, 89). Both prokaryotic and

eukaryotic cells contain multiple DNA poly-

merases, each specialized to carry out tasks in

DNA replication, recombination, and repair.

DNA polymerases extend a DNA chain by cat-

alyzing the nucleophilic attack of the 3′-OH

end of the growing chain on the α-phosphate

of an incoming deoxyribonucleoside triphos-

phate (dNTP) complementary to the template.

Most known replicative DNA polymerases per-

form this reaction in a processive manner, in-

corporating thousands of nucleotides without

dissociating from its template. The bacterial

replicative DNA polymerases possess a 3′-5′ ex-

onucleolytic activity that proceeds in the re-

verse direction of DNA synthesis. This activity
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provides proofreading capability by removing

a mismatched penultimate nucleotide, result-

ing in an overall incorporation accuracy of one

mistake for every 105–107 nucleotides.

The low error rate of DNA polymerases

cannot be explained by the thermodynamics of

base pairing alone. Instead, several kinetic and

structural studies have demonstrated that the

rate, processivity, and efficiency of proofreading

all strongly depend on subtle conformational

variations within the enzyme’s active site (25,

49, 115). Across families and even in the absence

of sequence homology, DNA polymerases have

a similar structure that consists of a right-hand

fold, with the template DNA threaded through

the palm domain and the thumb and fingers

closing around it.

During incorporation of a nucleotide, the

enzyme proceeds through a series of confor-

mational changes that correspond to the clos-

ing and opening of its hand-shaped structure.

Prior to the chemistry step, a DNA polymerase

must bind the primer template and undergo a

conformational change that requires an incom-

ing nucleotide. Using a single-molecule fluo-

rescence assay that exploited the sensitivity of

the fluorophore Cy3 to its local environment,

the Xie group (70) probed this conformational

change for the bacteriophage T7 polymerase.

They determined that this conformational tran-

sition involves the closing of the fingers domain

and that it slows significantly for an improp-

erly matched incoming dNTP (70). Therefore,

this conformational change, which is required

for catalysis, serves as a kinetic checkpoint for

proper base pairing.

The ability to observe a single DNA

polymerase moving along DNA while in-

corporating nucleotides allows for a more

extensive study of the relation between enzyme

template interaction and kinetics (71, 117).

Single-molecule tools have been particularly

powerful in elucidating the mechanisms un-

derlying the switching between polymerization

and exonuclease modes. By using optical (76)

or magnetic (100) tweezers, a stretching force

can be exerted on a primed single-stranded

template and the influence of the force on the

polymerization rate investigated (44, 71, 117).

For several prokaryotic polymerases, forces

higher than 30–40 pN stall the enzyme (44,

71, 117). Single-molecule studies on the DNA

polymerase of the T7 and 829 bacteriophages

showed that even higher forces stimulate the

exonuclease activity by several orders of mag-

nitude (44, 117). The response of the enzyme’s

translocation rates to a variation of the load

applied provides information on which bio-

chemical steps in the pathway are coupled

to movement and how an external stretching

force influences the partitioning between the

exonuclease and polymerization modes (31,

32, 44, 117).

After incorporation of a correct nucleotide,

the polymerase moves a distance of one base to-

ward the site of the next incorporation. During

this movement, the enzyme is briefly associated

with the DNA only by electrostatic interactions

with the DNA backbone and transiently has a

higher probability to dissociate. To maintain a

high affinity for the primer template through-

out the entire catalytic cycle of synthesis and

translocation, replicative DNA polymerases

employ processivity factors that interact with

both the DNA and the polymerase (9, 42, 46).

In recent years, researchers have used single-

molecule techniques to study the interaction

between processivity factors and DNA by vi-

sualizing how these protein factors move along

DNA in the absence of their partner polymerase

(56, 57). By fluorescently labeling the proces-

sivity factor and using total internal reflection

fluorescence imaging to visualize its position

along a stretched duplex DNA, the nonspecific

interaction of these factors with DNA gives

rise to a diffusive motion along the duplex.

