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ABSTRACT 

Solar cells based on arrays of CVD-grown Si nano- or 
micro-wires are being considered as a potentially low-cost 
route to implementing a vertical multijunction cell design 
via radial p-n junctions. This geometry has been pre
dicted to enable efficiencies competitive with planar mul
ticrystalline Si designs, while reducing the materials and 
processing costs of solar cell fabrication [1]. To further 
assess the potential efficiency of cells based on this de
sign, we present here experimental measurements of mi
nority carrier diffusion lengths and surface recombination 
rates within nanowires via fabrication and characterization 
of single-wire solar cell devices. Furthermore, we con
sider a potential Si wire array-based solar cell design, and 
present device physics modeling of single-wire photo
voltaic efficiency. Based on experimentally observed dif
fusion lengths within our wires, we model a radial junction 
wire solar cell capable of 17% photovoltaic energy con
version efficiency. 

INTRODUCTION 

Crystalline silicon is by far the dominant material used 
for worldwide photovoltaic energy conversion and solar 
cell manufacture. However, commercial cells are already 
approaching the practical limit of energy conversion effi
ciency [2]. Thus, in order to reduce the overall cost per 
watt of solar cell production, many efforts are being di
rected at reducing the costs associated with manufactur
ing efficient crystalline Si cells. 

Solar cells based on arrays of vertical Si micro- or 
nanowires have been proposed as one possible route to 
lower production costs, while still obtaining efficiencies 
competitive with planar multicrystalline Si cells. The rea
son for this is twofold. Firstly, materials costs can be re
duced because the radial junction geometry tolerates the 
use of lower-purity silicon with minimal efficiency loss 
compared to a planar geometry [1]. Secondly, processing 
costs could be reduced by employing thin-film techniques 
such as chemical vapor deposition (CVD) of the active 
layer and roll-to-roll sheet processing. Nanowire films 
may be grown from chlorosilane feedstock by the vapor
liquid-solid (VLS) [3] CVD technique, and may be grown 
on, or transferred to [4], inexpensive flexible substrates. 

Within each Si wire of the proposed vertical wire ar
ray solar cell there is a radial p-n (or n-p) junction. This 
decouples the vertical process of light absorption from the 
radial process of charge collection, much like the vertical 
multijunction (VMJ) geometry [5]. This allows for near-
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unity internal quantum efficiency across the entire above
bandgap solar spectrum. The wires can easily be made 
long enough to absorb all above-bandgap illumination, 
while remaining small enough in diameter to efficiently 
collect all photogenerated minority carriers. Despite opti
mal charge collection, however, this design cannot ac
commodate arbitrarily low diffusion lengths. As the wire 
radius decreases, the junction area increases and the cell 
becomes increasingly sensitive to shunting, which also 
increases with lower diffusion lengths. The drop in cell 
operating voltage may decrease overall cell performance 
despite enhanced current collection. Thus, the design of 
an efficient Si wire solar cell requires careful optimization 
of wire radius in addition to the parameters which must be 
optimized on a planar junction cell. In this work we ex
pand on prior analytical modeling [1] by considering 2-
dimensional carrier transport within a single-wire Si solar 
cell model based on a wire array design which might real
istically be fabricated. 

The critical parameter for maximizing the efficiency of 
the single-wire radial junction solar cell is the minority car
rier diffusion length. Hole diffusion lengths of up to 80 nm, 
limited by surface recombination, have been inferred from 
electron beam-induced current measurements on 100 nm
diameter, Au-catalyzed Si nanowires [6]. We have re
ported diffusion lengths of up to 4 IJm within -1 IJm
diameter, Au-catalyzed, single-wire Si solar cells with axial 
rectifying junctions [7]. Radial p-i-n junction single
nanowire solar cells [8] have been reported with device 
efficiencies up to 3.4%. However, the single-wire cells in 
[7] and [8] were not subject to vertical illumination be
cause the wires had been removed from the growth sub
strate and were lying horizontally. We now turn our atten
tion to estimating the efficiency limits of the radial p-n 
junction Si wire solar cell, starting with continued charac
terization of diffusion lengths, lifetimes, and surface re
combination rates. 

EXPERIMENTAL 

Micro- and nanowires for photovoltaic applications [9] 
were grown by the VLS process using Au and Ni catalyst 
metals. TEM images obtained for similar Au-catalyzed 
wires from our reactor indicated that they are single
crystalline, and grow vertically in the <111> direction. 
Wires were removed from the growth substrate by sonica
tion in isoproponal, and then deposited (horizontally) on 
an insulating substrate (n+ Si wafer with 100 nm SbN4.) 
Four-probe electrical contacts to single wires were formed 
using aligned photolithography, metallization, and liftoff. 
AI was evaporated as the contact metal, followed by a 
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Fig. 1. (a) Typical I-V measurement of electrically con
tacted single-wire device, with inset SEM image of the 
device. (b) I-V measurement of single-wire device which 
has had one contact converted to a rectifying junction, 
showing photovoltaic behavior under varying laser illumi
nation at 514 nm. 

layer of Ag to supplement the total metal layer thickness. 
The contacted wires ranged in diameter from 200 nm to 
1.2IJ m. 

