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Single-molecule theory of enzymatic inhibition
Tal Robin1, Shlomi Reuveni1,2 & Michael Urbakh1

The classical theory of enzymatic inhibition takes a deterministic, bulk based approach to

quantitatively describe how inhibitors affect the progression of enzymatic reactions. Catalysis

at the single-enzyme level is, however, inherently stochastic which could lead to strong

deviations from classical predictions. To explore this, we take the single-enzyme perspective

and rebuild the theory of enzymatic inhibition from the bottom up. We find that accounting

for multi-conformational enzyme structure and intrinsic randomness should strongly change

our view on the uncompetitive and mixed modes of inhibition. There, stochastic fluctuations

at the single-enzyme level could make inhibitors act as activators; and we state—in terms of

experimentally measurable quantities—a mathematical condition for the emergence of this

surprising phenomenon. Our findings could explain why certain molecules that inhibit

enzymatic activity when substrate concentrations are high, elicit a non-monotonic dose

response when substrate concentrations are low.
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E
nzymes spin the wheel of life by catalyzing a myriad of
chemical reactions central to the growth, development, and
metabolism of all living organisms1,2. Without enzymes,

essential processes would progress so slowly that life would vir-
tually grind to a halt; and some enzymatic reactions are so critical
that inhibiting them may result in death. Enzymatic inhibitors
could thus be potent poisons3,4 but could also be used as anti-
biotics5,6 and drugs to treat other forms of disease7,8. Inhibitors
have additional commercial uses9,10, but the fundamental prin-
ciples which govern their interaction with enzymes are not always
understood in full, and have yet ceased to fascinate those inter-
ested in the basic aspects of enzyme science. The canonical
description of enzymatic inhibition received much exposure1,2,11,
but even at the level of bulk reactions its many limitations have
already been pointed out12. Moreover, and despite rapid
advancements in the study of uninhibited enzymatic reactions on
the single-molecule level, the study of inhibited reactions has
barely made progress in this direction and is still based, by and
large, on what is known in bulk.

Single-molecule approaches revolutionized our understanding
of enzymatic catalysis13,14. Early work demonstrated that at the
single molecule level, enzymatic catalysis is inherently stochas-
tic15,16, and that one often needs to go beyond the common
Markovian description to adequately account for the observed
kinetics17–20. Universal aspects of stochastic enzyme kinetics,
including the widespread applicability of the Michaelis–Menten
equation and its insensitivity to microscopic details, were dis-
covered21–27; and the study of enzymatic reactions under force
has shed new light on the mechanics of the catalytic process28–32.

In light of the above, it is somewhat surprising that single-
molecule studies of inhibited enzymatic reactions trail behind and
are just starting to emerge33–37. Specifically, a single-molecule
theory of enzymatic inhibition, and in particular one that takes
into account non-Markovian effects, is still lacking. Stochastic,
single-molecule, descriptions of inhibited enzymatic catalysis can
be found, but these are oftentimes based on simple kinetic
schemes that fail to capture the multi-conformational nature of
enzymes, or properly account for intrinsic randomness at the
microscopic level. From a mathematical perspective, these kinetic
schemes are usually built as Markov chains, and while one could
expand them to account for increased complexity this then also
compels the introduction of many additional parameters. These
tend to complicate analysis, and also make it extremely difficult to
discover universal principles by generalizing from simple exam-
ples. Here, we circumvent these problems by avoiding the Markov
chain formulation to develop a non-Markovian theory of enzy-
matic inhibition at the single-enzyme level.

The simplest Markovian description of enzymatic inhibition at
the single-molecule level assumes that the completion times of
various processes involved in the enzymatic reaction come from
exponential distributions (rates depend on process). However,
and as discussed above, single-molecule experiments suggest that
enzymatic catalysis is often non-Markovian. The exponential
distribution should then be replaced, but the correct underlying

distributions are usually unknown and guessing them is certainly
no solution to this problem. Instead, we choose not to guess,
allowing for catalysis, and other, times involved in the reaction to
come from general, i.e., completely unspecified, distributions.
This is the central and most important difference between our
approach and the classical one. Rather than first, and often
wrongly, assuming that all distributions are exponential (or come
from some other prespecified statistics that is dictated by the
structure of the Markov-chain used), and then carrying out the
analysis, we show that analysis can be carried out even when
underlying time distributions are treated as unknowns. Moreover,
since we do not try and guess which features of the underlying
distributions are important, we also do not run into the risk of
being mistaken in that guess. In other words, relevant parameters
emerge from our theory as output rather than being fed into it as
input.

An approach similar to the one described above has previously
allowed us to revisit the fundamentals of uninhibited enzymatic
reactions, and show that the role of unbinding in these must be
more complicated than initially perceived38. This then facilitated
advancements in the theory of restarted first-passage-time pro-
cesses39–41 as it can be shown that the mathematical description
of such processes is virtually identical to that of enzymatic cata-
lysis at the single-molecule level. Below, we extend our approach
to treat inhibited enzymatic reactions. Conclusions drawn from
our analysis are then compared against conventional wisdom to
predict cases where stochastic fluctuations at the level of the
single enzyme would inevitably lead to a strong departure from
the classically anticipated behavior.