The kinetics of diffusive translocation un-

der various conditions, such as salt strength

and strength of fluid flow, report on the mi-

croscopic details of the interactions between

the processivity factor and DNA. Application

of these techniques to the eukaryotic processiv-

ity factor PCNA and that of the herpes simplex

virus DNA polymerase showed that these pro-

teins move along the DNA through a combina-

tion of sliding, while maintaining continuous
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contact with the backbone, and hopping by a

series of rapid and local dissociation and rebind-

ing events (56, 57). Even though these studies

are performed in the absence of DNA poly-

merases, the new insight they provide into how

processivity factors interact with DNA is rele-

vant to our understanding of how DNA poly-

merases hang onto the DNA when translocat-

ing from one incorporation site to the next on

the 3′ end of a primer.

UNWINDING
DOUBLE-STRANDED DNA:
THE HELICASE

DNA helicases are enzymes capable of un-

winding duplex DNA to provide the ssDNA

templates that are required in many biological

processes (87, 88). Helicases separate the

strands of a double helix using the energy

derived from nucleotide hydrolysis. Single-

molecule techniques that allow the application

of a well-defined stretching force on a forked

DNA substrate are well suited to monitor rates

and processivities of unwinding and to study

their dependency on the applied load. Well-

known examples of prokaryotic replicative

helicases include DnaB from E. coli, gp4 from

the bacteriophage T7, and gp41 from T4, all

of which are hexameric, donut-shaped proteins

belonging to the DnaB superfamily (7).

Extensive biochemical and structural char-

acterization led to the conclusion that these

proteins encircle a single strand of DNA and

translocate from the 5′ to 3′ direction (88).

Upon encountering a ssDNA/dsDNA junction,

the complementary strand is displaced and the

dsDNA unwound. However, it is not well un-

derstood how the ssDNA translocation activ-

ity is coupled to the unwinding. Two different

models are typically considered: active or pas-

sive coupling (6, 23, 69). A passive helicase acts

as a Brownian ratchet; it waits for a thermal

fluctuation that transiently melts the first few

base pairs of the dsDNA, and then moves for-

ward and binds to the newly available ssDNA.

The active model describes a helicase that em-

ploys an irreversible powerstroke to disrupt the

dsDNA. In this case, the hydrolysis of nu-

cleotides is tightly coupled to the destabiliza-

tion of the duplex, leading the helicase to un-

wind the dsDNA without being significantly

slowed down by the ssDNA/dsDNA barrier.

Johnson et al. (48) employed force to study

the kinetics of T7 gp4 unwinding of dsDNA

and translocation on ssDNA at the single-

molecule level. By tethering the 3′ terminus

of one end of the DNA to a surface and the

5′ terminus of the same end to an optically

trapped bead, forces that assist the unwinding

of the dsDNA can be applied. The rate of DNA

translocation was measured by sensing the

force change when the translocating helicase on

ssDNA approaches a replication fork, and the

rate of unwinding was measured using feedback

control of force to follow the fork movement.

To determine whether the helicase acts in a pas-

sive or active way, the rate of DNA unwinding

was monitored at different unzipping forces.

The relation between the unwinding rate and

the unzipping force provided direct evidence

that the gp4 helicase unwinds DNA in an active

mode in which the helicase partially destabilizes

the fork junction to facilitate unwinding. Stud-

ies of DNA hairpin unwinding by individual T4

gp41 proteins, the T4 phage replicative heli-

case, demonstrated a purely passive unwinding

mechanism (68). Future experiments on other

systems are needed to elucidate the significance

of variation between the different helicases in

the unwinding mechanism.

SINGLE-STRANDED
DNA-BINDING PROTEINS

Single-stranded DNA-binding proteins (SSBs)

are essential cofactors in a large number of

processes involving DNA, including replica-

tion and recombination (60). An obvious, early

recognized role of SSBs is the coating of the

ssDNA that is transiently exposed at the lag-

ging strand during replication to protect it from

nucleolytic degradation (59). SSBs play an im-

portant regulatory role within the replisome by

interacting with other replication proteins (40,

96, 109).

www.annualreviews.org • Single-Molecule Studies of Replication 433

A
n
n
u
. 
R

ev
. 
B

io
p
h
y
s.