The electrical properties of each wire and contact 
were characterized by 2-, 3-, and 4-probe I-V measure
ments, as shown in figure 1 (a). The as-deposited AI con
tacts were generally ohmic, with contact resistance less 
than wire resistance. Effective bulk resistivities were cal
culated for each wire device based on resistance and the 
dimensions of the wire observed in SEM imaging, assum
ing uniform conductivity. Effective doping levels were 
then inferred based on bulk mobility values for crystalline 
Si. For Au-catalyzed wires s electrically active doping lev
els ranged from 1017 to 101 cm- 3, while Ni-catalyzed wires 
varied from 10 15 to 1016 cm- 3. To determine carrier type, 
the underlying Si substrate was used as a gate to induce 
depletion and accumulation within the wire devices. Both 
sets of wires exhibited n-type behavior. 
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Single-wire photovoltaic devices were created by in
ducing rectifying junctions beneath one of the AI contacts 
to the Au-catalyzed wires. A voltage was applied between 
two adjacent outer contacts, allowing current to flow 
through the enclosed wire segment. The voltage was 
slowly increased until the wire segment was destroyed, as 
shown in figure 2(b). In successful cases, the inner con
tact to the remaining portion of the wire exhibited rectifying 
behavior, with ideality factors ranging from 2 - 3.5. The 
rectification is likely due to the formation of a Schottky 
barrier at the contact, the formation of an Al/Si p-n alloy 
junction, or a combination thereof. These devices exhib
ited photovoltaic behavior, with photovoltages up to 0.5 V 
under laser illumination. The highest solar energy con
version efficiency observed was 0.49 % under simulated 
AM 1.5G illumination. Open circuit voltages of up to 190 
mV and short circuit current densities of up to 7.8 mAlcm 2 

were observed. 

Scanning photocurrent microscopy (SPCM, or light 
beam induced current, LBIC) experiments were performed 
on the single-wire solar cell devices to study minority car
rier diffusion and recombination processes. A 650 nm 
laser source was focused to a 1 IJm spot through the ob
jective of a confocal microscope (figure 2a), and photocur
rent was recorded as a function of illumination position at 
various applied biases, shown in figures 2 (c) and (d). 
Due to the rectifying junction at one end of the wire de
vice, the minority carrier diffusion length could be directly 
observed as the exponential decay rate of photocurrent as 
the injection position was swept towards the opposite (oh
mic) contact. For the Au-catalyzed wires, these decay 
lengths did not vary with applied bias, confirming minority
carrier diffusion-limited transport within the wires. Diffu
sion lengths in Au-catalyzed wires with diameters near 1 
IJm have been observed ranging from 2 - 4 IJm. The recti
fying junction formation technique was not successful in 
wires with diameters less than 800 nm. 

For each observed diffusion length, the effective mi
nority (hole) carrier lifetimes were calculated based on 
doping-dependent mobility values for crystalline Si. life
times ranged from 6 to 25 ns, which are comparable to 
expected lifetimes for Si doped with Au at its solid solubil
ity limit at wire growth temperatures. [10] By assuming, 
instead, that recombination occurs only at the surface of 
the wire, one can calculate an upper limit on effective sur
face recombination velocity [11). This calculation yields 
effective surface recombination velocities of 800 - 2000 
cms- 1. 

The SPCM technique has also been applied to Ni
catalyzed wires, indicating generally longer diffusion 
lengths than for Au-catalyzed wires. This is expected, 
since Au forms a deep level trap within Si [10] while Ni 
remains relatively inert as long as it does not form a pre
cipitate [12). This is encouraging from a photovoltaics 
perspective, given the difference between the abundance 
and costs of Au vs. Ni. 
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Fig. 2. (a) Simplified schematic of the SPCM/LBIC ex
periment, illustrating confocal illumination. (b) SEM im
age of a Ni-catalyzed single-wire photovoltaic device, with 
arrow indicating the location of the rectifying contact. 
(c) SPCM linescan profile of short-diode device obtained 
at 0 V bias, showing approximately linear decay of photo
current away from the junction. The arrow indicates the 
junction location. Inset: I-V of typical Ni-catalyzed Si wire 
device. (d) Log-scale SPCM linescans of long-diode de
vice obtained at various biases, showing inferred hole 
diffusion lengths. 