Results
The classical theory of enzymatic inhibition. The classical the-
ory of enzymatic inhibition considers the effect of molecular
inhibitors on enzymatic reactions in the bulk, and focuses on
three canonical modes of inhibition (Fig. 1). In this theory, the
concentrations of enzyme, substrate, inhibitor, and the various
complexes formed are taken to be continuous quantities and
differential equations are written to describe their evolution in
time. Assuming that inhibitor molecules can bind either to the
free enzyme, E, or the enzyme substrate complex, ES, as in the
case of mixed inhibition (Fig. 1), and that all complexes reach fast
equilibrium (the quasi-steady-state approximation), it can be
shown that the per enzyme turnover rate, kturn, of an inhibited
enzymatic reaction obeys11

1

kturn
¼

Km 1þ I½ �
KEI

� �

vmax

1

S½ �
þ

1þ I½ �
KESI

� �

vmax
: ð1Þ

Here, [S] and [I], respectively, denote the concentrations of
substrate and inhibitor, vmax is the maximal, per enzyme,
turnover rate attained at an excess of substrate and no inhibition,
and Km is the so-called Michaelis constant, i.e., the substrate
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Fig. 1 The three canonical modes of enzymatic inhibition. From left to right: competitive, uncompetitive, and mixed inhibition. Rates govern transitions

between the different states: free enzyme (E), enzyme–substrate complex (ES), enzyme–inhibitor complex (EI), enzyme–substrate–inhibitor complex (ESI),

and the (E + P) state which represents the end of a turnover cycle
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concentration required for the rate of an uninhibited reaction to
reach half its maximal value. Values for the kinetic parameters,
Km and vmax, usually lie in the rage of 10−2–106 μm and 10−2–105

s−1, respectively42; and in all subsequent examples parameters
were chosen to comply with these typical values.

The parameters KEI and KESI denote the equilibrium constants
related with reversible association of the inhibitor to form the
molecular complexes EI and ESI, respectively. In the classical
theory, the constants, Km; KEI, and KESI can all be expressed using
rates of elementary processes (see Fig. 1) to get
Km ¼ ðkoff þ kcatÞ=kon, KEI ¼ kEIoff=k

EI
on, and KESI ¼ kESIoff =k

ESI
on ,

where kon and koff are the rates at which the substrate binds
and unbinds the enzyme, and kEIon kESIon

� �
and kEIoff kESIoff

� �
are the

rates at which the inhibitor binds and unbinds the enzyme
(enzyme–substrate complex). Finally, note that turnover rates for
the special cases of competitive and uncompetitive inhibition can
be respectively deduced from Eq. (1) by taking the KESI ! 1 and
KEI ! 1 limits there.

The kinetic schemes described in Fig. 1 also serve as a starting
point for a single-molecule theory of enzymatic inhibition. This
theory is fundamentally different from the bulk one as it aims to
describe the stochastic act of a single enzyme embedded in a “sea”
of substrate and inhibitor molecules. However, the main
observable here is once again the turnover rate, kturn, which is
defined as the mean number of product molecules generated by a
single enzyme per unit time. Equivalently, this rate can also be
defined as kturn � 1= Tturnh i; where the average turnover time
Tturnh i is simply the mean time elapsing between successive
product formation events. Interpreting the kinetic schemes in Fig.
1 as Markov Chains which govern the state-to-state transitions of
a single enzyme, Eq. (1) can once again be shown to hold
(Supplementary Methods).

Beyond the classical theory. The kinetic schemes presented in
Fig. (1) do not account for multiple kinetics states which are often
part of the reaction. For example, it is often necessary to

discriminate between different enzyme–substrate complexes, but
this could be done in a multitude of ways (Fig. 2 left) and the
effect of inhibition should then be worked out on a case-by-case
basis. This could work well when relevant states and transition
rates can be determined experimentally, but doing so is often not
possible technically or simply too laborious. Indeed, in the
overwhelming majority of cases the number of kinetic inter-
mediates and the manner in which they interconvert is simply
unknown. There is thus a dire need for a description that will
effectively take these intermediates into account even when
information about them is partial or completely missing. Such
description would also be useful when trying to generalize lessons
learned from the analysis of simple case studies of enzymatic
inhibition.

Generic reaction schemes could be built by retaining the same
state space as in the classical approach (Fig. 1) while replacing the
all so familiar transition rates with generally distributed transition
times. This is done in order to account for the coarse-grained
nature of states, allowing for a concise description of complex
reaction schemes. The time it takes to complete a transition
between two states is then characterized by a generic probability
density function (PDF), e.g., fTcat

tð Þ for the catalysis time, Tcat,
which governs the transition between the ES and E + P states
above (Fig. 2 right). Applied to all other transitions, an infinitely
large collection of reactions schemes could then be analyzed
collectively.