 2
0
1
0
.3

9
:4

2
9
-4

4
8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
G

ro
n
in

g
en

 o
n
 0

7
/2

2
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



The thermodynamic and kinetic properties

of ssDNA coating and dsDNA destabilization

by SSBs are ideally suited for investigation

by single-molecule tools (74). Using optical

tweezers, the Williams group studied the ef-

fects of the T4 gp32 and the T7 gp2.5 ssDNA

binding proteins on the melting behavior of

duplex DNA (83–85, 97). They used these data

to understand the mechanisms of interaction

between SSBs and DNA. Thermodynamically

analogous to the melting temperature of

dsDNA, a critical force exists at which duplex

DNA is converted into two ssDNA molecules.

The influence of SSBs on this melting force

provides information on the binding affinity

of the protein to ssDNA. In contrast to

temperature-induced melting, these force

studies can be performed at physiological tem-

peratures, thus avoiding protein denaturation.

The dependency of the SSB equilibrium bind-

ing constant as a function of the ionic strength

revealed that the binding of these proteins to

ssDNA is regulated by electrostatically sensi-

tive intramolecular conformational changes.

THE REPLISOME:
A MULTIENZYME
REPLICATION MACHINERY

In the previous sections we have described how

single-molecule methods have shed light on

how individual components of the replisome

function. Yet, for even the simplest replica-

tion model systems these proteins do not work

in isolation. Instead, dynamic protein-protein

interactions between the components greatly

stimulate their individual activities. Such co-

operative behavior is not surprising, as the cell

likely uses it as a crude method of regulation;

individual replicative helicases and polymerases

operating outside the context of the replisome

could potentially damage the genome. Further-

more, the protein-protein interactions within

the replisome act to coordinate the activity on

the leading and lagging strands.

To understand how the various replisomal

protein activities are coordinated, a kinetic

and quantitative characterization of the many

transient intermediates involved in DNA repli-

cation is needed. Recent advances in imaging

and molecular manipulation techniques have

made it possible to monitor individual repli-

cation machineries and observe some of their

salient dynamic features. In the remainder of

this review, we discuss these studies and how

they aid in obtaining a full kinetic characteriza-

tion of the various enzymatic steps involved in

replication.

Assembly of the Replisome

Before replication is initiated, the various

components of the replication machinery

are assembled at origins of replication.

The assembly of multiprotein complexes

does not necessarily occur in a well-defined

sequential process. Instead, assembly can

occur over multiple parallel pathways con-

taining a wide range of transition rates.

Determining the order in which the various

proteins assemble is difficult, if not impos-

sible, to monitor using ensemble-averaged

experiments. Numerous order-of-assembly

questions arise for replication systems that

require accessory proteins for loading proces-

sivity clamps and helicases onto DNA (8, 21,

45, 46, 58, 81). For example, does the clamp

loader associate with a clamp in solution, or

does it first bind to DNA before recruiting

a clamp? Is the DNA polymerase already

associated with the clamp when assembled

to the DNA or does a loaded clamp recruit

polymerase from solution?

The T4 bacteriophage replisome represents

the simplest replication model system utilizing

sliding clamp–DNA polymerase complexes for

which the clamp requires a clamp-loader com-

plex. The order of assembly of labeled T4 repli-

cation proteins was visualized by measuring flu-

orescence resonance energy transfer (FRET)

between the different proteins during their as-

sociation with forked substrates (98, 118, 119,

125). This work demonstrated that the T4

DNA polymerase can be assembled through

one of four major pathways (98). These differ-

ent routes of assembly each may play a role in

434 van Oijen · Loparo
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distinct phases of the replication cycle, such as

leading- and lagging-strand synthesis.

Using these single-molecule FRET imaging

techniques, the authors also investigated how

the hexameric T4 helicase is assembled around

the DNA and, when in the assembly pathway,

interacts with the hexameric T4 primase (125).

DNA polymerase activity was inhibited un-

til the helicase loading protein had completed

its job of assembling the helicase (118, 119).

By taking snapshots under various assembly

conditions, these experiments provide invalu-

able information on equilibrium binding stoi-

chiometries. An important future direction will

be the real-time observation of the assembly

process, allowing the determination of kinetic

parameters.

Leading-Strand Synthesis

The mechanical stretching of individual DNA

molecules by means of optical trapping or mag-

netic tweezing is particularly powerful in the

study of replisomal DNA polymerase (70, 71,

117) and helicase (48, 68) activity. However,

with some exceptions (91), these techniques

typically do not allow for the simultaneous ob-

servation of multiple reactions. This multiplex-

ing is essential in gathering statistically sig-

nificant sample sizes and observing the low-

probability events associated with the activity

of multiprotein complexes.