However, experimental difficulties prevented as con
clusive a study of diffusion length within Ni-catalyzed wires 
as was performed on the Au-catalyzed wires. This was 
due in part to the generally lower observed doping levels 
of the Ni-catalyzed wires, which made repeatable forma
tion of ohmic and rectifying contacts difficult. At these 
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levels, the junction formation procedure was rarely suc
cessful in creating rectifying junctions, appearing instead 
to only slightly modify the barrier height or interface 
charge density at the original contact. Furthermore at 
these doping levels, the band bending due to contacts, 
depletion regions, and surface charge extends further into 
the wire device, potentially complicating the assumption of 
quasi-neutrality within the wire. 

Some Ni-catalyzed devices were successfully created 
which exhibited suitable rectifying behavior at one contact, 
and suitable ohmic behavior at the other. The devices 
which had 10 !-1m electrode spacing generally exhibited 
linear, rather than exponential, spatial decay profiles un
der SPCM. This is characteristic of a short diode, in which 
the diffusion length exceeds the device length. In an at
tempt to extract the diffusion length, contact spacing was 
increased to 20 !-1m. Some devices exhibited exponential 
SPCM profiles (shown in figure 2d) yet other devices ex
hibited linear or sub-linear SPCM profiles indicative of 
diffusion lengths near or greater than 20 !-1m (figure 2c.) 
An exemplary Ni-catalyzed long diode device is shown in 
figure 2d. Here, the observed diffusion length at non-zero 
biases have been corrected to account for electric field
enhanced diffusion[13], due to the high resistance experi
enced by majority carrier currents at these doping levels. 
The electric field is calculated based on the dark I-V prop
erties of the device and inferred resistivity. The correction 
yields a reasonably consistent diffusion length of approxi
mately 10 !-1m. In directly comparing this result to that for 
the more heavily doped, Au-catalyzed wires, it is important 
to consider the difference in mobility between these wire 
batches. For n-type Si, a given minority carrier lifetime 
yields approximately double the diffusion length at 10 16 

cm- 3 doping than at 10 18 cm- 3 [14]. 

Further experimental work is required to fully charac
terize diffusion length, carrier lifetimes, and surface re
combination within Ni- and Au-catalyzed wires. However, 
we have observed diffusion lengths of up to 4 !-1m in Au
catalyzed Si wires. And despite the difficulties encoun
tered in measuring diffusion lengths within Ni-catalyzed 
wires, we have seen strong experimental evidence that 
diffusion lengths are at least 10 !-1m, the longest reported 
diffusion length in VLS-grown Si wires to date. We have 
also inferred upper limits on wire surface recombination 
rates. These observations enable a more thorough inves
tigation of Si wire-based photovoltaic performance, based 
on experimentally measured properties and physically 
achievable cell geometries. 

DEVICE PHYSICS MODELING 

To more accurately predict and optimize the perform
ance potential of Si wire-based cells, we have employed 
the Synopsis TCAD software suite, including Sentaurus 
Device simulator (Version A-2007.12), to develop a device 
physics model of single-wire Si solar cell. Figure 3(a) 
illustrates a proposed Si wire array cell design featuring 
radial p-n junctions, and figure 3(b) illustrates the single
wire equivalent cell studied here. The model is specified 
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Fig. 3. Device physics model of single-wire solar cell. 
(a) Proposed wire array solar cell which serves as basis 
for single-wire model shown in (b), where the geometry 
and boundary conditions of the model are illustrated. (c) 
Simulated efficiency of single-nanowire solar cell model 
as a function of wire radius and diffusion length, calcu
lated at three values of surface recombination velocity. 
The light gray circles represent actual devices which were 
simulated to cover this parameter space. (d) and (e) 
show simulated Voe and Jse, respectively, of the nanowire 
device for Seff = 1300 cm/s. The cell thickness limits Jse 
to 37 mAlcm 2 • 

in 2-dimensional cylindrical coordinates, which properly 
models a 3D radial junction wire device under vertical 
illumination. 

The single-wire model in figure 3(b) was chosen to 
represent, with minimal complexity, the wire array cell that 
might reasonably be fabricated shown in figure 4~a). An 
n-type wire core was chosen with doping of 10 8 cm- 3, 

since our reactor can produce wires of this doping type 
and density. A Gaussian boron profile was chosen for the 
emitter, with surface concentration of 5x1018 cm- 3 and 
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junction depth of 50 nm, representing the approximate 
profile which could result from a boron diffusion step on 
the as-grown wire array. The wire length of 100 IJm was 
selected as a compromise between the optical thickness 
required for maximal absorption, and the increased com
putational resources required to model thicker cells. This 
thickness absorbs -90% of incident solar power [1] and 
limits maximally achievable current density to approxi
mately 37 mA cm- 2 • A 5 nm oxide was placed at the wire 
side and top surfaces to allow surface recombination to be 
modeled at these surfaces. Ideal ohmic contacts were 
used at the base of the wire device. To approximate the 
array cell, where the growth substrate and monolithic 
emitter form the contacts to the base and emitter, respec
tively, of each wire, a minority carrier surface recombina
tion velocity of 1000 cm S-1 was assigned to each of the 
contacts to the single-wire cell model. 