Competitive inhibition at the single-enzyme level. To con-
cretely exemplify the approach proposed above, we consider a
generic, not necessarily Markovian, scheme for competitive
inhibition at the single-enzyme level (Fig. 3). As usual in this
mode of inhibition, the inhibitor can bind reversibly to the
enzyme to form an enzyme–inhibitor complex which in turn
prevents substrate binding and product formation. However, and
in contrast to the Markovian approach, here we do not assume
that the catalysis time Tcat is taken from an exponential dis-
tribution with rate kcat, but rather let this time come from an
arbitrary distribution. Since the enzyme is single but the substrate
and inhibitor are present in Avogadro numbers, we assume that
the binding times Ton and TEI

on are taken from exponential dis-
tributions with rates kon½S� and kEIon½I� correspondingly, but the
distributions of the off times Toff and TEI

off are once again left
unspecified. We then find that the turnover rate of a single
enzyme obeys (Supplementary Methods)

1

kturn
¼

Km 1þ I½ �
KEI

� �

vmax

1

S½ �
þ

1

vmax
: ð2Þ

Note that despite the fact that it is much more general, Eq. (2)
shows the exact same dependencies on the substrate and inhibitor
concentrations as in the classical theory (Eq. (1) in the limit
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Fig. 2 A non-Markovian reaction scheme can replace infinitely many

Markovian ones. Kinetic intermediates and multiple reaction pathways

could complicate the description of a reaction or various parts of it. When

all intermediates and rates are known, these complications could, in

principle, be addressed on a case-by-case basis. Alternatively, one could

account for the non-Markovian nature of transitions between coarse-

grained states by allowing for generally, rather than exponentially,

distributed transition times. The main advantage of this approach is that it

allows for progress to be made even when the underlying reaction schemes

are not known in full, i.e., in the absence of perfect information
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Fig. 3 A generic scheme for competitive inhibition at the single-enzyme

level. Transition rates have been replaced with generally distributed

transition times to generalize the Markovian scheme in Fig. 1
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KESI ! 1). This result is non-trivial, and turns out to hold
irrespective of the mechanisms which govern the processes of
catalysis and unbinding. However, and in contrast to Eq. (1),
the constants KEI, vmax, and Km, which enter Eq. (2), can
no longer be expressed in terms of simple rates, and are

rather given by (Supplementary Methods): KEI ¼ TEI
off

� �
kEIon

� ��1
,

vmax ¼ Pr Tcat<Toffð Þ= W0
ES

� �
, and Km ¼ kon W0

ES

� �� ��1
. Here,

TEI
off

� �
is the mean life time of the EI state (inhibitor unbinding

time), Pr Tcat<Toffð Þ is the probability that catalysis occurs prior
to substrate unbinding, and W0

ES

� �
¼ min Tcat;Toffð Þh i is the

mean life time of the ES state (time spent in that state).
Concluding, we see that while microscopic details of the reaction
do enter Eq. (2), they only do so to determine various effective
constants. The functional dependencies of the turnover rate on
[S] and [I] are insensitive to these details, and are in this sense
completely universal.

Uncompetitive inhibition at the single-enzyme level. We now
turn to employ the same type of analysis to uncompetitive inhi-
bition (Fig. 4). Interestingly, the situation here is very different
from the competitive case analyzed above, and strong deviations
from the classical behavior are observed. To show this, we follow
a path similar to that taken above and obtain a generalized
equation for the turnover rate of a single enzyme in the presence
of uncompetitive inhibition (Supplementary Methods):

1

kturn
¼

Km

vmax

A I½ �ð Þ

S½ �
þ

1þ I½ �
KESI

� �

B I½ �ð Þ

vmax
; ð3Þ

where KESI ¼ TESI
off

� �
kESIon

� ��1
. Equation (3) should be compared

to Eq. (1) in the limit KEI ! 1, and we once again see that both
exhibit the same characteristic 1/[S] dependence. The dependence
on inhibitor concentration is, however, different from that in Eq.
(1) as Eq. (3) also includes two additional factors, A I½ �ð Þ and
B I½ �ð Þ, whose emergence is a direct result of non-Markovian
stochastic fluctuations at the single-enzyme level. A I½ �ð Þ and
B I½ �ð Þ could be understood in terms of average life times and
transition probabilities (Methods), but are otherwise complicated
functions of [I]. We nevertheless note that A 0ð Þ ¼ B 0ð Þ ¼ 1
always; and that in the Markovian case, i.e., when the schemes
presented in Figs. 4 and 1 (middle) coincide, A I½ �ð Þ ¼ B I½ �ð Þ ¼ 1
for all [I]. Equation (3) then reduces to Eq. (1) in the limit
KEI ! 1, but in all other cases analyzed this is no longer true. In
particular, Eq. (3) predicts that the classical, Markovian, theory of
uncompetitive inhibition will inevitably break down when cata-
lysis times come from a non-exponential distribution.