To observe many replication reactions si-

multaneously, a DNA-stretching technique

based on hydrodynamic flow has been devel-

oped that allows as many as hundreds of individ-

ual replication reactions to be observed in one

experiment (106, 113). Individual λ phage DNA

molecules are attached at one end to the bot-

tom surface of a glass flow cell and at the oppo-

site end to polystyrene beads. When a laminar

flow is applied above the surface, a force pro-

portional to the flow rate and the diameter of

the polymer bead stretches the DNA molecules.

The parabolic flow profile, with a zero flow

rate at the surface, keeps the beads just above

the surface. The DNA molecules are stretched

by small forces of only a few piconewtons, too

small to significantly influence protein-protein

and protein-DNA interactions.

As a first step toward observing the ac-

tivity of a fully assembled replisome at the

single-molecule level, leading-strand synthesis

of the bacteriophage T7 replication system was

recorded (64). The orchestration between the

various components at the replication fork can

be studied with the replication proteins of bac-

teriophage T7 (Figure 1a) (40). Its replisome

can be reconstituted with as little as four pro-

teins and displays all the important features of

more complicated replication systems: speed,

accuracy, and processivity. The T7 DNA poly-

merase consists of a 1:1 complex of the T7 gene

5 protein (gp5), encoded by the phage, and the

thioredoxin processivity factor, encoded by the

E. coli host (103). The T7 gene 4 protein (gp4)

provides both helicase and primase activities

(28, 34). The helicase activity, required for un-

winding the parental DNA strand, is located in

the C-terminal half, and the primase activity,

required to initiate lagging-strand DNA syn-

thesis, is located in the N-terminal half.

When both T7 DNA polymerase and gp4

are present at the fork, their dissociation from

DNA is dramatically slowed (78). This results

in a highly processive unwinding of the DNA

duplex and synthesis on the leading strand. T7

DNA polymerase is stably bound to gp4 and

converts the 3′-single-stranded product arising

from the gp4 helicase activity into dsDNA by

extending a short DNA primer that is annealed

to the leading strand. In the absence of ribonu-

cleotides, the primase domain on gp4 is not

active and the 5′ strand (the lagging strand)

remains in the single-stranded form. The coil-

ing of ssDNA causes it to be shorter than

dsDNA at low stretching forces (<6 pN; see

Figure 2). Consequently, a conversion between

dsDNA and ssDNA can be monitored through

a change in total DNA length. The number of

nucleotides converted can be obtained by using

the difference between the lengths of ssDNA

and dsDNA. By attaching the DNA to the sur-

face of the flow cell by the 5′ tail, leading-strand

synthesis can be detected by a shortening of the

lagging-strand DNA (Figure 3).
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Figure 2

Force-extension data for double-stranded and single-stranded DNA (dsDNA
and ssDNA), visualized at different force regimes [high forces in panel a using
optical trapping (117); low forces in panel b using flow stretching (64). Because
of the different force-extension behaviors of ssDNA and dsDNA, any
conversion between the two forms of DNA can be observed as a change in
length. At forces higher than the crossover force (∼6 pN), dsDNA is shorter
than ssDNA; at forces lower than ∼6 pN, ssDNA is shorter than dsDNA. The
red curves in panel a correspond to fits to the experimental data using the
worm-like chain model. (Reproduced with permission from Reference 112).

A single gp4-DNA polymerase was assem-

bled on the fork in the presence of dNTPs,

but in the absence of Mg2+, which is required

for both DNA polymerase and helicase activity.

Subsequent washing of the flow cell for sev-

eral minutes ensured that proteins that could

exchange or compete with the proteins at the

fork are not present in solution. Leading-strand

synthesis reactions were initiated by the addi-

tion of Mg2+ and dNTPs. The observed rate

of leading-strand synthesis (164 bp s−1) (64) is

comparable to the synthesis rate by an individ-

ual DNA polymerase (100–200 nt s−1) (117),

but faster than the unwinding rate by a single

helicase (30 bp s−1) (48).