The Sentaraus Device program calculates the termi
nal current of the solar cell model by simultaneously solv
ing the electron and hole continuity equations and the 
Poisson equation within the device [15). Unless otherwise 
specified, the default parameters for Si were used for all 
physical processes. A drift-diffusion model for carrier 
transport was employed, with doping-dependent mobility . 
Shockly-Reed-Hall (SRH) and Auger recombination were 
considered. For the purpose of generality, the SRH re
combination was modeled throughout the wire as a single 
trap located at mid-gap, rather than considering the trap
ping dynamics introduced by catalyst metal incorporation. 
The lifetime was varied to obtain the desired diffusion 
length within the base. Depending on the actual recombi
nation mechanisms and impurity distributions within the 
wires, this approach may underestimate depletion region 
recombination. Solar illumination was modeled by a 20-
point discretization of the above-bandgap AM 1.5G spec
trum, which preserved the incident power density, photon 
density, and overall shape of the relevant AM 1.5G spec
trum. Dark and light J-V, spectral response, and 
SPCM/LBIC measurements were simulated for Si wire 
cells of varying radius (R = 0.2 - 20 IJm), diffusion length 
(Lp = 80 nm - 80 IJm), and surface recombination velocity 
(Saff= 100, 1300, 105 cm S-1.) 

Figure 3(c) shows the simulated efficiency contours of 
the single-wire solar cell, indicating that the cell is capable 
of conversion efficiencies that exceed 20% within the con
sidered parameter space. Figures 4 (d) and (e) show the 
Voe and Ise contours, respectively. As predicted, the cell 
is capable of obtaining optimal Ise at arbitrarily low diffu
sion lengths, as long as the wire radius is less than the 
diffusion length. However, the Voe decreases rapidly at 
lower diffusion lengths, more so for smaller wire radius. 
Thus, for any given diffusion length, optimal cell efficiency 
occurs when R = %Lp. The cell is remarkably insensitive 
to surface recombination on the wire top and sidewalls, 
since the bulk absorber (core) is shielded from all sur
faces by the active emitter layer. Only in cases of extreme 
(Saff = 105 cm S-1) recombination is performance effected, 
in this case due mostly to the lowered blue response due 
to an effectively inactive emitter at the top of the wire. 



To obtain a refined estimate of achievable cell effi
ciencies based on experimentally measured wire proper
ties, we consider the case of Lp = 3.0 IJm, corresponding 
to a typical value observed in Au-catalyzed wires, and Lp = 
10 IJm, a value consistent with experimental results for Ni
catalyzed wires. In both cases, the experimentally
inferred upper limit on surface recombination velocity is 
also applied. The radius of each device was chosen to be 
near the optimal radius predicted by figure 3(c): 1.5 IJm for 
the Lp = 3.0 IJm case and 5 IJm for the Lp = 10 IJm case. 
These simulated cells exhibit power conversion efficien
cies of 11% and 17%, respectively. As a point of com
parison, we simulated planar-junction cells with identical 
doping profiles and carrier lifetimes, with contact surface 
recombination velocities of 1000 cm S-1 to approximate the 
effects of passivation and a back-surface field in a planar 
cell. The simulated J-V performance of these cells is 
shown in figure 4. As expected, the radial junction cells 
exhibit much higher current density, at the cost of cell op
erating voltage. Increasing the thickness of a single-wire 
cell to 300 IJm yields predicted efficiencies of over 18% for 
Lp = 10 IJm. 

It should be noted that this single-wire solar cell 
model does not account for many important complications 
associated with a cell based on arrays of many wires, 
namely the optical properties of such arrays. There are 
significant challenges in the way of efficient absorption 
within large wire arrays, including geometrical and practi
cal limits on wire packing density. However, disordered 
films of sub-wavelength nanowires have been reported 
with reasonable optical absorption for photovoltaic appli
cations [16-18]. For larger-diameter wires and ordered 
arrays, there are other potential optical benefits, since 
each vertical wire can function as a waveguide, and the 
array can function as a photonic bandgap crystal. A de
tailed analysis of this topic is necessary to supplement the 
device physics modeling presented here. 

CONCLUSIONS 

Solar cells based on arrays of Si wires are a promis
ing approach to reducing the cost of solar cell production. 
We have measured diffusion lengths within Si wires which 
exceed 10 IJm, and simulated an 17% efficient single
nanowire solar cell device with this diffusion length. It is 
foreseeable that diffusion lengths could be improved 
through growth condition alterations, surface passivation, 
or impurity gettering -- which has the potential to further 
improve the potential efficiency of this solar cell design. 
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