Breakdown of classical theory for uncompetitive inhibition. To
demonstrate the breakdown of the classical theory with a simple
concrete example, we will now consider a special case of the

kinetic scheme illustrated in Fig. 4. Namely, we take fTcat
tð Þ ¼

pk
1ð Þ
cat exp �k

1ð Þ
cat t

� �

þ 1� pð Þk
2ð Þ
cat exp �k

2ð Þ
cat t

� �

; with 0 � p � 1, for

the PDF of the catalysis time Tcat. We thus slightly generalize the
classical scheme in Fig. 1 (middle) by taking fTcat

tð Þ to be a
mixture of two exponential densities (rather than a single expo-
nential), but all other transitions times are still taken from
exponential distributions. This form of fTcat

tð Þ can be shown to
arise when analyzing in detail a “two-state” model where the
binding of a substrate to an enzyme can occur in one of two ways,
with probabilities p and (1 − p), respectively, each leading to a
different enzyme–substrate complex (ES1 or ES2) equipped with a

distinct catalytic rate (k
1ð Þ
cat or k

2ð Þ
cat ). This description is equivalent

to that given here (Supplementary Methods), and we therefore
refer to fTcat

tð Þ above as that associated with the “two state”model.
Analyzing the two-state model, we find A I½ �ð Þ and B I½ �ð Þ to be

monotonically decreasing functions of [I] (See Fig. 5a & SI for

explicit expressions). This is true as long as k
1ð Þ
cat≠k

2ð Þ
cat and 0<p<1,

and means that A I½ �ð Þ;B I½ �ð Þ � 1 for all [I]. When the inhibitor
concentrations are low, these deviations from unity are linear in
[I]; and for high inhibitor concentrations, both A I½ �ð Þ and B I½ �ð Þ
eventually plateau at a certain level. Since this level could be much
lower than unity, the variation in A I½ �ð Þ and B I½ �ð Þ may strongly
affect the turnover rate in Eq. (3). Consider, for example, the limit
of very high substrate concentration and note that we then have

k�1
turn ½S� ! 1ð Þ ’ 1þ I½ �

KESI

� �

B I½ �ð Þ=vmax. Any deviation from the

classical linear relation between k�1
turn and [I] is then because Bð I½ �Þ

is not a constant (Fig. 5b), and could thus be interpreted as a
measurable telltale sign of non-Markovian kinetics.

The most important consequence of the fact that non-
exponential catalysis times render A I½ �ð Þ and B I½ �ð Þ dependent
on inhibitor concentration is perhaps the emergence of
inhibitor–activator duality. This phenomenon is illustrated in
Fig. 5c where we plot the turnover rate from Eq. (3) for the two-
state model. The classical theory predicts that turnover should
always decrease monotonically with inhibitor concentration, but
here we find that this is not always the case. Specifically, we
observe that for certain parameter choices (particularly when
k

1ð Þ
cat � k

2ð Þ
cat , but also when differences between catalytic rates are

not as drastic), turnover could increase with inhibitor concerta-
tion in a certain concentration range. This non-intuitive behavior
is most pronounced at low-to-moderate inhibitor concentrations,
and we see that at high inhibitor concentrations—where A I½ �ð Þ
and B I½ �ð Þ are close to their asymptotic values—normal behavior
is recovered (increasing inhibitor concertation lowers the turn-
over rate).

Our findings above demonstrate that depending on its
concentration, and the inner workings of the enzyme, a molecule
could act either as an inhibitor or as an activator—despite the fact
that its binding always results in utter and complete shutdown of
enzymatic catalysis. One way to understand this, still within the
framework of the two-state model, is to realize that while the
binding of such a molecule prevents product formation, it could
also act as an effective switch between fast and slow catalytic
states when these exist. Consider, for example, a scenario where
one catalytic state is characterized by a rate that is much higher
than that of the other (k

1ð Þ
cat � k

2ð Þ
cat ). This time scale separation

allows for a scenario where inhibitor binding is not frequent
enough to interrupt catalysis when it proceeds through the fast
catalytic pathway (hence the need for low-to-moderate inhibitor
concentrations), but frequent enough so as to stop catalysis when
it proceeds through the slow catalytic pathway. After the inhibitor
unbinds, the enzyme could return to either of the catalytic states,

Uncompetitive inhibition

E + PE

Tcat
Ton

Toff

ES

ESI

T ESI
off T ESI

on

Fig. 4 A generic scheme for uncompetitive inhibition at the single-enzyme

level. Transition rates have once again been replaced with generally

distributed transition times to generalize the Markovian scheme in Fig. 1
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potentially switching from slow to fast. This type of inhibitor-
induced switching greatly facilitates turnover:

The emergence of inhibitor–activator duality is not unique to
the two-state model, but rather a generic phenomenon whose
origin we trace to stochastic fluctuations at the single-enzyme
level. Depending on the enzyme, its conformations and the way
they interconvert, a multitude of catalysis time distributions may
arise. However, since these stem from multiple transitions
between enzymatic states, the resulting catalysis time distribu-
tions would always be non-exponential and render A I½ �ð Þ and
B I½ �ð Þ inhibitor concentration dependent. This would in turn lead
to the breakdown of the classical theory. To demonstrate this, we
plot the turnover rate from Eq. (3) for catalysis time distributions
other than the one considered so far (Fig. 5d). In all cases, we find
that within a certain concertation range the presence of an
uncompetitive “inhibitor” surprisingly acts to facilitate enzymatic
activity. Numerical simulations further support these conclusions
(Supplementary Figure S1).