The processivity is dramatically increased

compared with that of the individual enzymes

[17,000 for the gp4-DNA polymerase (64) ver-

sus 343 bp for the helicase (48) and 500–

1000 nt for the DNA polymerase (64, 117)],

underscoring the stability of the helicase-DNA

polymerase complex on forked and primed

DNA. The existence of a strong physical in-

teraction between the two complexes was val-

idated by monitoring leading-strand synthesis

catalyzed by the polymerase associated with a

gp4 truncated at its C terminus by 17 residues.

The negatively charged C-terminal tail of gp4

is thought to be at least partially responsible for

the interaction with the DNA polymerase (65).

The rate of leading-strand synthesis remained

the same, whereas the processivity in the ab-

sence of an interaction with gp4 was reduced to

5 kb (38).

Similar experiments were performed on

the leading-strand synthesis complex of E. coli

(104). Here also, the processivity of the leading-

strand synthesis complex (10.5 kb) was sig-

nificantly higher than that of the DNA poly-

merase alone (1.4 kb), pointing to an increase

in stability when more factors that provide

additional protein-protein and DNA-protein

interactions are added. The processivity of

the E. coli leading-strand synthesis complex as

measured in the single-molecule experiments

was significantly lower than those measured

in solution-phase experiments (77) (10 kb ver-

sus >50 kb, respectively). The length of final

DNA products as observed in solution-phase

experiments might contain the contributions

of multiple synthesis events on an individual

DNA molecule, whereas single-molecule ex-

periments allow for an unequivocal discrimina-

tion between one processive event and multiple

successive ones.
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Single-molecule observation of leading-strand synthesis by T7 replication proteins. (a) Single-molecule
trajectories of DNA length show shortening corresponding to the leading-strand synthesis and the
concomitant conversion of double-stranded DNA (dsDNA) to single-stranded (ssDNA) at the lagging
strand. Presence of ribonucleotides and the gp4 zinc-binding domain (ZBD) required for primase activity
results in pauses ( gray arrows) in the trajectories, suggesting that primer synthesis transiently halts
leading-strand synthesis. (b) Schematic depiction of the events in panel a. After introduction of replication
proteins and nucleotides, the T7 gp4 helicase unwinds DNA and the T7 DNA polymerase synthesizes on
the leading strand. The lagging strand is anchored to the surface and remains in single-stranded form,
resulting in a shorter DNA tether. (Reproduced with permission from Reference 64).

DNA Primase Activity

A hallmark of coordinated replication is the

tight coupling of the continuous leading-strand

synthesis with the discontinuous production of

Okazaki fragments at the lagging strand (15,

55, 62, 63). For the system to be coupled, the

overall rate of DNA synthesis on the lead-

ing strand needs to equal that on the lagging

strand. The RNA polymerization rate of the

primase is orders of magnitude lower (29, 95,

102) than the rate of synthesis by the DNA

polymerases at the fork. Furthermore, the re-

cycling of the lagging-strand DNA polymerase

from a finished Okazaki fragment to a new

primer site is a process that takes up to a few

seconds, enough time for the leading-strand

DNA polymerase to synthesize several hun-

dred nucleotides (101). It is not well under-

stood how these slow enzymatic steps can take

place at the lagging strand without losing coor-

dination with the continuous and fast leading-

strand synthesis (62, 93, 108). Does the lagging-

strand DNA polymerase synthesize faster than

the leading-strand DNA polymerase to com-

pensate for the time lost during polymerase cy-

cling (14, 82)? Or does leading-strand synthe-

sis transiently halt to prevent it from outpacing

lagging-strand synthesis (64)?

These questions were addressed by monitor-

ing leading-strand synthesis in the presence of

an active primase synthesizing ribonucleotide

primers on the lagging strand using the single-

molecule flow-stretching assay described above

(64). A peculiarity of the T7 replication sys-

tem is that the primase domain is located on

the N-terminal half of the gp4 and thus is

physically coupled to the helicase domain (28,

34). The primase domain itself consists of two
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domains, connected by flexible protein link-

ers (53, 90). The 7-kDa N terminus, the zinc-

binding domain, mediates recognition of the

primer sequences on the template DNA and

delivery of the newly synthesized primer into

the active site of the DNA polymerase (1, 52).

The RNA polymerase domain contains the ac-

tive site where the RNA primer is synthesized.

T7 gp4 unwinds DNA while encircling the

lagging-strand DNA, thus allowing its primase

domain to lay down primers on the lagging

strand that can be used to prime the second,

lagging-strand DNA polymerase (Figure 1a).

The position of the primase active site on the

outside of the helicase (114) allows the helicase

to continue unwinding while a primer is syn-

thesized on the lagging strand.

Enabling primase activity by adding ribonu-

cleotides to the leading-strand synthesis reac-

tion mixture resulted in the appearance of short

pauses in the single-molecule leading-strand

synthesis traces (Figure 3) (64). The absence of

pausing when omitting ribonucleotides or us-

ing an N-terminally truncated gp4 confirmed

that the pausing observed in the reactions with

the full-length gp4 and ribonucleotides is de-

pendent on primase activity. Also, a comparison

of multiple leading-strand synthesis traces that

display primase activity showed that the pauses

tended to occur at reproducible positions on

the lambda phage DNA that were consistent

with the specific sequence requirement of the

T7 primase. The precise molecular mechanism

underlying the halting of leading-strand syn-

thesis by the primase activity is still unclear.

Even in systems where the primase is not

covalently linked to the helicase, the intimate

interaction between the primase and helicase is

of crucial importance for regulating the coor-

dination between leading- and lagging-strand

synthesis (15, 18, 116). In the E. coli replication

system, the DnaG primase needs to transiently

associate with the DnaB helicase to synthesize

a primer and deposit it on the lagging strand

(18). The frequency of interaction between

DnaG and DnaB controls the length of the

Okazaki fragments (116, 124). Single-molecule

experiments on the E. coli leading-strand

synthesis complex demonstrated that the asso-

ciation between DnaG and DnaB resulted in a

cessation of fork progression (104), analogous

to the pausing behavior observed in the T7

system (64). The reduction in processivity

was cooperative with respect to the primase

concentration when primer synthesis was

allowed (104). This observation supports

previously proposed interactions between the

zinc-binding and RNA polymerase domains of

adjacent DnaB-bound DnaG monomers (18,

19). Crystal structures of Bacillus stearother-

mophilus DnaB and helicase-binding domain

of DnaG show three DnaG monomers inter-

acting with a DnaB hexamer, supporting the

hypothesis that the primase monomers interact

in trans (3). These and similar interactions be-

tween primase monomers in the T7 replication

system have been proposed to serve as a mech-

anism of regulating primase activity (18, 19, 66,

126).

Recent single-molecule experiments have

demonstrated the existence of an alternative

mechanism to couple primase activity to

leading-strand synthesis (72, 82). The forma-

tion of a small, ssDNA loop between helicase

and primase would allow helicase-mediated

unwinding to continue while the primase re-

mains bound to the lagging strand to synthesize

a primer. As a result, formation and growth of

such a priming loop allow the leading-strand

complex to continue without pausing and

having to wait for the relatively slow primase

activity. Single-molecule FRET studies using

short, forked DNA substrates demonstrated the

existence of priming loops in the T7 leading-

strand synthesis reaction (82). The authors

also presented evidence that the lagging-strand

DNA polymerase synthesizes DNA faster than

the leading-strand polymerase, a necessary

requirement for the lagging-strand polymerase

to make up for the time lost during primer syn-

thesis. Magnetic tweezers were used to study

priming kinetics in the T4 replication system

(72). The authors visualized the unwinding of

a hairpin DNA substrate and demonstrated

that short, ssDNA loops were formed upon

interaction of the T4 primase with the helicase
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and subsequent primer synthesis. No pauses

were observed in either study, underscoring

the need for more work to understand the

roles of primase-induced pausing and looping

in coupling leading-strand synthesis to primer

production.