A general criterion for inhibitor–activator duality. The net
effect resulting from the presence of an uncompetitive inhibitor
also depends on substrate concentration as is demonstrated in
Figs. 6a, b where we dissect the {[I],1/[S]} plane into three,
qualitatively distinct, phases. As before, we use the two-state
model to illustrate that as inhibitor concentrations increase an
activator–inhibitor transition may take place. However, it can
now be seen that even within this simple, two-state, toy model the
manner in which the activator–inhibitor transition unfolds
depends on the concentration of the substrate (Fig. 6a).
Moreover, in some cases a transition does not occur at all, or only

occurs when substrate concentrations are low enough (Figs. 6b,
c). Therefore, a general criterion for the emergence of
inhibitor–activator duality is required.

Enzymatic reactions may involve many intermediate states and
reaction pathways, and these could be different, or markedly
more complex, than the two-state model we have analyzed above
for illustration purposes. This bedazzling variety that enzymes
display seems to hinder further progress as additional case studies
usually need to be analyzed one at a time. However, the approach
developed herein allows us to treat an infinite collection of
reaction schemes in a joint and unified manner to determine the
effect resulting from the introduction of an uncompetitive
inhibitor. Analyzing the generic reaction scheme in Fig. 4, we
find that a general criterion asserting the emergence of
inhibitor–activator duality (i.e., asserting that dkturn=d½I�j I½ �¼0>0)
can be written in terms of experimentally measurable quantities
(Methods). A slightly simplified version of this criterion is
discussed below.

When substrate binding and unbinding are Markovian
processes with rates kon½S� and koff, respectively, but with inhibitor
unbinding and catalysis times still allowed to come from
arbitrarily distributions, we find that inhibitor–activator duality
will be observed whenever (Methods, Supplementary Methods)

TESI
off

� �
<

1

2
CV2

W0
ES
� 1

h i 1

vmax
1þ

koff

kon S½ �

� 	

: ð4Þ

Here, TESI
off

� �
, which stands on the left-hand side for the mean

life time of the ESI complex, is the only quantity in this inequality
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Fig. 5 Breakdown of the classical theory for uncompetitive inhibition. a In solid blue, A I½ �ð Þ and B I½ �ð Þ from Eq. (3) for the two-state model (main text). Here,

p ¼ 0:1; k
1ð Þ
cat ¼ 50ms�1, k

2ð Þ
cat ¼ 0:5ms�1, and all other reaction times are taken from exponential distributions with koff ¼ 2:3ms�1; kon ¼ 0:1 μMmsð Þ�1

,

and kESIon ¼ 3 μMmsð Þ�1
. The observed behavior should be compared to that obtained for k

1ð Þ
cat ¼ k

2ð Þ
cat (dashed green line). The latter case coincides with the

classical reaction scheme in Fig. 1 (middle), and gives A I½ �ð Þ ¼ B I½ �ð Þ ¼ 1 for all [I]. b The normalized inverse turnover rate vmaxk
�1
turnfrom Eq. (3) vs. [I] in the

limit of saturating substrate concentration. As in a, the dashed green line is drawn for the degenerate case k
1ð Þ
cat ¼ k

2ð Þ
cat , where B I½ �ð Þ ¼ 1, and a linear behavior

should (and is) observed. In contrast, the solid blue line is drawn for the two-state model with parameters as in a, and one could clearly observe strong

deviations from linearity. This characteristic signature of non-Markovian kinetics is directly measurable. c The turnover rate (normalized by its value in the

absence of inhibition) vs. [I] for the two-state model with three different sets of parameters: (i) k
1ð Þ
cat ¼ k

2ð Þ
cat ¼ 0:1ms�1 (dashed green); (ii) k

1ð Þ
cat ¼ 10ms�1,

k
2ð Þ
cat ¼ 0:5ms�1 (dash-dot orange); and (iii) k

1ð Þ
cat ¼ 10ms�1, k

2ð Þ
cat ¼ 0:1ms�1 (solid blue). In all three cases, p= 0.1 and other parameters are specified in the

SI. In sharp contrast to what is predicted by the classical theory, we observe that turnover may exhibit a non-monotonic dependence on inhibitor

concentration. d The turnover rate, normalized by its value in the absence of inhibition, vs. [I] for three different distributions of the catalysis time: Log-

normal (dashed green), Weibull (solid blue), and Gamma (dash-dot orange), all with the same mean and variance (see Supplementary Figure 1 for details).

The non-monotonic behavior of kturn=k
0
turn indicates the breakdown of the classical theory
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that relates to the kinetics of the inhibited enzyme. On the right-
hand side, CVW0

ES
stands for the coefficient of variation (standard

deviation over mean) associated with the stochastic life time of
the ES complex in the absence of inhibition, and all other
quantities are defined as they were immediately after Eq. 2. And
so, despite the infinitely many degrees of freedom we have
allowed for by leaving the distributions of inhibitor unbinding
and catalysis times unspecified, predictions coming from our
theory could still be tested on any enzyme of interest simply by
measuring means and variances (rather than full distributions) of
certain stochastic times associated with the reaction at the single
enzyme level. This important feature of our theory carries over to
the more general condition for the emergence of
inhibitor–activator duality (Methods).

It should be noted that the criterion in Eq. (4) can only be
fulfilled when CVW0

ES
>1 since TESI

off

� �
is always positive. The

coefficient of variation CVW0
ES
is a dimensionless measure for the

dispersion of the distribution governing the stochastic life time of
the ES state in the absence of inhibition. The more dispersed
(wide) this distribution is the larger CVW0

ES
and vice versa. In the

classical theory, the Markovian formulation implies that time
spent at the ES state is exponentially distributed (Supplementary
Methods). This means that the standard deviation and mean of
this time are equal, i.e., CVW0

ES
¼ 1. In this case, and whenever the

life time distribution is narrower than the exponential,
inhibitor–activator duality will not be observed. Broader life time
distributions with CVW0

ES
>1 are expected for enzymes with

alternative kinetic pathways19,25; and the condition in Eq. (4) will
then hold as long as substrate concentrations are low enough.

Moreover, if TESI
off

� �
vmax<

1
2
CV2

W0
ES
� 1

h i

, inhibitor–activator dua-

lity will be observed regardless of substrate concentration.

Mixed inhibition at the single-enzyme level. Before concluding,
we note that the mixed mode of inhibition is subject to the same
type of analysis applied above. In this case, we find (Supple-
mentary Methods)

1

kturn
¼

Km 1þ I½ �
KEI

� �

vmax

Að½I�Þ

S½ �
þ

1þ I½ �
KESI

� �

Bð½I�Þ

vmax
; ð5Þ

and a criterion analogous to Eqs. (4) and (11) in Methods is also
obtained (Supplementary Methods). In fact, all of the results in
this paper could be derived by starting with Eq. (5) (Supple-
mentary Methods), which generalizes and replaces Eq. (1) to
describe enzymatic inhibition at the single-enzyme level. Speci-
fically, note that the structure of Eq. (5), and that of Eqs. (2) and
(3) as special cases, casts doubt on the ability of classical methods,
e.g., that of Lineweaver and Burk43, to reliably discriminate
between different modes of enzymatic inhibition, and suggests
that these methods be revised. Finally, we note that while the
framework considered herein allows for arbitrary, rather than
exponentially, distributed transition times between kinetic states,
it still retains the common assumption (also used in the stochastic
derivation of Eq. (1)) that the system “forgets” the state of origin
after leaving it (In this sense, the approach presented in this paper
could be said to be semi-Markovian.). Accounting for memory of
past states could be important in certain cases, but the incor-
poration of a general form of such memory into the framework
presented herein currently seems to be out of reach. Progress in
this direction is an important future challenge and is anticipated
to advance both theory and practice.

Discussion
How would the average rate at which an enzyme converts sub-
strate into product change in the presence of a molecule whose
binding to the enzyme completely shuts down its ability to cat-
alyze? As we have shown, the answer to this question is not as
simple and straightforward as it seems and curiously depends on
the mode of inhibition, the molecular inner workings of the
enzyme, and on a delicate interplay between substrate and inhi-
bitor concentrations. The classical theory of inhibition provides
no clue to this, but the single-enzyme approach taken herein
shows that there are cases where the presence of a molecule could
result in an increase of the turnover rate—even though its
binding to the enzyme always results in utter and complete
shutdown of enzymatic catalysis. Notably, this is not because
some conformations of the enzyme–inhibitor complex are inhi-
bitory and others excitatory or due to an interaction with some
additional molecule/s44,45 (also see “inhibition paradox”12), but
rather because catalysis in the absence of any external modifier is
non-Markovian. In other words, multiple enzyme conformations
result in non-exponential transitions between coarse-grained
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Fig. 6 The emergence of inhibitor–activator duality depends on substrate concentration. a, b Phase diagrammatic representation of enzymatic turnover for

two different instances of the two-state model. Here, activation is the phase where turnover is higher than its value in the absence of inhibition (i.e., when