Lagging-Strand Synthesis and
Replication-Loop Formation

The activity of fully assembled replisomes,

supporting coupled leading- and lagging-

strand synthesis, was visualized by coupling

the 5′ tail of a rolling-circle substrate to the

surface of a glass microscope coverslip and

imaging the growing, flow-stretched dsDNA

product of lagging-strand synthesis through

use of a DNA intercalating dye (Figure 4)

(105). The ease of this experimental design

and its ability to visualize many hundreds of

individual replication reactions simultaneously

allowed for a thorough characterization of the

distribution of fork rates and processivities for

the E. coli and T7 replication systems. The

O’Donnell group (122) applied this technique

to the study of elongation kinetics of preassem-

bled E. coli replisomes and demonstrated that

lagging-strand synthesis slows down overall

fork progression. This observation is consistent

with a model in which primase activity on the
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Figure 4

Single-molecule rolling-circle fluorescence imaging assay to monitor coupled replication. (a) Schematic depiction of assay. An M13
rolling-circle template is tethered to the surface of a microscope coverslip, replication proteins are introduced, and the flow-stretched
products are imaged in real time by using an intercalating stain at low concentrations. (b) Snapshot of replication intermediates. Flow is
from bottom to top. (c) Kymograph of an individual M13 that is replicated by the Escherichia coli replisome (left). Tracking the position
of the free end of the DNA tether results in a trajectory from which rate and processivity parameters can easily be obtained (right).
(Reproduced with permission from Reference 105). Abbreviations: dNTP, deoxyribonucleoside triphosphate; SA, streptavidin.
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Collision model Signaling model

Nascent OF

IF polymerase
collides with
old OF ....

... THEN loop
is released

... AND OF is
completed

... BUT OF is
not Bnished

... THEN loop
is released

IF primer is
formed here ...

Template
for next OF

Figure 5

Mechanisms of replication loop release. (Left) In the collision model, the loop is released when the lagging-
strand DNA polymerases completes the nascent Okazaki fragment (OF) and collides with the 5′ end of the
previous OF. (Right) In the signaling model, primer synthesis signals loop release.

lagging strand slows down or transiently halts

leading-strand synthesis.

One important property that gives the repli-

some its efficiency is its ability to support many

cycles of priming and Okazaki fragment syn-

thesis. It is not well understood what triggers

the dissociation of the polymerase from the 3′

end of a nascent Okazaki fragment to allow this

cycle to restart. Two models can be envisioned

(Figure 5): (a) a collision-directed trigger, in

which the DNA polymerase dissociates from

the 3′ end of the Okazaki fragment immedi-

ately after encountering the 5′ terminus of the

previous fragment (2, 36, 37, 61, 67, 123); and

(b) a primase-directed trigger, in which the

DNA polymerase dissociates when a primer

is synthesized (116, 121). In the latter model,

primer synthesis initiates every lagging-strand

cycle, and its frequency determines the length

distribution of the Okazaki fragments (124).

Recent single-molecule studies enabled the

visualization of the formation of replication

loops on the lagging strand by monitoring tran-

sient shortenings in flow-stretched DNA un-

dergoing coupled replication (Figure 6) (39).

The length measurements of individual DNA

substrates reveal that the replication loop re-

lease and the initiation of a new one are sep-

arated by a lag phase, a step unobservable in

bulk-phase assays, in which the overall length

of DNA does not change. The appearance of

a lag time after replication loop release sug-

gests the requirement of intermediary steps

prior to the formation of a new replication loop.

From these single-molecule experiments, it ap-

peared that half the time the replisome was

not engaged in the production of a replica-

tion loop. This observation is consistent with

electron microscopy studies on intact repli-

somes, which revealed that only half of the ac-

tive replisomes contained a loop (17, 62, 79,

86). Analysis of the distributions of loop sizes

and lag times between loops reveals that initi-

ation of primer synthesis and the completion

of an Okazaki fragment each serves as a trig-

ger for loop release. The presence of two trig-

gers may represent a fail-safe mechanism that

ensures the timely reset of the replisome af-

ter the synthesis of every Okazaki fragment

(39).
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Figure 6

Single-molecule observation of replication loop formation by the T7 replisome. (a) Schematic depiction of experimental design. The
presence of the T7 gp2.5 single-stranded DNA (ssDNA) binding protein abrogates the length difference between ssDNA and double-
stranded DNA (dsDNA). The production and release of loops in the lagging strand cause the measured length of the DNA to shorten
gradually and lengthen abruptly, respectively. (b) Single-molecule trajectory showing repeated loop formation and release events. The
loop lengths and the duration of the lag phases between loop events are used to unravel the different timing mechanisms of loop release
(see text). (Reproduced with permission from Reference 39.)