[I]= 0), and any increase in inhibitor concentration increases turnover further; transition is the phase where turnover is still higher than its value in the

absence of inhibition, but where further increase in inhibitor concentration results in a decrease of the turnover rate; and inhibition is the phase where

turnover is lower than its value in the absence of inhibition, and any increase in inhibitor concentration decreases turnover further still. Keeping substrate

concentration fixed, and varying the concentration of the inhibitor, turnover attains a maximum when crossing the line which separates the activation and

transition phases, and re-attains its value at [I]= 0 when crossing the line which separates the transition and inhibition phases. Plots were made with the

following parameters: k
1ð Þ
cat ¼ 50ms�1, k

2ð Þ
cat ¼ 0:5ms�1, p ¼ 0:1; kon ¼ 0:2 μMmsð Þ�1; kESIon ¼ 30 μMmsð Þ�1

, kESIoff ¼ 50ms�1 and two different values of koff

(indicated in the top left corner of each panel). c Lateral cross-sections through b showing the turnover rate, normalized by its value in the absence of

inhibition, as a function of [I]. The activation phase in b corresponds to the ascending branch of the curves in c, whereas the transition and inhibition phases

correspond to the part of the descending branch of the curves which respectively lies above, and below, unity. Substrate concentrations, corresponding to

where cross-sections in b were taken, are indicated next to each curve
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“states” and this, surprisingly, is already enough to produce the
effect. This surprising finding not only exposes fundamental flaws
in our current understanding of enzymatic inhibition, but also
has direct practical implications as inhibitors are in widespread
commercial use.

Take for example DAPT (N-[N-(3,5-difluorophenacetyl)-L-
alanyl]-S-phenylglycine t-butyl ester), a compound tested and
verified to act as an inhibitor of the enzyme γ-secretase. Devel-
oped and researched for over a decade, this once promising
treatment of Alzheimer’s disease was eventually abandoned as it
was discovered that when administered at low concentrations,
and when substrate concentrations were also low, it acted as an
activator46–49. More awareness to the issue of inhibitor–activator
duality would have surely resulted in earlier discovery of this
biphasic response, saving precious time, money, and human
effort.

Additional examples where inhibitor–activator duality was
experimentally observed include the effects of such drugs as
valinomycin, SL-verapamil, and colchicine on Pgp ATPase
activity50,51, and the effect of ADP on ATP hydrolysis by
GroEL52. As in the case of DAPT, the qualitative nature of the
phenomenon and its features are similar to those predicted by our
theory, but lack of single-molecule measurements prevents us
from unambiguously concluding that the mechanism we describe
is indeed the one at play. Regardless, we have hereby shown that
inhibitor–activator duality is inherent to the uncompetitive and
mixed modes of inhibition, and that it is expected to naturally
arise due to stochastic fluctuations occurring at the level of the
single enzyme. Equation (4) and its generalizations then suggest
that the effect, if sought for, could be observed in enzymes
exhibiting multi-conformational, non-Markovian, kinetics from
the kind that has already been documented in the past17–19.

Methods
Definition of A I½ �ð Þ and B I½ �ð Þ in Eqs. (3) and (5). A I½ �ð Þ and B I½ �ð Þ are defined
using two auxiliary functions

~fM sð Þ ¼

Z1

0

e�stKmkonFTcat
ðtÞFToff

ðtÞdt ð6Þ

and

~fP sð Þ ¼

Z1

0

e�st Kmkon

vmax
fTcat

ðtÞFToff
ðtÞdt: ð7Þ

Here, Km, kon, and vmax are defined as they were right after Eq. (2) in the main

text, FTcat
ðtÞ ¼

R1
t fTcat

ðtÞdt; and FToff
ðtÞ ¼

R1
t fToff

ðtÞdt. It can then be shown that

(Supplementary Methods)

A I½ �ð Þ ¼
1�

kESIon I½ �
Kmkon

~fM kESIon I½ �
� �

~fP kESIon I½ �
� � ¼

1� WESh i= TESI
on

� �

Pr Tcat<Toff ;TESI
on

� �
=Pr Tcat<Toffð Þ

ð8Þ

and

B I½ �ð Þ ¼
~fM kESIon ½I�
� �

~fP kESIon ½I�
� � ¼

WESh i Pr Tcat<Toffð Þ

W0
ES

� �
Pr Tcat<Toff ;TESI

on

� � ; ð9Þ

where W0
ES

� �
¼ min Tcat;Toffð Þh i and WESh i ¼ min Tcat;Toff ;T

ESI
on

� �� �
are

correspondingly the mean life times of the ES complex with and without inhibition,
and Pr(…) denotes the probability for the occurrence of a specified event.

Probabilistic derivation of Eq. (4). When will the introduction of an uncom-
petitive inhibitor increase the turnover rate? Consider the difference between a
scenario where inhibitor molecules are not present, and a scenario where they are
present at exceedingly low concentrations. Any interaction between the ES complex
and an inhibitor molecule would then be very rare but will eventually happen at
some point in time. In what follows, we try to determine what will be the effect this
interaction has on the average time taken to compete an enzymatic reaction cycle.

An ESI complex will be formed after the inhibitor binds. It then takes the

inhibitor TESI
off

� �
units of time, on average, to unbind, and for the enzyme

another T0
turn

� �
� Tonh i units of time to form a product after having just returned

to the ES state. Here, the mean turnover time in the absence of inhibition,

T0
turn

� �
¼ 1

k0turn
¼ Km

vmax

1
S½ � þ

1
vmax

, was used since inhibitor concentrations were assumed

to be exceedingly low. This allows us to safely neglect the probability the enzyme
encounters an inhibitor again within the remaining span of the turnover cycle, and
one then only needs to note that the mean substrate binding time Ton was
subtracted from T0

turn because the reaction continues from the ES state rather than
starts completely anew. In total, a product will then be formed, on average, after

T1
remain

� �
¼ TESI

off

� �
þ T0

turn

� �
� Tonh i units of time.

Suppose now that instead of having the inhibitor bind the ES complex as
described above, the reaction would have simply carried on uninterruptedly from
that point onward, i.e., as it would in the absence of inhibition. How much time
would it then take it to complete? To answer this, we observe that the inhibitor
encountered the ES complex at a random point in time, as opposed to immediately
after its formation. Having already spent some amount of time at the ES state, the
mean time remaining before the system exits this state need not necessarily be
identical to the mean life time, W0

ES

� �
, of a freshly formed ES complex in the

absence of inhibition. Indeed, the time we require here is the mean residual life
time of the ES complex, i.e., starting from the random point in time at which it
encountered the inhibitor and onward. A key result in renewal theory then asserts
that, when averaged over all possible encounter times, the mean residual life time is

given by 1
2
W0

ES

� �
þ 1

2

σ
2 W0

ESð Þ
W0

ESh i
53, where σ

2 W0
ES

� �
denotes the variance in W0

ES . This

time could be larger, or smaller, than the mean life time W0
ES

� �
, and the two are

equal only when σ
2 W0

ES

� �
¼ W0

ES

� �2
—as happens, for example, in the case of the

exponential distribution.
After the system exits the ES state two things could happen. If a product is

formed the reaction there ends. Otherwise, the enzyme reverts back to its free state,
and the reaction takes, on average, another T0

turn

� �
units of time to complete. When

the enzyme first enters the ES state the probability that a product is formed is
Pr Tcat<Toffð Þ. What is, however, the probability that a product is formed from an
ES complex that is first observed at some random point in time as in the scenario
described above? Looking at the total time an enzyme spends at the ES state across
many turnover cycles, this probability should coincide with the relative time
fraction taken by ES visits which end in product formation, and this is given by

Pr Tcat<Toffð Þ W0
ES Tcatj <Toff

� �
= W0

ES

� �
¼ Pr Tcat<Toffð Þ W0

ES ESj ! E þ P
� �

= W0
ES

� �
,

with W0
ES ESj ! E þ P

� �
standing for the average time spent at the ES state given

that a product was formed thereafter. Summing the contributions above, we see
that when the reaction is left to proceed in an uninterrupted manner a product will

be formed, on average, after T0
remain

� �
¼ 1

2
W0

ES

� �
þ 1

2

σ
2 W0

ESð Þ
W0

ESh i
þ

T0
turn

� �
1� Pr Tcat<Toffð Þ W0

ES ESj ! E þ P
� �

= W0
ES

� �� �
units of time.

Concluding, we observe that for the introduction of an inhibitor to facilitate
turnover one must have T0

remain

� �
> T1

remain

� �
, or equivalently

TESI
off

� �
< Tonh i þ

W0
ESh i
2

1þ
σ
2 W0

ESð Þ
W0

ESh i
2

� 	

� T0
turn

� � Pr Tcat<Toffð Þ W0
ES ESj !EþPh i

W0
ESh i

:

ð10Þ

Recalling that Tonh i ¼ kon½S�ð Þ�1 , vmax ¼ Pr Tcat<Toffð Þ= W0
ES

� �
, and

Km ¼ kon W0
ES

� �� ��1
, the condition in Eq. (10) (emergence of inhibitor–activator

duality) can be rearranged and shown equivalent to

TESI
off

� �

W0
ES

� �

zfflfflffl}|fflfflffl{
ratio of mean life times

<

1

2
CV2

W0
ES
� 1

h i
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

contribution from statistical fluctuations in life time of ES complex

þ 1�
W0

ES ES ! E þ Pj
� �

W0
ES

� �

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
contribution from bias in breakdown of ES complex

=
S½ �

km þ S½ �

� 	zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
fraction of time spent at ES no inhibitionð Þ

:

ð11Þ

Once again, we turn attention to the fact that the condition in Eq. (11) only
involves means and variances (rather than full distributions or higher moments) of
stochastic times associated with the reaction at the single-molecule level, and that
all terms in this equation are experimentally measurable. Equation (4) in the main
text follows from Eq. (11) by further assuming that the time for substrate
unbinding is exponentially distributed with rate koff (Supplementary Methods). An
alternative derivation of Eq. (11) is given in Supplementary Methods.
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