FUTURE DIRECTIONS

The last few years have seen a rapid de-

velopment of single-molecule biophysical

tools and their application to the study of

the replisome. The mechanical stretching of

individual DNA molecules (12, 13, 76, 112) has

allowed DNA unwinding and synthesis to be

visualized and has finally resulted in tools for

studying intact replisomes. The development

of single-molecule fluorescence techniques, in

particular FRET, has allowed one to dissect

protein-protein and DNA-protein interactions

in intimate kinetic detail (10, 35, 50, 73, 127).

The next important step will be to combine the

mechanical manipulation of individual DNA

molecules with the use of single-molecule

fluorescence imaging (43, 111). Measuring

unwinding and synthesis by tracking the length

of a DNA molecule while imaging the fluores-

cence of labeled replication proteins at the fork

will allow researchers to relate function (the

enzymatic activities at the fork) to structure

(the architecture of the replication fork).

Ultimately, these techniques will enable us

to address a number of broader issues inacces-

sible by ensemble-averaging techniques: What

is the molecular mechanism of the coupling be-

tween primase activity and leading-strand syn-

thesis? What determines the rate of primer

synthesis and thus the length of Okazaki frag-

ments? How does the replisome deal with bar-

riers on the DNA, such as transcription com-

plexes? What is the order of events that lead

to replication fork restart after encountering a

lesion or obstacle? If we can answer these ques-

tions for prokaryotic model systems, then we

will provide a mechanistic framework that al-

lows us to begin thinking about the function

and regulation of the eukaryotic replisome, a

complex with similar function but significantly

higher complexity.

Where the dynamic functioning of

the prokaryotic replisome is unclear, the
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composition and organization of the eukary-

otic fork are even larger mysteries (47). The

biochemical complexity of the eukaryotic fork

stands in the way of an in vitro reconstitution of

the replication reaction and makes mechanistic

studies difficult to perform. Instead, individual

eukaryotic replication forks could be studied

in cell extracts (24, 110), an environment that

closely mimics physiological conditions but

still allows the use of mechanical manipula-

tion tools and single-molecule fluorescence

imaging. Combined with complementary bio-

chemical, genetic, and structural approaches,

these methods will bring us closer to a full

understanding of the different components of

the replisome and their dynamic properties.

SUMMARY POINTS

1. A large number of single-molecule techniques have become available to study the dynamic

behavior of nucleic acid enzymes: force techniques such as magnetic tweezing, optical

trapping, and flow stretching, and fluorescence techniques such as single-molecule FRET

and colocalization imaging.

2. Single-molecule tools are now routinely applied to the study of individual components

of the replication machinery and have significantly contributed to our understanding

of the functioning of these proteins. In particular, these techniques have elucidated the

mechanisms of helicase-mediated unwinding, polymerase-mediated proofreading, and

binding modes of SSBs to ssDNA.

3. The ability of single-molecule tools to visualize transient intermediate states makes them

ideally suited to study the complex organization and dynamics of multiprotein replication

machinery. Single-molecule studies of the replisome have already resulted in new insights

into replisome assembly and the coupling between leading- and lagging-strand synthesis.

4. The complexity of the replisome and the rarity of some of its salient intermediate states

argue for the use of multiplexed methods, in which many individual replication reactions

can be observed simultaneously.

FUTURE ISSUES

1. To relate enzymatic activity of the replisome with its structural organization and dynam-

ics, there is a need for techniques that combine the ability to mechanically manipulate

DNA substrate and observe fluorescence of labeled proteins at the fork.

2. Techniques that allow fluorescence detection of individual proteins while observing en-

zymatic activity by DNA-length measurements will enable us to correlate structural

with functional properties of the replisome. Such methods are needed to inform on the

composition of the replisome during replication: How many polymerases are associated

with the complex? Are polymerases and processivity factors recycled after completion of

Okazaki fragments?

3. The further development of chemical and genetic labeling strategies is needed to fluo-

rescently tag the replication proteins at any point of interest. Such a flexibility in labeling

the replisome will enable the observation of FRET between different components at

the fork and thus will directly visualize intra- or intermolecular dynamics during fork

progression.
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4. To understand the functioning of the significantly more complex eukaryotic replication

machinery, methodology that allows the manipulation and study of individual replisomes

inside the living cell or in cellular extracts needs to be developed.
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